PREGNANCY

READY FOR ACTION.

READY FOR ACTION.

It is a fact too well established to be controverted, that the first male produces impressions upon subsequent progeny by other males. To what extent this principle holds, it is impossible to say. Although the instances in which it is known to be of a very marked and obvious character may becomparatively few, yet there is ample reason to believe that, although in a majority of cases the effect may be less noticeable, it is not less real; and it therefore demands the special attention of breeders. The knowledge of this law furnishes a clue to the cause of many of the disappointments of which practical breeders often complain, and of many variations otherwise unaccountable, and it suggests particular caution as to the first male employed in the coupling of animals—a matter which has often been deemed of little consequence in regard to cattle, inasmuch as fewer heifers' first calves are reared, than those are which are borne subsequently.

The phenomenon—or law, as it is sometimes called—of atavism, orancestral influence, is one of considerable practical importance, and well deserves the careful attention of the breeder of farm stock.

Every one is aware that it is by no means unusual for a child to resemble its grandfather, or grandmother, or even some ancestor still more remote, more than it does either its own father or mother. The same occurrence is found among our domestic animals, and oftener in proportion as the breeds are crossed or mixed up. Among our common stock of neat cattle, or natives—originating, as they did, from animals brought from England, Scotland, Denmark, France, and Spain, each possessing different characteristics of form, color, and use, and bred, as our common stock has usually been, indiscriminately together, with no special object in view, with no attempt to obtain any particular type or form, or to secure adaptation for any particular purpose—frequent opportunities are afforded of witnessing the results of this law of hereditary transmission. So common, indeed, is its occurrence,that the remark is often made, that, however good a cow may be, there is no telling beforehand what sort of a calf she may have. The fact is sufficiently obvious, that certain peculiarities often lie dormant for a generation or two and then reappear in subsequent progeny. Stockmen often speak of it as "breeding back," or "crying back."

The lesson taught by this law is very plain. It shows the importance of seeking thorough-bred or well-bred animals; and by these terms are simply meant such as are descended from a line of ancestors in which for many generations the desirable forms, qualities, and characteristics have beenuniformly shown. In such a case, even if ancestral influence does come in play, no material difference appears in the offspring, the ancestors being all essentially alike. From this standpoint we best perceive in what consists the money value of a good "pedigree." This is valuable, in proportion as it shows an animal to be descended, not only from such as are purely of its own race or breed, but also from such individuals of that breed as were specially noted for the excellencies for which that particular breed is esteemed.

Probably the most distinctly marked evidence of ancestral influence among us, is to be found in the ill-begotten, round-headed calves, not infrequently dropped by cows of the common mixed kind, which, if killed early, make very blue veal, and if allowed to grow up, become exceedingly profitless and unsatisfactory beasts; the heifers being often barren, the cows poor milkers, the oxen dull, mulish beasts, yielding flesh of very dark color, of ill flavor and destitute of fat.

The relative influenceof the male and female parents upon the characteristics of progeny has long been a fruitfulsubject of discussion among breeders. It is found in experience that progeny sometimes resembles one parent more than the other—sometimes there is an apparent blending of the characteristics of both—sometimes a noticeable dissimilarity to either, though always more or less resemblance somewhere—and sometimes the impress of one may be seen upon a portion of the organization of the offspring, and that of the other parent upon another portion; yet we are not authorized from such discrepancies to conclude that it is a matter of chance; for all of nature's operations are conducted in accordance with fixed laws, whether we be able fully to discover them or not. The same causes always produce the same results. In this case, not less than in others, there are, beyond all doubt, certain fixed laws; and the varying results which we see are easily and sufficiently accounted for by the existence of conditions or modifying influences not fully open to our observation.

It may be stated, on the whole—as a result of the varied investigations to which this question has given rise—that the evidence, both from observation and the testimony of the best practical breeders, goes to show that each parent usually contributes certain portions of the organization to the offspring, and that each has a modifying influence upon the other. Facts also show that the same parent does not always contribute the same portions, but that the order is at times, and not rarely, reversed. Where animals are of distinct species or breeds, transmission is usually found to be in harmony with the principle, that the male gives mostly the outward form and locomotive system, and the female chiefly the interior system, constitution and the like. Wherethe parents are of the same breed, it appears that the proportions contributed by each are governed, in a large measure, by the condition of each in regard to age and vigor, or by virtue of individual potency or superiority of physical endowment. This potency or power of transmission, seems to be legitimately connected with high breeding, or the concentration of fixed qualities, obtained by continued descent for many generations from such only as possess in the highest degree the qualities desired.

Practically, the knowledge obtained dictates in a most emphatic manner that every stock-grower use his utmost endeavor to obtain the services of the best sires; that is, the best for the ends and purposes in view—that he depend chiefly on the sire for outward form and symmetry—and that he select dams best calculated to develop the good qualities of the male, depending chiefly upon these for freedom, from internal disease, for hardihood and constitution, and, generally, for all qualities dependent upon the vital or nutritive system. The neglect of the qualities of the dam, which is far too common—miserably old and inferior animals being often employed—cannot be too strongly censured.

With regard to the laws which regulate the sex of the progeny very little is known. Many and extensive observations have been made, without reaching any definite conclusion. Nature seems to have provided that the number of each sex; produced, shall be nearly equal; but by what means this result is attained, has not as yet been discovered.

It has long been a disputed point, whether the system ofbreeding in-and-in, or the opposite one of frequent crossing, has the greater tendency to improve the character of stockThis term, in-and-in, is often very loosely used and as variously understood. Some confine the phrase to the coupling of those of exactly the same blood, as brothers and sisters, while others include in it breeding from parents and offsprings; and others still employ it to embrace those of a more distant relationship. For the last, the term breeding-in, or close breeding, is generally deemed more suitable.

The current opinion is decidedly against the practice of breeding from any near relatives; it being usually found that degeneracy follows, and often to a serious degree; but it is not proved that this degeneracy, although very common and even usual, is yet a necessary consequence. That ill effects follow, in a majority of cases, is not to be doubted; but this is easily and sufficiently accounted for upon quite other grounds. Perhaps, however, the following propositions may be safely stated: That in general practice, with the grades and mixed animals common in the country,close-breeding should be scrupulously avoidedas highly detrimental. It is betteralwaysto avoid breeding from near relatives whenever stock-getters of the same breed and of equal merit can be obtained which are not related. Yet, where this is not possible, or where there is some desirable and clearly defined purpose in view—as the fixing and perpetuating of some valuable quality in a particular animal not common to the breed—and the breeder possesses the knowledge and skill needful to accomplish his purpose, and the animals are perfect in health and development, close breeding may be practised with advantage.

The practice ofcrossing, like that of close breeding, has its strong and its weak side. Judiciously practised, it offersa means of providing animalsfor the butcher, often superior to, and more profitable than, those of any pure breed. It is also admissible as the foundation of a systematic and well-considered attempt to establish a new breed. But when crossing is practised injudiciously and indiscriminately, and especially when so done for the purpose of procuringbreeding animals, it is scarcely less objectionable than careless in-and-in breeding.

A SPRIGHTLY YOUTH.

A SPRIGHTLY YOUTH.

The profitable style of breeding for the great majority of farmers to adopt, is neither to cross nor to breed from close affinities—except in rare instances, and for some specific and clearly understood purpose—but tobreed in the line; that is, to select the breed or race best adapted to fulfil the requirement demanded, whether it be for the dairy, for labor, or for such combination of these as can be had without too great a sacrifice of the principal requisite, and then to procure apure-bredmale of the kind determined upon, and breed him to the females of the herd; and if these be not such as are calculated to develop his qualities, endeavor by purchase or exchange to procure such as will. Let the progeny of these be bred to anotherpure-bredmale of the same breed, but as distantly related to the first as may be. Let this plan befaithfully pursued, and, although we cannot, without the intervention of well-bred females, procure stock purely of the kind desired, yet in several generations—if proper care be given to the selection of males, that each one be such as to retain and improve upon the points gained by his predecessor—the stock, for most practical purposes, will be as good as if thorough-bred. If this plan were generally adopted, and a system of letting or exchanging males established, the cost might be brought within the means of most persons, and the advantages which would accrue would be almost beyond belief.

A brief summing-up of the foregoing principles may not be inappropriate here.

The law of similarity teaches us to select animals for breeding which possess the desired forms and qualities in the greatest perfection and best combination.

Regard should be had, not only to the more obvious characteristics, but also to such hereditary traits and tendencies as may be hidden from cursory observation and demand careful and thorough investigation.

From the hereditary nature of all characteristics, whether good or bad, we learn the importance of having all desirable qualitiesthoroughly inbred; or, in other words, so firmly in each generation that the next is warrantably certain to present nothing worse—that no ill results follow from breeding back to some inferior ancestor—that all undesirable traits or points be, so far as possible,bred-out.

So important is this consideration, that, in practice, it is decidedly preferable to employ a male of ordinary external appearance—provided his ancestry be all which is desired—ratherthan a grade, or cross-bred animal, although the latter be greatly his superior in personal beauty.

A knowledge of the law of variation teaches us to avoid, for breeding purposes, such animals as exhibit variations unfavorable to the purpose in view; to endeavor to perpetuate every real improvement gained; as well as to secure, as far as practicable, the conditions necessary to induce or continue any improvement, such as general treatment, food, climate, habits, and the like.

Where the parents do not possess the perfections desired, selections for coupling should be made with critical reference to correcting the faults or deficiencies of one by corresponding excellencies in the other.

To correct defects, too much must not be attempted at once. Pairing those very unlike oftener results in loss than gain. Avoid all extremes, and endeavor by moderate degrees to attain the end desired.

Crossing, between different breeds, for the purpose of obtaining animals for the shambles, may be advantageously practised to a considerable extent, but not for the production of breeding animals. As a general rule, cross-bred males should not be employed for propagation, and cross-bred females should be served by thorough-bred males.

In ordinary practice, breeding from near relatives is to be scrupulously avoided. For certain purposes, under certain conditions and circumstances, and in the hands of a skillful breeder, it may be practised with advantage—but not otherwise.

In a large majority of cases—other things being equal—we may expect in progeny the outward form and generalstructure of the sire, together with the internal qualities, constitution, and nutritive system of the dam; each, however, modified by the other.

Particular care should always be taken that the male by which the dam first becomes pregnant is the best which can be obtained; also, that at the time of sexual congress both are in vigorous health.

Breeding animals should not be allowed to become fat, but always kept in thrifty condition; and such as are intended for the butcher should never be fat but once.

In deciding with what breeds to stock a farm, endeavor to select those best adapted to its surface, climate, and degree of fertility; also, with reference to probable demand and proximity to markets.

No expense incurred in procuring choice animals for propagation, no amount of skill in breeding, can supersede, or compensate for, a lack of liberal feeding and good treatment. The better the stock, the better care they deserve.

The symptoms of pregnancy in its early stage were formerly deemed exceedingly unsatisfactory. The period of being in season—which commonly lasts three or four days, and then ceases for a while, and returns in about three weeks—might entirely pass over; and, although it was then probable that conception had taken place, yet in a great many instances the hopes of the breeder were disappointed. It was not until between the third and fourth month, when the belly began to enlarge—or, in many cases, considerably later—and when the motions of the fœtus might be seen, or,at all events, felt by pressing on the right flank, that the farmer could be assured that his cow was in calf.

That greatest of improvements in veterinary practice, the application of the ear to the chest and belly of various animals, in order to detect by the different sounds—which after a short time, will be easily recognized—the state of the circulation through most of the organs, and consequently, the precise seat and degree of inflammation and danger, has now enabled the breeder to ascertain the existence of pregnancy at as early a stage as six or eight weeks. The beating of the heart of the calf may then be distinctly heard, twice, or more than twice, as frequent as that of the mother; and each pulsation will betray the singular double beating of the fœtal heart. This will also be accompanied by the audible rushing of the blood through the vessels of the placenta. The ear should be applied to the right flank, beginning on the higher part of it, and gradually shifting downward and backward. These sounds will thus soon be heard, and cannot be mistaken.

Little alteration needs to be made in the management of the cow for the first seven months of pregnancy; except that, as she has not only to yield milk for the profit of the farmer, but to nourish the growing fœtus within, she should be well, yet not too luxuriantly, fed. The half-starved cow will not adequately discharge this double duty, nor provide sufficient nutriment for the calf when it has dropped; while the cow in high condition will be dangerously disposed to inflammation and fever, when, at the time of parturition, she isotherwise so susceptible of the power of every stimulus. If the season and the convenience of the farmer will allow, she will be better at pasture, at least for some hours each day than when confined altogether to the cow-house.

At a somewhat uncertain period before she calves, there will be a new secretion of milk for the expected little one; and under the notion of somewhat recruiting her strength, in order better to enable her to discharge her new duty—but more from the uniform testimony of experience that there is danger of local inflammation, general fever, garget in the udder, and puerperal fever, if the new milk descends while the old milk continues to flow—it has been usual to let the cowgo dryfor some period before parturition. Farmers and breeders have been strangely divided as to the length of this period. It must be decided by circumstances. A cow in good condition may be milked for a much longer period than a poor one. Her abundance of food renders a period of respite almost unnecessary; and all that needs to be taken care of, is that the old milk should be fairly gone before the new milk springs. In such a cow, while there is danger of inflammation from the sudden rush of new milk into a bag already occupied, there is almost always considerable danger of indurations and tumors in the teats from the habit of secretion being too long suspended. The emaciated and over-milked beast, however, must rest a while before she can again advantageously discharge the duties of a mother.

If the period of pregnancy were of equal length at all times and in all cows, the one that has been well fed might be milked until within a fortnight or three weeks of parturition, while a holiday of two months should be granted to thepoorer beast; but as there is much irregularity about the time of gestation, it may be prudent to take a month or five Weeks, as the average period.

The process of parturition is necessarily one that is accompanied with a great deal of febrile excitement; and, therefore, when it nearly approaches, not only should a little care be taken to lessen the quantity of food, and to remove that which is of a stimulating action, but a mild dose of physic, and a bleeding regulated by the condition of the animal, will be very proper precautionary measures.

A moderately open state of the bowels is necessary at the period of parturition in the cow. During the whole time of pregnancy her enormous stomach sufficiently presses upon and confines the womb; and that pressure may be productive of injurious and fatal consequences, if at this period the rumen is suffered to be distended by innutritious food, or the manyplus takes on that hardened state to which it is occasionally subject. Breeders have been sadly negligent in this respect.

The springing of the udder, or the rapid enlargement of it from the renewed secretion of milk—the enlargement of the external parts of the bearing (the former, as has been said by some, in old cows, and the latter in young ones)—the appearance of a glaring discharge from the bearing—the evident dropping of the belly, with the appearance of leanness and narrowness between the shape and the udder—a degree of uneasiness and fidgetiness—moaning occasionally—accelerated respiration—all these symptoms will announce that the time of calving is not far off. The cow should be brought near home, and put in some quiet, sheltered place. In cold or stormy weather she should be housed.Her uneasiness will rapidly increase—she will be continually getting up and lying down—her tail will begin to be elevated and the commencement of the labor-pains will soon be evident.

In most cases the parturition will be natural and easy, and the less the cow is disturbed or meddled with, the better. She will do better without help than with it; but she should be watched, in order to see that no difficulty occurs which may require aid and attention. In cases of difficult parturition the aid of a skillful veterinary surgeon may be required.

Feeding and Management

No branch of dairy farming can compare in importance with the management of cows. The highest success will depend upon it, whatever breed be selected, and whatever amount of care and attention be given to the points of the animals; for experience will show that very little milk comes out of the bag, that is not first put into the throat. It is poor economy, therefore, to attempt to keep too many cows for the amount of feed one has; for it will generally be found that one good cow well-bred and well fed will yield as much as two ordinary cowskept in the ordinary way; while a saving is effected both in labor and room required, and in the risks on the capital invested. If an argument for the larger number on poorer feed is urged on the ground of the additional manure—which is the only basis upon which it can be put—it is enough to say that it is a very expensive way of making manure. It is not too strong an assertion, that a proper regard to profit and economy would require many an American farmer to sell off nearly half of his cows, and to feed the whole of his hay and roots hitherto used into the remainder.

An animal, to be fully fed and satisfied, requires a quantity of food in proportion to its live weight. No feed is complete that does not contain a sufficient amount of nutritive elements; hay, for example, being more nutritive than straw, and grains than roots. The food, too, must possess a bulk sufficient to fill up to a certain degree the organs of digestion of the stomach; and, to receive the full benefit of its food, the animal must be wholly satisfied—since, if the stomach is not sufficiently distended, the food cannot be properly digested, and of course many of the nutritive principles which it contains cannot be perfectly assimilated. An animal regularly fed eats till it is satisfied, and no more than is requisite. A part of the nutritive elements in hay and other forage plants is needed to keep an animal on its feet—that is, to keep up its condition—and if the nutrition of its food is insufficient for this, the weight decreases, and if it is more than sufficient the weight increases, or else this excess is consumed in the production of milk or in labor. About one sixtieth of their live weight in hay, or its equivalent, will keep horned cattle on their feet; but, in order to becompletely nourished, they require about one thirtieth in dry substances, and four thirtieths in water, or other liquid contained in their food. The excess of nutritive food over and above what is necessary to sustain life will go, in milch cows, generally to the production of milk, or to the growth of the fœtus, but not in all cows to an equal extent; the tendency to the secretion of milk being much more developed in some than in others.

With regard, however, to the consumption of food in proportion to the live weight of the animal, it must be taken, in common with all general principles, with some qualifications. The proportion is probably not uniform as applied to all breeds indiscriminately, though it may be more so as applied to animals of the same breed. The idea of some celebrated stock-raisers has been that the quantity of food required depends much upon the shape of the barrel; and it is well known that an animal of a close, compact, well-rounded barrel, will consume less than one of an opposite make.

The variations in the yield of milch cows are caused more by the variations in the nutritive elements of their food than by a change of the form in which it is given. A cow, kept through the winter on mere straw, will cease to give milk; and, when fed in spring on green forage, will give a fair quantity of milk. But she owes the cessation and restoration of the secretion, respectively, to the diminution and increase of her nourishment, and not at all to the change of form, or of outward substance in which the nutriment is administered. Let cows receive through winter nearly as large a proportion of nutritive matter as is contained in the clover, lucerne, and fresh grass which they eat in summer,and, no matter in what precise substance or mixture that matter be contained, they will yield a winter's produce of milk quite as rich in caseine and butyraceous ingredients as the summer's produce, and far more ample in quantity than almost any dairyman with old-fashioned notions would imagine to be possible. The great practical error on this subject consists, not in giving wrong kinds of food, but in not so proportioning and preparing it as to render an average ration of it equally rich in the elements of nutrition, and especially in nitrogenous elements, as an average ration of the green and succulent food of summer.

We keep too much stock for the quantity of good and nutritious food which we have for it; and the consequence is, that cows are, in nine cases out of ten, poorly wintered, and come out in the spring weakened, if not, indeed, positively diseased, and a long time is required to bring them into a condition to yield a generous quantity of milk.

It is a hard struggle for a cow reduced in flesh and in blood to fill up the wasted system with the food which would otherwise have gone to the secretion of milk; but, if she is well fed, well housed, well littered, and well supplied with pure, fresh water, and with roots, or othermoistfood, and properly treated to the luxury of a frequent carding, and constant kindness, she comes out ready to commence the manufacture of milk under favorable circumstances.

Keep the cows constantly in good condition, ought, therefore, to be the motto of every dairy farmer, posted up over the barn, and on and over the stalls, and over the milk-room, and repeated to the boys whenever there is danger of forgetting it. It is the great secret of success; and the differencebetween success and failure turns upon it. Cows in milk require more food in proportion to their size and weight than either oxen or young cattle.

In order to keep cows in milk well and economically, regularity is next in importance to a full supply of wholesome and nutritious food. The animal stomach is a very nice chronometer, and it is of the utmost importance to observe regular hours in feeding, cleaning, and milking. This is a point, also, in which very many farmers are at fault—feeding whenever it happens to be convenient. The cattle are thus kept in a restless condition, constantly expecting food when the keeper enters the barn; while, if regular hours are strictly adhered to, they know exactly when they are to be fed, and they rest quietly till the time arrives. If one goes into any well-regulated dairy establishment an hour before feeding, scarcely an animal will rise to its feet; while; if it happens to be the hour of feeding, the whole herd will be likely to rise and seize their food with an avidity and relish not to be mistaken.

With respect to the exact nurture to be pursued, no rule could be prescribed which would apply to all cases; and each individual must be governed much by circumstances, both regarding the particular kinds of feed at different seasons of the year, and the system of feeding. It has been found—it may be stated—in the practice of the most successful dairymen, that, in order to encourage the largest secretion of milk in stalled cows, one of the best courses is, to feed in the morning, either at the time of milking—which is preferred by many—or immediately after, with cut feed, consisting of hay, oats, millet, or cornstalks, mixed with shorts, and Indianlinseed, or cotton-seed meal, thoroughly moistened with water. If in winter, hot or warm water is far better than cold. If given at milking-time, the cows will generally give down their milk more readily. The stalls and mangers should first be thoroughly cleansed.

THE FAMILY PETS.

THE FAMILY PETS.

Roots and long hay may be given during the day; and at the evening milking, or directly after, another generous meal of cut feed, well moistened and mixed, as in the morning. No very concentrated food, like grains alone, or oil-cakes, should be fed early in the morning on an empty stomach, although it is sanctioned by the practice in the London milk-dairies. The processes of digestion go on best when the stomach is sufficiently distended; and for this purpose the bulk of food is almost as important as the nutritive qualities. The flavor of some roots, as cabbages and turnips, is more apt to be imparted to the flesh and milk when fed on an empty stomach than otherwise. After the cows have been milked and have finished their cut feed, they are carded and curried down, in well-managed dairies, and then either watered in the stall—which, in very cold or stormy weather, is far preferable—or turned out to water in the yard. While they are out, if they are let out at all, the stables are put in order; and, after tying them up, they are fed with long hay, and left to themselves till the next feedingtime. This may consist of roots—such as cabbages, beets, carrots, or turnips sliced—or of potatoes, a peck, or—if the cows are very large—a half-bushel each, and cut feed again at the evening milking, as in the morning; after which, water in the stall, if possible.

The less cows are exposed to the cold of winter, the better. They eat less, thrive better, and give more milk, when kept housed all the time, than when exposed to the cold. A case is on record, where a herd of cows, which had usually been supplied from troughs and pipes in the stalls, were, on account of an obstruction in the pipes, obliged to be turned out thrice a day to be watered in the yard. The quantity of milk instantly decreased, and in three days the diminution became very considerable. After the pipes were mended, and the cows again watered, as before, in their stalls, the flow of milk returned. This, however, must be governed much by the weather; for in very mild and warm days it may be judicious not only to let them out, but to allow them to remain out for a short time, for the purpose of exercise.

Any one can arrange the hour for the several processes named above, to suit himself; but, when once fixed, it should be rigidly and regularly followed. If the regular and full feeding be neglected for even a day, the yield of milk will immediately decline, and it will be very difficult to restore it. It may be safely asserted, as the result of many trials and long practice, that a larger flow of milk follows a complete system of regularity in this respect than from a higher feeding where this system is not adhered to.

One prime object which the dairyman should keep constantly in view is, to maintain the animal in a sound andhealthy condition. Without this, no profit can be expected from a milch cow for any considerable length of time; and with a view to this, there should be an occasional change of food. But, in making changes, great care is requisite in order to supply the needful amount of nourishment, or the cow will fall off in flesh, and eventually in milk. It should, therefore, be remembered that the food consumed goes not alone to the secretion of milk, but also to the growth and maintenance of the bony structure, the flesh, the blood, the fat, the skin, and the hair, and in exhalations from the body. These parts of the body consist of different organic constituents. Some are rich in nitrogen, as the fibrin of the blood and albumen; others destitute of it, as fat; some abound in inorganic salts, phosphate of lime, and salts of potash. To explain how the constant waste of these substances may be supplied, a celebrated chemist observes that the albumen, gluten, caseine, and other nitrogenized principles of food, supply the animal with the materials requisite for the formation of muscle and cartilage; they are, therefore, called flesh-forming principles.

Fats, or oily matters of the food, are used to lay on fat, or for the purpose of sustaining respiration.

Starch, sugar, gum, and a few other non-nitrogenized substances, consisting of carbon, oxygen, and hydrogen, supply the carbon given off in respiration, or they are used for the production of fat.

Phosphate of lime and magnesia in food principally furnish the animal with the materials of which the bony skeleton of its body consists.

Saline substances—chlorides of sodium and potassium,sulphate and phosphate of potash and soda, and some other mineral matters occurring in food—supply the blood, juice of flesh, and various animal juices, with the necessary mineral constituents.

The healthy state of an animal can thus only be preserved by a mixed food; that is, food which contains all the proximate principles just noticed. Starch or sugar alone cannot sustain the animal body, since neither of them furnishes the materials to build up the fleshy parts of the animal. When fed on substances in which an insufficient quantity of phosphates occurs, the animal will become weak, because it does not find any bone-producing principle in its food. Due attention should, therefore, be paid by the feeder to the selection of food which contains all the kinds of matter required, nitrogenized as well as non-nitrogenized, and mineral substances; and these should be mixed together in the proportion which experience points out as best for the different kinds of animals, or the particular purpose for which they are kept.

Relative to the nutrition of cows for dairy purposes, milk may be regarded as a material for the manufacture of butter and cheese; and, according to the purpose for which the milk is intended to be employed, whether for the manufacture of butter or the production of cheese, the cow should be differently fed.

Butter contains carbon, oxygen, and hydrogen, and no nitrogen. Cheese, on the contrary, is rich in nitrogen. Food which contains much fatty matter, or substances which in the animal system are readily converted into fat, will tend to increase the proportion of cream in milk. On the otherhand, the proportion of caseine or cheesy matter in milk is increased by the use of highly nitrogenized food. Those, then, who desire much cream, or who produce cream for the manufacture of butter, select food likely to increase the proportion of butter in the milk. On the contrary, where the principal object is the production of milk rich in curd—that is, where cheese is the object of the farmer—clover, peas, bran-meal, and other plants which abound in legumine—a nitrogenized organic compound, almost identical in properties and composition with caseine, or the substance which forms the curd of milk—will be selected.

And so the quality, as well as the quantity, of butter in the milk, depends on the kind of food consumed and on the general health of the animal. Cows fed on turnips in the stall always produce butter inferior to that of cows living upon the fresh and aromatic grasses of the pastures.

Succulent food in which water abounds—the green grass of irrigated meadows, green clover, brewers' and distillers' refuse, and the like—increases the quantity, rather than the quality, of the milk; and by feeding these substances the milk-dairyman studies his own interest, and makes thin milk without diluting it with water—though, in the opinion of some, this may be no more legitimate than watering the milk.

But, though the yield of milk may be increased by succulent or watery food, it should be given so as not to interfere with the health of the cow.

Food rich in starch, gum, or sugar, which are the respiratory elements, an excess of which goes to the production of fatty matters, increases the butter in milk. Quietness promotes the secretion of fat in animals and increases the butter.Cheese will be increased by food rich in albumen, such as the leguminous plants.

BUYING CATTLE.

BUYING CATTLE.

The most natural, and of course the healthiest, food for milch cows in summer, is the green grass of the pastures; and when these fail from drought or over-stocking, the complement of nourishment may be made up with green clover, green oats, barley, millet, or corn-fodder and cabbage-leaves, or other succulent vegetables; and if these are wanting, the deficiency may be partly supplied with shorts, Indian-meal, linseed or cotton-seed meal. Green grass is more nutritious than hay, which always loses somewhat of its nutritive properties in curing; the amount of the loss depending chiefly on the mode of curing, and the length of exposure to sun and rain. But, apart from this, grass is more easily and completely digested than hay, though the digestion of the latter may be greatly aided by cutting and moistening, or steaming; and by this means it is rendered more readily available, and hence far better adapted to promote a large secretion of milk—a fact too often overlooked even by many intelligent farmers.

In autumn, the best feed will be the grasses of the pastures,so far as they are available, green-corn fodder, cabbage, carrot, and turnip leaves, and an addition of meal or shorts. Toward the middle of autumn, the cows fed in the pastures will require to be housed regularly at night, especially in the more northern latitudes, and put, in part at least, upon hay. But every farmer knows that it is not judicious to feed out the best part of his hay when his cattle are first put into the barn, and that he should not feed so well in the early part of winter that he cannot feed better as the winter advances.

At the same time, it should always be borne in mind that the change from grass to a poor quality of hay or straw, for cows in milk, should not be too sudden. A poor quality of dry hay is far less palatable in the early part of winter, after the cows are taken from grass, than at a later period; and, if it is resorted to with milch cows, will invariably lead to a falling off in the milk, which no good feed can afterward wholly restore.

It is desirable, therefore, for the farmer to know what can be used instead of his best English or upland meadow hay, and yet not suffer any greater loss in the flow of milk, or in condition, than is absolutely necessary. In some sections of the Eastern States, the best quality of swale hay will be used; and the composition of that is as variable as possible, depending on the varieties of the grasses of which it was made, and the manner of curing. But, in other sections, many will find it necessary to use straw and other substitutes. Taking good English or meadow hay as the standard of comparison, and calling that one, 4.79 times the weight of rye-straw, or 3.83 times the weight of oat-straw, contains the same amount of nutritive matter; that is, it would take4.79 times as good rye-straw to produce the same result as good meadow hay.

In winter, the best food for cows in milk will be good sweet meadow hay, a part of which should be cut and moistened with water—as all inferior hay or straw should be—with an addition of root-crops, such as turnips, carrots, parsnips, potatoes, mangold-wurtzel, with shorts, oil-cake, Indian meal, or bean meal.

It is the opinion of most successful dairymen that the feeding of moist food cannot be too highly recommended for cows in milk, especially to those who desire to obtain the largest quantity. Hay cut and thoroughly moistened becomes more succulent and nutritive, and partakes more of the nature of green grass.

As a substitute for the oil-cake, hitherto known as an exceedingly valuable article for feeding stock, there is probably nothing better than cotton-seed meal. This is an article whose economic value has been but recently made known, but which, from practical trials already made, has proved eminently successful as food for milch cows. Chemists have decided that its composition is not inferior to that of the best flaxseed cake, and that in some respects its agricultural value surpasses that of any other kind of oil-cake.

It has been remarked by chemists, in this connection, that the great value of linseed-cake, as an adjunct to hay, for fat cattle and milch cows, has been long recognized; and that it is undeniably traceable, in the main, to three ingredients of the seeds of the oil-yielding plants. The value of food depends upon the quantities of matters it contains which may be appropriated by the animal which consumes the foodNow, it is proved that the fat of animals is derived from the starch, gum, and sugar, and more directly and easily from the oil of the food. These four substances, then, are fat-formers. The muscles, nerves, and tendons of animals, the brine of their blood and the curd of their milk, are almost identical in composition with, and strongly similar in many of their properties to, matters found in all vegetables, but chiefly in such as form the most concentrated food. These blood (and muscle) formers are characterized by containing about fifteen and a half per cent. of nitrogen; and hence are called nitrogenous substances. They are, also, often designated as the albuminous bodies.

The bony framework of the animal owes its solidity to phosphate of lime, and this substance must be furnished by the food. A perfect food must supply the animal with these three classes of bodies, and in proper proportions. The addition of a small quantity of a food, rich in oil and albuminous substances, to the ordinary kinds of feed, which contain a large quantity of vegetable fibre or woody matter, more or less indigestible, but, nevertheless, indispensable to the herbivorous animals, their digestive organs being adapted to a bulky food, has been found highly advantageous in practice. Neither hay alone nor concentrated food alone gives the best results. A certain combination of the two presents the most advantages.

Some who have used cotton-seed cake have found difficulty in inducing cattle to eat it. By giving it at first in small doses, mixed with other palatable food, they soon learn to eat it with relish. Cotton-seed cake is much richer in oils and albuminous matters than the linseed cake. A correspondinglyless quantity will therefore be required. Three pounds of this cotton-seed cake are equivalent to four of linseed cake of average quality.

During the winter season, as has been already remarked, a frequent change of food is especially necessary, both as contributions to the general health of animals, and as a means of stimulating the digestive organs, and thus increasing the secretion of milk. A mixture used as cut feed and well moistened is now especially beneficial, since concentrated food, which would otherwise be given in small quantities, may be united with larger quantities of coarser and less nutritive food, and the complete assimilation of the whole be better secured. On this subject it has been sensibly observed that the most nutritious kinds of food produce little or no effect when they are not digested by the stomach, or if the digested food is not absorbed by the lymphatic vessels, and not assimilated by the various parts of the body. Now, the normal functions of the digestive organs not only depend upon the composition of the food, but also on its volume. The volume or bulk of the food contributes to the healthy action of the digestive organs, by exercising a stimulating effect upon the nerves which govern them. Thus the whole organization of ruminating animals necessitates the supply of bulky food, to keep the animal in good condition.

Feed sweet and nutritious food, therefore, frequently, regularly, and in small quantities, and change it often, and the best results may be confidently anticipated. If the cows are not in milk, but are to come in in the spring, the difference in feeding should be rather in the quantity than the quality,if the highest yield is to be expected from them during the coming season.

The most common feeding is hay alone, and oftentimes very poor hay at that. The main point is to keep the animal in a healthy and thriving condition, and not to suffer her to fail in flesh; and with this object, some change and variety of food are highly important.


Back to IndexNext