Karl Wilhelm Scheele.
Karl Wilhelm Scheele.
An elder brother of Karl had been apprenticed to an apothecary at Gothenburg, but had died during his apprenticeship. Karl went to this apothecary, a Mr. Bauch, as apprentice at the age of fourteen, and remained there till Bauch sold his business in 1765. Then he went to another apothecary named Kjellström at Malmö. Three years later he was chief assistant to a Mr.Scharenberg at Stockholm. His next move was to Upsala with a Mr. Lokk, who appreciated his assistant and gave him plenty of time for his scientific work.
Lastly, he took the management of a pharmacy at Köping for a widow who owned it, and after an anxious time in clearing the business from debt, he bought the business in 1776 and for the rest of his short life was in fairly comfortable circumstances. Ill-health then pursued him, rheumatism and attacks of melancholy. In the spring of 1786, in the forty-fourth year of his age, after suffering for two months from a slow fever, he died. Two days before his death he married the widow of his predecessor, whose business he had rescued from ruin, so that she might repossess it. A few months later she married again.
That was Scheele’s life as a pharmacist; patient, plodding, conscientious, only moderately successful, and shadowed by many disappointments. The work he accomplished as a scientific chemist would have been marvellous if he had had all his time to do it in; under the actual circumstances in which it was performed it is simply incomprehensible. A bare catalogue of his achievements is all that can be noted here, but it must be remembered that he never announced any discovery until he had checked his first conclusions by repeated and varied tests.
Scheele’s Pharmacy at Köping.
Scheele’s Pharmacy at Köping.
An account of an investigation of cream of tartar resulting in the isolation of tartaric acid was his first published paper. He next made an examination of fluor-spar from which resulted the separation of fluoric acid. From this on the suggestion of Bergmann he proceeded to a series of experiments on black oxide of manganese which besides showing the many important combinations of the metal led the chemist direct to hiswonderful discoveries of oxygen, chlorine, and barytes. This work put him on the track of the observations set forth in his famous work on “Air and Fire.” In this he explained the composition of the atmosphere, which, he said, consisted of two gases, one of which he named “empyreal” or “fire-air,” the same as he had obtained from black oxide of manganese, and other substances. He realised and described with much acuteness the part this gas played in nature, and the rest of the book contained many remarkable observations which showed how nearly Scheele approached the new ideas which Lavoisier was to formulate only a few years later. “Air and Fire” was not issued till 1777, three years after Priestley had demonstrated the separate existence and characteristics of what he termed “dephlogisticated air.” But it is well known that the long delay ofScheele’s printer in completing his work was one of the disappointments of his life, and there is evidence that his discovery of oxygen was actually made in 1773, a year before Priestley had isolated the same element. Both of these great experimenters missed the full significance of their observations through the confusing influence of the phlogiston theory, which neither of them questioned, and which was so soon to be destroyed as the direct result of their labours.
Among the other investigations which Scheele carried out were his proof that plumbago was a form of carbon, his invention of a new process for the manufacture of calomel, his discovery of lactic, malic, oxalic, citric, and gallic acids, of glycerin, and his exposition of the chemical process which yielded Prussian blue, with his incidental isolation of prussic acid, a substance which he described minutely though he gives no hint whatever to show that he knew anything of its poisonous nature.
The subjects mentioned by no means exhaust the mere titles of the work which Scheele accomplished; they are only the more popular of his results. The value of his scientific accomplishments was appreciated in his lifetime, but not fully until the advance of chemistry set them out in their true perspective. Then it was realised how completely and accurately he had finished the many inquiries which he had taken in hand.
The School of Pharmacy of Paris, built in 1880, honours a number of pharmacists of historic fame by placing a series of medallions on the façade of thebuilding, as well as statues of two specially eminent representatives of the profession in the Court of Honour. These two are Vauquelin and Parmentier.
École de Pharmacie, Paris.(From photo sold at School.)
École de Pharmacie, Paris.
(From photo sold at School.)
Louis Nicolas Vauquelin was director of the School from its foundation in 1803 until his death in 1829. He also held professorships at the School of Mines, at the Polytechnic School, and with the Faculty of Medicine. He began his career as a boy in the laboratory of a pharmacist at Rouen, and later got a situation with M. Cheradame, a pharmacist in Paris. Cheradame was related to Fourcroy, to whom he introduced his pupil. Fourcroy paid him £12 a year with board and lodging, but he proved such an indefatigable worker that in no long time he became the colleague, the friend, and the indispensable substitute of his master in his analyses as well as in his lectures. He is cited as the discoverer of chromium, of glucinium, and of several animal products; but his most important work was a series of chemical investigations on belladonna, cinchona,ipecacuanha, and other drugs, which it is recognised opened the way for the definite separation of some of the most valuable of the alkaloids accomplished afterwards by Pelletier, Caventou, Robiquet, and others. Vauquelin published more than 250 scientific articles.
Vauquelin.(Origin unknown.)
Vauquelin.
(Origin unknown.)
Antoine Augustin Parmentier (born 1737, died 1813), after serving an apprenticeship with a pharmacist at Montpellier, joined the pharmaceutical service in the army, and distinguished himself in the war in Germany, especially in the course of an epidemic by which the French soldiers suffered seriously. He was taken prisoner five times, and at one period had to support himself almost entirely on potatoes. On the last occasion he obtained employment with a Frankfortchemist named Meyer, who would have gladly kept him with him. But Parmentier preferred to return to his own country, and obtained an appointment in the pharmacy of the Hotel des Invalides, rising to the post of chief apothecary there in a few years. A prize offered by the Academy of Besançon for the best means of averting the calamities of famine was won by him in 1771, his German experience being utilised in his advocacy of the cultivation of potatoes. These tubers, though they had been widely cultivated in France in the sixteenth century, had gone entirely out of favour, and were at that time only given to cattle. The people had come to believe that they occasioned leprosy and various fevers. Parmentier worked with rare perseverance to combat this prejudice. He cultivated potatoes on an apparently hopeless piece of land which the Government placed at his disposal, and when the flowers appeared he made a bouquet of them and presented it to Louis XVI, who wore the blossoms in his button-hole. His triumph was complete, for very soon the potato was again cultivated all through France. The royalist favour that he had enjoyed put him in some danger during the Revolution; but in the latter days of the Convention, which had deprived him of his official position and salary, he was employed to organise the pharmaceutical service of the army. He also invented a syrup of grapes which he proposed to the Minister of War as a substitute for sugar during the continental blockade.
The medallions, in the order in which they appear on the façade of the École de Pharmacie, represent the following French and foreign pharmacists:—
Antoine Jerome Balard, the discoverer of bromine (born 1802, died 1876), was a native of Montpellier,where he qualified as a pharmacist and commenced business. As a student he had worked with the salts deposited from a salt marsh in the neighbourhood, and had been struck with a coloration which certain tests gave with a solution of sulphate of soda obtained from the marsh. Pursuing his experiments, he arrived at the discovery of bromine, the element which formed the link between chlorine and iodine. This early success won for him a medal from the Royal Society of London and a professorship of chemistry at Montpellier, and subsequently raised him to high scientific positions in Paris. Balard did much more scientific work, among which was the elaboration of a process for the production of potash salts from salt marshes. He had worked at this for some twenty years, and had taken patents for his methods, when the announcement of the discovery of the potash deposits at Stassfurt effectually destroyed all his hope of commercial success.
Joseph Bienaimé Caventou (born at St. Omer 1795, died 1877) carried on for many years an important pharmaceutical business in Paris. His fame rests on his association with Pelletier in the discovery of quinine in 1820.
Joseph Pelletier (born 1788, died 1842) was the son of a Paris pharmacist, and was one of the most brilliant workers in pharmacy known to us. He is best known for his isolation of quinine. Either alone, or in association with others, he investigated the nature of ipecacuanha, nux vomica, colchicum, cevadilla, hellebore, pepper, opium, and other drugs, and a long series of alkaloids is credited to him. He also contributed valuable researches on cochineal, santal, turmeric, and other colouring materials. To him and his associate, Caventou, the Institute awarded the Prix Monthyon of10,000 francs for their discovery of quinine, and this was the only reward they obtained for their cinchona researches, for they took out no patents.
Joseph Pelletier.1788–1842.(Discoverer—with Caventou—of Quinine.)
Joseph Pelletier.1788–1842.
(Discoverer—with Caventou—of Quinine.)
Pierre Robiquet (born at Rennes in 1780, died at Paris, 1840) served his apprenticeship to pharmacy at Lorient, and afterwards studied under Fourcroy and Vauquelin at Paris. His studies were interrupted by the conscription, which compelled him to serve under Napoleon in the Army of Italy. Returning to pharmacy after Marengo, he ultimately became the proprietor of a pharmacy, and to that business he added the manufacture of certain fine chemicals. His first scientific work was the separation of asparagin, accomplished in association with Vauquelin, in 1805. His later studieswere in connection with opium (from which he extracted codeine), on liquorice, cantharides, barytes, and nickel.
André Constant Dumeril (born at Amiens, 1774, died 1860) was a physician, but distinguished himself as a naturalist and anatomist. He had been associated with Cuvier in early life. Latterly he was consulting physician to Louis Philippe.
Antoine Louis Brongniart (born 1742, died 1804) was the son of a pharmacist of Paris, and became himself pharmacien to Louis XVI. He also served the Convention as a military pharmacist, and was placed on the Council of Health of the Army. In association with Hassenfratz who was one of the organisers of the insurrection of August 10th, 1792, and himself a professor at the School of Mines, Brongniart edited a “Journal des Sciences, Arts, et Metiers” during the Revolution.
The next medallion memorialises Scheele, the great Swedish pharmacist and chemist, of whose career details have already been given.
Pierre Bayen (born at Chalons s/Marne, 1725, died 1798) was an army pharmacist for about half of his life, and to him was largely due the organisation of that service. He was with the French Army in Germany all through the Seven Years’ War, 1757–1763. Among his scientific works were examinations of many of the natural mineral waters of France, and a careful investigation into the alleged danger of tin vessels used for cooking. Two German chemists, Margraff and Henkel, had reported the presence of arsenic in tin utensils generally, and the knowledge of this fact had produced a panic among housekeepers. Bayen went into the subject thoroughly and was able to publish a reassuring report. To him, too, belongsthe glory of having been one of the chemists before Lavoisier to prove that metals gain and do not lose weight on calcination in the air.
Pierre Joseph Macquer, Master of Pharmacy and Doctor of Medicine (born 1718, died 1784), came of a noble Scotch family who had settled in France on account of their adherence to the Catholic faith, made some notable chemical discoveries, and became director of the royal porcelain factory at Sèvres. He worked on kaolin, magnesia, arsenic, gold, platinum, and the diamond. The bi-arseniate of arsenic was for a long time known as Macquer’s arsenical salt. Macquer was not quite satisfied with Stahl’s phlogiston theory, and tried to modify it; but he would not accept the doctrines of Lavoisier. He proposed to substitute light for phlogiston, and regarded light as precipitated from the air in certain conditions. These notions attracted no support.
Guillaume François Rouelle (born near Caen, 1703, died 1770) was in youth an enthusiastic student of chemistry, the rudiments of which he taught himself in the village smithy. Going to Paris he obtained a situation in the pharmacy which had been Lemery’s, and subsequently established one of his own in the Rue Jacob. There he commenced courses of private lectures which were characterised by such intimate knowledge, and flavoured with such earnestness and, as appears from the stories given by pupils, by a good deal of eccentricity, that they became the popular resort of chemical students. Lavoisier is believed to have attended them. Commencing his lectures in full professional costume, he would soon become animated and absorbed in his subject, and throwing off his gown, cap, wig and cravat, delighted his hearers with his vigour.Rouelle was offered the position of apothecary to the king, but declined the honour as it would have involved the abandonment of his lectures. His chief published work was the classification of salts into neutral, acid, and basic. He also closely investigated medicinal plants, and got so near to the discovery of alkaloids as the separation of what he called the immediate principles, making a number of vegetable extracts.
Etienne François Geoffrey (born 1672, died 1731), the son of a Paris apothecary, himself of high reputation, for it was at his house that the first meetings were held which resulted in the formation of the Academy of Sciences, studied pharmacy at Montpellier, and qualified there. Returning to Paris he went through the medical course and submitted for his doctorate three theses which show the bent of his mind. The first examined whether all diseases have one origin and can be cured by one remedy, the second aimed to prove that the philosophic physician must also be an operative chemist, and the third dealt with the inquiry whether man had developed from a worm. Geoffrey was attached as physician to the English embassy for some time and was elected to the Royal Society of London. Afterwards he became professor of medicine and pharmacy at the College of France. His chief works were pharmacological researches on iron, on vitriol, on fermentation, and on some mineral waters. He wrote a notable treatise on Materia Medica.
Albert Seba was an apothecary of Amsterdam, who spent some part of his early life in the Dutch Indies. He was born in 1668 and died in 1736. He was particularly noted for a great collection illustrating allthe branches of natural history, finer than any other then known in Europe. Peter the Great having seen this collection bought it for a large sum and presented it to the Academy of Sciences of St. Petersburg, where it is still preserved.
Anxious to pay due honour to the distinguished pharmacists of other nations, the authorities of the School of Pharmacy introduce the medallions of Dante and Sir Isaac Newton. The Italian poet’s connection with pharmacy was the entirely nominal inscription of his name in the guild of apothecaries of the city of Florence; there are almost slighter grounds to the right of claiming the English philosopher among pharmacists, his immediate association with the business having been that as a schoolboy he lodged at Grantham with an apothecary of the name of Clark. In his later years he worked with Boyle on ether.
Moses Charas figures between these two. Living between the years 1618 and 1698, Charas attained European celebrity. He was the first French pharmacist to prepare the famous Theriaca. This he did in the presence of a number of magistrates and physicians. He also wrote a treatise on the compound. For nine years he was demonstrator of chemistry at the King’s Garden at Paris, but he was a Protestant, and the Revocation of the Edict of Nantes in 1685 drove him from France. Charles II received him cordially in London, and made him a doctor. Afterwards he went to Holland, and from there the King of Spain sent for him to attend on him in a serious illness. While at Toledo he got into trouble with the ecclesiastics in a singular manner. An archbishop of Toledo being canonised, his successor announced that snakes in thatarchbishopric should henceforth lose their venom. This was a special temptation to Moses Charas. He was strong on vipers. He had made medicine of many of them, he had written a book about them, and he knew all there was to know about them. He knew something about archbishops too, which ought to have prevented him from publicly demonstrating the vanity of the proclamation. But he must needs show to some influential friends a local viper he had caught and make it bite two chickens, both of which died promptly. This demonstration got talked about, and Charas was prosecuted on a charge of attempting to overthrow an established belief. He was imprisoned by the Inquisition, but after four months he abjured Protestantism, and was set free. It must be remembered that he was 72 years of age. On his return to France Louis XIV received him kindly, and had him elected to the Academy of Sciences. Charas’s chief work was a Pharmacopœia, which was in great vogue, and was translated into all the principal modern languages, even into Chinese.
Nicolas Lemery (born at Rouen, 1645, died 1715), a self-taught chemist and pharmacist, exercised an enormous influence in science and medicine. He opened a pharmacy in the Rue Galande, Paris, and there taught chemistry orally and practically. His course was an immense success. Fashionable people thronged to his lectures, and students came from all countries to get the advantage of his teaching. He, too, was a Protestant, and was struck by the storm of religious animosity. Charles II had the opportunity of showing him hospitality in London, and seems to have manifested towards him much friendliness. The Universityof Berlin likewise made him tempting proposals, but Lemery could only feel at home in France. Things seemed quieter and he returned, only to find in a short time that the condition was worse for Protestants than ever. The Revocation of the Edict of Nantes prevented him from following either of his professions, pharmacy or medicine; and for their sake he adopted the Catholic faith. His “Universal Pharmacopœia” and his “Dictionary of Simple Drugs” were published after these troubles, and they are the works by which he won his lasting reputation.
Gilles François Boulduc (1675–1742) was for many years first apothecary to Louis XIV, and an authority on pharmaceutical matters in his time. By his essays he helped to popularise Epsom, Glauber’s, and Seignette’s salts in France.
Antoine Baumé (born at Senlis, 1728, died 1804), the son of an innkeeper, after an imperfect education in the provinces, got into the famous establishment of Geoffrey at Paris and made such good use of his opportunities that he became Professor of Chemistry at the College of France when he was 25. A practical and extraordinarily industrious chemist, he wrote much, invented the areometer which bears his name, founded a factory of sal ammoniac, and bleaching works for silk by a process which he devised. Baumé did good service, too, in dispelling many of the traditional superstitions of pharmacy, such as the complicated formulas and disgusting ingredients which were so common in his time. He was never content to accept any views on trust.
The three medallions which follow are those of Lavoisier, Berthollet, and Chaptal; great chemists whose right to be represented cannot be challenged,but whose works were not specially associated with pharmacy. These three all lived at the time of the Revolution. Lavoisier was one of its most distinguished victims, Berthollet became the companion and adviser of Napoleon in Egypt, and Chaptal was the chemist commissioned by the Convention to provide gunpowder for its ragged troops. He became one of Napoleon’s Ministers under the Consulate.
André Laugier (1770–1832), who comes next, was a relative and pupil of Fourcroy, and became an Army pharmacist, serving through Bonaparte’s Egyptian campaign. His works were mostly on mineralogical subjects.
Georges Simon Serullas (1774–1832) was another military pharmacist who served in the Napoleonic wars. He was, later, chief pharmacist at the military hospital of Val de Grace, where he devoted much study to many medicinal chemicals, such as cyanic acid, iodides, bromides, and chlorides of cyanogen, hydrobromic ether, etc.
Thénard (1777–1857), the eminent chemist, follows. He was very poor when he asked Vauquelin to receive him as a pupil without pay. He only secured the benefit he asked for because the chemist’s sister happened to want a boy at the time to help her in the kitchen. He became a peer of France in 1832. To him we owe peroxide of hydrogen.
Nicolas J. B. Guibourt (1790–1867), Professor of Materia Medica at the School of Pharmacy, was author of a well-known “History of Simple Drugs,” and other works. He is often quoted in “Pharmacographia.”
Achille Valenciennes (1794–1865) was noted as a naturalist, and especially as a zoologist. He wasCuvier’s most trusted assistant in the preparation of certain of his works. For many years Valenciennes was Professor of Zoology at the School of Pharmacy, Paris.
Baron Liebig (1803–1873), was placed in a pharmacy at Heppenheim as a youth, but remained there only ten months. His chemical works are well known.
Baron Liebig.
Baron Liebig.
Charles Frederick Gerhardt (1816–1856), born at Strasburg (then a French city), one of Liebig’s most brilliant pupils, was for some years Professor of Chemistry at Montpellier in succession to Balard. Later, he founded a laboratory at Paris, and finally accepted the Chair of Chemistry at Strasburg. He was one of the founders of modern organic chemistry, and the originator of the type theory.
Theophile Jules Pelouze (1807–1867) held a position in the pharmaceutical service of the Salpêtrière Hospital at Paris, when, one day in the country, he was overtaken by a torrential storm. A carriage passing, the pedestrian appealed to the driver to take him inside. No notice was taken of his request, so the indignant young pharmacist ran after the vehicle and seized the reins. Having stopped the horse, he delivered a severe lecture to the driver on his lack of courtesy and humanity. The passenger in the carriage invited him to enter and share the shelter. This gentleman wasM. Gay-Lussac, the most eminent chemist in Paris at the time. The acquaintance thus curiously commenced resulted in Pelouze becoming Gay-Lussac’s laboratory assistant. He ultimately succeeded his employer at the Polytechnic School and, later still, was promoted to the Chair which Thénard had occupied at the College of France. Pelouze was a voluminous writer, and did useful work on the production of native sugar. In conjunction with Liebig he discovered œnanthic ether.
Sir Humphry Davy served an apprenticeship with a Mr. Borlase, an apothecary of Penzance, but afterwards exchanged physic for science. He died at Geneva in 1829 at the age of 51, after a life crowded with scientific triumphs.
Sir Humphry Davy.
Sir Humphry Davy.
Antoine Jussieu was the eldest of the three sons of Laurent Jussieu, a master in pharmacy at Lyons. Antoine was born in 1686, and began to collect plants from his childhood. His two brothers, Bernard and Joseph, followed in his steps, and they, and Bernard’s son, Antoine Laurent, constitute the famous Jussieu dynasty, from whom we have received the natural system of botanical classification. The story is a long and interesting one, but it is outside the scope of these notes. It must be remarked, however, that to Antoine Jussieu is due the credit of the introduction of the coffee plant into the western hemisphere. The island of Martinique was where the first coffee shrub was planted.
Fourcroy, another chemist of the Revolutionary period, comes next and is followed by
Nicolas Houel (1520–1584), who was the founder of the School of Pharmacy of Paris. He was an apothecary, and out of the ample fortune which he had made from his profession, endowed a “House of Christian Charity.” He stipulated that it was to be a school for young orphans born of legal marriages, there to be instructed to serve and honour God, to acquire good literary instruction, and to learn the art of the apothecary. He also provided that the establishment should furnish medicines to the sick poor, who did not wish to go to the hospital, gratuitously. The institution consisted of a chapel, a school, a complete pharmacy, a garden of simples, and a hospital. The charity was duly authorised by Henri III and Queen Loise of Lorraine, but this did not prevent Henri IV taking possession of it in 1596, and using it as a home for his wounded soldiers. That was the origin of the Hotel des Invalides. Louis XIII transferred the Invalides to the Château of Bicêtre, and gave the school to the Sisters of St. Lazare. In 1622, however, the Parliament of Paris took the matter in hand and restored the property to the corporation of Apothecaries on condition that they would carry out the bequest of Houel. In 1777 Louis XVI made it the College of Pharmacy, and after the Convention the Directory declared it to be the Free School of Pharmacy. When pharmacy was reorganised in France during Napoleon’s consulate, the institution became the Paris School of Pharmacy.
Jan Swammerdam, a famous Dutch anatomist (1637–1680), comes next, and after him, Claude Bernard, the physiologist (1813–1878), who began his career ina poor little pharmacy at Lyons. Jean Baptiste Dumas, born 1800, and living when the medallion was placed, also commenced his career in a small pharmacy at Alais (Gard), his native town. Dumas was one of the greatest chemists of the century. The doctrine of substitution of radicles in chemical compounds was suggested by him. He died April 11, 1884, at Cannes.