Horses that are greedy feeders and have sharp, uneven, smooth or diseased teeth are unable to masticate the feed properly. This results in unthriftiness caused by imperfect digestion and assimilation of the feed. Such animals usually suffer from a catarrhal or chronic inflammation of the intestine, and may have periodic attacks of acute indigestion or colic.
Obstruction colicis very often caused by the feeding of too much roughage in the form of straw, shredded fodder, or hay. Debility often contributes to this form of indigestion, and the double colon may become badly impacted with alimentary matter.
Worms may irritate the intestinal mucous membrane and interfere with digestion, obstruct the intestine and cause debility and circulatory disturbances. The large round worm may form a tangled mass and completely fill a portion of the double colon.
[Illustration: FIG. 16.—A yearling colt that died of aneurism colic.]
Some species attach themselves to the intestinal wall, suck the blood of the host and cause anaemia and debility. Colic resulting fromcirculatory disturbancesis not common. The female of a certain species ofstrongulusdeposits eggs in the mucous membrane. On hatching, the larvae may enter a blood capillary, drift along in the blood stream and finally come to rest in a large blood-vessel that supplies a certain portion of the intestines with blood. Here the parasite develops. The wall of the vessel becomes irritated and inflamed, pieces of fibrin flake off and drift along the blood stream until finally a vessel too small for the floating particle to pass through is reached and the vessel becomes plugged. The loop of intestine supplied by it receives no blood. A temporary paralysis of the loop occurs, which persists until a second vessel is able to take over the function of the one that is plugged. This form of colic is most common in old horses (Fig. 16).
Such complications of acute indigestion astwisting, infoldinganddisplacement of the intestinemay occur. It is not uncommon for a stallion to suffer from strangulated hernia, due to a rather large internal inguinal ring and a loop of the intestine passing through it and into the inguinal canal or scrotum. Such displacements are usually accompanied by severe colicky pains.
The symptomsvary in the different cases. In the mild form, the colicky pains are not prominent, but in the acute form, the animal is restless, getting up and down in the stall and rolling over. These movements are especially marked when the abdominal pain is severe.
In the spasmodic formthe attack comes on suddenly, the colicky pains are severe, and the peristaltic movement of the intestine is marked and accompanied by loud intestinal sounds. In most cases of indigestion characterized by fermentation and collections of gas in the intestine there is gastric tympany as well.
Acute indigestion characterized byimpactionof the large intestine pursues a longer course than the forms just mentioned, and the abdominal pain is not severe.
Congestion and inflammationof the intestine may result from the irritation produced by the feed. When this occurs, the abdominal pain is less violent. The animal usually acts dull, the walk is slow and unsteady, and the respirations and pulse beats may be quickened.
A large percentage of the cases of acute indigestion terminate fatally. The course of the disease varies from a few hours to several days.
The treatmentis bothpreventiveandcurative. The preventive treatment is by far the most important. This consists in observing right methods of feeding and caring for horses. The attendant should note the condition of the animal before feeding grain, feed regularly and avoid sudden changes in feed. If a horse has received unusual exercise, it is proper to feed hay first, and when the animal is cooled out, water and feed grain. Drinking a small quantity of water when tired or following a meal is not injurious, but a large quantity of water taken at such times is injurious and dangerous to the health of the animal. The feeding of spoiled or mouldy feeds to horses is highly injurious.
The horse should be given a roomy, comfortable stall that is well bedded, or a clean grass lot. If the attack appears when the animal is in harness, we should stop working it and remove the harness immediately. Work or exercise usually aggravates the case and may cause congestion and inflammation of important body organs. In cold weather the animal should be protected by blankets. If the pain is violent, sedatives may be given. The gaseous disturbances should be relieved by puncturing the wall of the intestine with the trocar and cannula. Rectal injections of cold water may be resorted to. Fluid extract of cannabis indica in quarter ounce doses and repeated in one hour may be given in linseed oil. In all cases it is advisable to drench the animal with one pint of raw linseed oil and two ounces of turpentine. Strychnine, eserine and pilocarpine are the drugs commonly used by the veterinarians in the treatment of acute indigestion. Small and repeated doses of the above drugs are preferred to large doses. This is one of the diseases that requires prompt and skilled attention.
Sharp, uneven or diseased teeth should receive the necessary attention. In old horses, chopped hay or ground feeds should be fed when necessary. Debility resulting from hard work, wrong methods of feeding and intestinal disorders must be corrected before the periodic attacks of indigestion can be relieved. If the presence of intestinal worms is suspected, the necessary treatment for ridding the animal of these parasites should be resorted to.
Bitter or saline tonics should be administered in the feed when necessary. The following formula is useful as a digestive tonic: Sodium bicarbonate and sodium sulfate, one pound of each, powdered gentian one-half pound, and oil meal five pounds. A small handful of this mixture may be given with the feed two or three times daily.
INFLAMMATION OF THE INTESTINES.—The same causes mentioned in inflammation of the stomach and acute indigestion may cause this disease. It is most frequent at times when there are great variations in the temperature. Sudden cold or any influence that chills the surface of the body, or internal cold caused by drinking ice water or eating frozen feed, may cause it. The infectious forms of enteritis are caused by germs and ptomaines in the feed. Drinking filthy water or eating spoiled, mouldy feeds are common causes. In cattle pasturing in low, marshy places, enteritis may be common. The toxic form is caused by irritating poisons, such as caustic acids, alkalies and meat brine.
In the mild form of enteritisthe appetite is irregular, the animal acts dull and stupid and may be noticed lying down more than common. Slight abdominal pains occur, especially following a meal. An elevation in the body temperature may be noted and the animal may drink more water than usual. Constipation or a slight diarrhoea may be present. The feces may be soft and foul smelling, coated with mucus, and slightly discolored with blood.
In the severe form of enteritispressure on the abdomen may cause pain, the respiration and pulse beats are quickened and the body temperature is elevated. The abdominal pain may be severe and the animal is greatly depressed or acts dull. The movement of the intestines is suppressed at first and constipation occurs. Fermentation and the formation of gas may take place. Later the intestinal peristalsis increases and a foul-smelling diarrhoea sets in that is often mixed with blood. In the toxic form there may be marked nervous symptoms. Spasms, convulsions, stupefaction and coma may be manifested.
In the mild form recovery usually occurs within a few days. The more serious forms of the disease do not terminate so favorably. In the toxic form death usually occurs within a few days.
The large majority of cases of enteritis can be prevented by practising the necessarypreventive measures. It is very necessary that animals exposed to cold be provided with dry sleeping quarters that are free from draughts. Where a number of animals are fed a heavy grain ration, or fed from the same trough, they should be kept under close observation. This is necessary in order to detect cases of indigestion or overfeeding early, and resort to the necessary lines of treatment, so as to prevent further irritation to the intestinal tract. Live stock should not be forced to drink water that is ice-cold. Low, poorly-drained land is not a safe pasture for cattle and horses. Spoiled roots, grains and silage, mouldy, dirty roughage and decomposed slops should not be fed to live stock.
The treatmentconsists in withholding all feed and giving the animal comfortable, quiet quarters—warm quarters and protection from the cold, providing the animal with a heavy straw bed, or with blankets if necessary, if the weather is cold. From five to forty grains of calomel may be given, depending upon the size of the animal and the frequency of the dose, two or three times a day. In case the animal is suffering severe pain, morphine given hypodermically may be indicated. In the mild form and at the very beginning of the attack, linseed oil may be administered to the larger animals. The dose is about one quart. The smaller animals may be given castor oil in from one- to four-ounce doses.
When convalescence is reached the animal should be fed very carefully, as the digestive tract is not in condition to digest heavy rations or feeds that ferment readily.
DIARRHOEA.—Diarrhoea occurs as a symptom of irritation and inflammation of the intestinal mucous membrane. Sudden changes in the feed, the feeding of a succulent green ration, severe exercise when the animal is not in condition for it, and chronic indigestion may cause diarrhoea in the absence of an intestinal inflammation.
The following symptomsmay be noted: Animals affected by a diarrhoea act dull and weak; thirst is increased and the animal may show evidence of fever; the intestinal evacuations are soft, thin, and sometimes have an offensive odor. If the diarrhoea continues for several days, the animal loses flesh rapidly and the appetite is irregular. In such cases weakness is a prominent symptom.
Recovery usually occurs when the animal is dieted and rested.
The treatmentconsists in giving a physic of linseed or castor oil. Horses and cattle may be given from one-half to one quart of linseed oil; sheep and hogs from one to four ounces of castor oil. Feed should be withheld. Morphine may be given hypodermically to the large animals after a period of six to eight hours following the administration of the physic.
The following formula is quite useful in checking diarrhoea: salol one-half ounce, bismuth subnitrate one ounce, and bicarbonate of soda two ounces. The dose of this mixture is from one to four drachms, depending on the size of the animal, three or four times a day.
WHITE SCOURS OR DIARRHOEA IN YOUNG ANIMALS.—Young animals, when nursing the mother or fed by hand, frequently develop congestion and inflammation of the stomach and intestines. This disorder is characterized by a diarrhoea.
The causesmay be grouped under two heads: wrong methods of feeding and care, and specific infection.
The first milk of the mother is a natural laxative and aids in ridding the intestine of the young of such waste material (meconium) as collects during fetal life. If this milk is withheld, the intestine becomes irritated, constipation occurs, followed by a diarrhoea or serious symptoms of a nervous character, caused by the poisonous effect of the toxic substances absorbed from the intestine on the nervous system.
Changes in the ration fed the mother, excitement, unusual exercise and disease change the composition of the mother's milk. Such milk is irritating to the stomach and intestines of the young. This irritation does not always develop into a diarrhoea, but may result in a congestion of the stomach.
When the young are raised artificially or by hand, and fed milk from different mothers of the same or different species, or changed from whole to skim milk, acute and chronic digestive disorders that are accompanied by a diarrhoea are common. Feeding calves from filthy pails, allowing them to drink too rapidly and giving them fermented milk are common causes of scours.
White scours caused by irritating germs is a highly infectious disease. The disease-producing germs gain entrance to the body by way of the digestive tract and the umbilical cord.
Insanitary conditions, such as dark, cold, damp, filthy quarters, lower the vitality of young animals, and predispose them to digestive disorders as well as other diseases.
The symptomsare as follows: Constipation accompanied by a feverish condition precedes the diarrhoea; colicky pains are sometimes manifested; the diarrhoea is usually accompanied by depression, falling off in appetite and weakness. At first the intestinal discharges are not very foul smelling; later the odor is very disagreeable. The faeces may be made up largely of undigested, decomposed milk that adheres to the tail and hind parts. If the diarrhoea is severe, the animal refuses to suckle or drink from the pail, and loses flesh rapidly. It is usually found lying down. The ears droop and the depression is marked. The body temperature may vary from several degrees above to below the average normal.
The infectious formof white scours may be diagnosed by the history of the outbreak. In this form of the disease, a large percentage of the young are affected and the death-rate is very high.
Calves and lambs frequently die of an acute congestion of the fourth stomach. In this disease, the symptoms appear shortly after feeding. It is characterized by colicky pains, convulsions and coma.
The treatmentis largely preventive. Young animals should be provided with dry, clean, well-ventilated quarters and allowed plenty of exercise. Colts thrive best if allowed to run in a blue grass pasture with the mother. If the mother is worked, suitable provisions in the way of quarters and frequent nursing should be provided. Calves, lambs and pigs are the most frequent sufferers from insanitary quarters. In breeding, we should always strive to get strong, vigorous, healthy young. The care given the mother in the way of exercise and feeding is an important factor here.
The first milk of the mother should not be withheld from the young, especially if the animal is raised by hand. We must also feed it regularly and not too much at any one time. Any change in the milk should be made gradually, and it is usually advisable to reduce the ration slightly when such a change is made, so as not to overwork the digestive organs. Pails and bottles from which the animal feeds should be kept clean.
Colts raised on cow's milk must be fed and cared for carefully. The milk must be sweet and made more digestible by diluting it with one-third water. A little sugar may be added. It is very advisable to add from one-half to one ounce of lime water to each pint of milk fed. Frequent feeding is very necessary at first, and we must not underestimate the quantity of milk necessary to keep the colt in good condition. It should be taught to eat grain as soon as possible.
Because of the irritated condition of the stomach and intestine, the animal suffering from diarrhoea is unable to digest its feed. For this reason it is very important to withhold all feed for at least twelve hours. Water should be provided. The alimentary tract is relieved of the irritating material by giving the animal a physic of castor or linseed oil. The dose varies from one-quarter to one-half ounce for the lamb and from one to four ounces for the colt or calf. It is advisable in most cases to follow this with the following mixture: bicarbonate of soda one ounce, bismuth subnitrate one-half ounce, and salol one-quarter ounce. The dose for the colt and calf is one teaspoonful three times a day. Lambs and pigs may be given from one-fourth to one-half the above dose.
It is usually advisable to give ewes and sows a physic if their young develop a diarrhoea. Mothers that are heavy milkers may be given a physic the second or third day following birth. The ration should be reduced as well during the first week.
GENERAL DISCUSSION.—The digestive tract of poultry is composed of the following organs: mouth, gullet, crop, stomach, gizzard and intestines, with the two large glands, the liver and pancreas. The digestion of the feed begins in the crop. Here the feed is held for a short time, mixed with certain fluids and softened. On reaching the stomach it becomes mixed with the digestive fluid secreted by the gastric glands. This second digestive action consists in thoroughly soaking the feed in the gastric juice, making it soft and preparing it for maceration by the heavily muscled gizzard. Following maceration it passes into the intestine. It is here that the digestive action is completed and absorption occurs.
Under the conditions of domestication, poultry are subject to a great variety of intestinal disorders.
DISEASES OF THE CROP.—Impaction and inflammation are the two common diseases of the crop.Large, impacted cropsare usually caused by the feeding of too much dry feed, fermentation of the contents of the crop and foreign bodies that obstruct the opening from the organ.
Inflammation of the cropis caused by excessive use of condiments in the feed, putrid or spoiled feeds and eating caustic drugs, such as lime and rat poison.
The symptomsare dulness, an indisposition to move about, drooping wings and efforts to eject gases and liquids. The crop is found greatly distended and either hard or soft, depending on the quantity of feed present and the cause of the distention. If fermentation is present the crop usually feels soft.
The preventive treatmentconsists in practising proper methods of feeding. Thecurative treatmentof a recent case consists in manipulating the mass of feed, breaking it up and forcing it upwards toward the mouth. If difficulty in breaking up the mass is experienced, it is advisable to administer a tablespoonful of castor oil to the bird.
If the above manipulations are unsuccessful, an operation is necessary. This consists in making an opening through the skin and the wall of the crop and removing the contents with tweezers. The opening must be closed with sutures. The proper aseptic precautions must be observed.
In inflammation of the crop, the bird should be dieted for at least one day, and one teaspoonful of castor oil given as a laxative.
ACUTE AND CHRONIC INDIGESTION.—The recognition of special forms of indigestion in poultry is difficult. A flock of poultry that is subject to careless and indifferent care may not thrive and a number of the birds develop digestive disorders. This may be indicated by an abnormal or depraved appetite and emaciated condition. Constipation or diarrhoea may occur. In the more severe cases the bird acts dull, the feathers are ruffled and it moves about very little.
The treatmentconsists in removing the cause, and giving the flock a tonic mixture in the feed. The following mixture may be used: powdered gentian and powdered ginger, eight ounces of each, Glauber's salts four ounces, and sulfate of iron two ounces. One ounce of the above mixture may be given in ten pounds of feed.
WHITE DIARRHOEA OF YOUNG CHICKENS.—White diarrhoea is of the greatest economic importance to the poultryman. The loss of chicks from this disease is greater than the combined loss resulting from all other diseases. It is stated by some authors that not less than fifty per cent of the chickens hatched die from white diarrhoea.
Such a heavy death-rate as is attributed to this disease can not result from improper methods of handling and insanitary conditions. Before it was proven that white diarrhoea was caused by specific germs, a great deal of emphasis was placed on such causes as debilitated breeding stock, improper incubation, poorly ventilated, overcrowded brooders, too high or too low temperatures and filth. Such conditions are important predisposing factors, and may, in isolated cases, result in serious intestinal disorders.
The microorganisms causingthis disease belong to both the plant and animal kingdoms. Infection usually occurs within a day or two following hatching. Chicks two or three weeks of age seldom develop the acute form of the disease. Incubator chicks are the most susceptible to the disorder.
The following symptoms occur: The chicks present a droopy, sleepy appearance; the eyes are closed, and the chicks huddle together and peep much of the time; the whitish intestinal discharge is noticed adhering to the fluff near the margins of the vent, and the young bird is very weak; death may occur within the first few days. After the first two weeks the disease becomes less acute. In the highly acute form the chicks die without showing the usual train of symptoms.
It is very easy to differentiate between the infectious and the non-infectious diarrhoea. In the latter, the percentage of chicks affected is small and the disease responds to treatment more readily than does the infectious form. The death-rate in the latter form is about eighty per cent.
The treatmentof diarrhoea in chicks from any cause is preventive. This consists in removing the cause. No person can successfully handle poultry if he does not give the necessary attention to sanitation. Poultry houses, runs, watering fountains and feeding places must be constantly cleaned and disinfected. The degree of attention necessary depends on the surroundings, the crowded condition of the poultry houses and runs, and the presence of disease in the flock. If disease is present, we can not clean and disinfect the quarters too often. The attendant can not overlook details in handling the incubator or brooder and feeding the chicks and be uniformly successful.
If the disease is known to be present in the flock, the incubators and brooders should be thoroughly disinfected by fumigating them with formaldehyde gas. If dirty, they should first be washed with a water solution of a good disinfectant. For a period of from twenty-four to forty-eight hours after hatching, the chicks should receive no feed. Dr. Kaupp recommends as an intestinal antiseptic, sulfocarbolate thirty grains, bichloride of mercury six grains, and citric acid three grains, dissolved in one gallon of water. This solution should be kept in front of the chicks all the time. A water solution of powdered copper sulfate (about one-half teaspoonful dissolved in one gallon of water) may be used.
1. Name the organs that form the digestive apparatus.
2. What digestive action on the feed occurs in the mouth?
3. Describe the causes and symptoms of inflammation of the mouth; describethe treatment.
4. Give the causes for depraved appetite; describe the symptoms andtreatment.
5. Give the capacity of the horse's stomach.
6. Name the different compartments of the ruminant's stomach.
7. Give the capacity of the stomach of ruminants.
8. Name the different stages of digestion occurring in the stomach of thehog.
9. What forms of acute indigestion involve the stomach of solipeds? Givecauses and treatment.
10. Give the causes of indigestion of the stomach of ruminants.
11. Give the treatment for the different forms of indigestion of thestomach of ruminants.
12. Name the divisions of small and large intestines of solipeds andruminants.
13. What is the capacity and length of large intestine of solipeds andruminants?
14. What are the different forms of acute indigestion of the horses, andcauses?
15. Give a general line of treatment for acute indigestion of the horse.
16. Give the causes of white diarrhoea in the young chicks; give a line of treatment.
17. Name the organs of the digestive apparatus of poultry.
18. Name the common diseases of the digestive apparatus of poultry, and give the causes.
GENERAL DISCUSSION.—The liver is one of the most important glands of the body, as well as the largest. Because of its physiological influence over the functions of the kidneys, intestines, and body in general and the varied functions that it possesses, it is frequently affected by functional disorders.
All of the blood that comes directly from the intestine is received by the liver. It secretes the bile, neutralizes many of the poisonous substances and end products of digestion that are taken up by the absorbing vessels of the intestine, and acts as a storehouse for the glycogen.
It can be readily understood from this brief statement of the nature of the liver functions, that any functional disorder of the liver may be far reaching in its effect. In many of the diseases that involve other organs, the liver may be primarily affected. It is difficult to diagnose functional disorders of the liver that are responsible for a diseased condition of some other body organ. A knowledge of the physiology and pathology of the liver is of the greatest importance in the diagnosis of this class of disorders.
In the larger domestic animals, symptoms of liver diseases are more obscure than in the small animals. In certain parasitic diseases and in mixed and specific infectious diseases, the liver may show marked pathological changes.
COMMON CAUSES OF LIVER DISORDERS.—Domestic animals commonly live under very unnatural conditions. Ill results do not follow unless these conditions are so extreme as to violate practically all of the health laws. Pampered animals are especially prone to liver disorders. The feeding of too heavy and too concentrated a ration together with insufficient exercise is one of the most common causes of disorders of the liver. The feeding of a ration that is unsuitable for that particular species is a common source of disease in animals. For example, the feeding to carnivora of a ration made up largely of starchy feed, and the feeding of a ration containing an excessive quantity of protein to herbivorous animals may result in intestinal, liver and nervous disorders. Spoiled feed may prove highly injurious. Catarrhal inflammation of the intestine and intestinal parasites may obstruct the bile duct, and interfere seriously with the functions of the liver.
Symptoms.—In diseases of the liver the appetite is irregular or the animal refuses to eat, is constipated, or has diarrhoea. The faeces may be grayish colored or foul smelling. Colicky pains are sometimes manifested. Usually the animal acts dull and weak. A raise in body temperature may be noted. The visible mucous membranes may appear yellowish- or brownish-red in color.
Treatment.—Animals grazing over well drained pastures that are free from injurious weeds and provided with plenty of drinking water, seldom develop diseases of the liver. Exercise, a natural diet and plenty of clean water, as well as preventing liver disorders, may be classed among the most important of all curative agents. Laxatives or cathartics, such as oils, salts, aloes, and calomel, in small doses may be given. We prefer the administration of oil or aloes to horses, Glauber's or Epsom salts to ruminants, and calomel to dogs. The administration of minimum doses of these drugs, and repeating the dose after a short interval, is preferable to large doses. Alkaline tonics are also indicated. The following mixture may be given: bicarbonate of soda, sulfate of soda and common salt, eight ounces of each, and powdered gentian and sulfate of iron, four ounces of each. Large animals may be given a small tablespoonful of this mixture with the feed three times a day. The dose for sheep and hogs is one teaspoonful. A very light, easily digested ration should be fed.
1. What can be said of the importance of the liver?
2. Tell something of its duties as a gland.
3. In what animals are liver troubles most conspicuous when present?
4. Give causes of liver disorders.
5. What are the symptoms?
6. What are the most important natural cures?
7. What rule may be given for adapting suitable laxatives to different classes of animals?
GENERAL DISCUSSION.—The urinary apparatus is composed of two glands, the kidneys and an excretory apparatus that carries the excretion of the kidneys to the outside.
The kidneys are situated in the superior region of the abdominal cavity (sublumbar) above the peritoneum, and to the right and left of the median line. They are highly vascular glands, somewhat bean-shaped and of a deep red color. These glands are capable of removing from the blood a fluid that is essentially different in composition and which, if retained in the blood, would be harmful or poisonous to the body tissues.
The kidney excretions are carried from the pelvis of the kidneys by the right and left ureters. These canals terminate in the bladder, an oval-shaped reservoir for the urine. This organ is situated in the posterior portion of the abdominal cavity and at the entrance to the pelvic cavity. Posteriorly, it forms a constricted portion or neck. It is here that the urethra originates. This canal represents the last division of the excretory apparatus. In the female, the urethra is short and terminates in the vulva. In the male it is long and is supported by the penis.
The urine secreted by the kidneys is a body excretion, and consists of water, organic matter and salts. The nitrogenous end-products, aromatic compounds, coloring matter, and mucin form the organic matter. The nitrogenous end-products and aromatic compounds are urea, uric and hippuric acids, benzoic acid and ethereal sulfates of phenol and cresol. The salts are sulfates, phosphates and chlorides of sodium, potassium, calcium and magnesium. The organic and inorganic matter varies with the ration.
The quantity of urine secreted within a given time varies in the different species and at different times in the same individual. In the horse the quantity secreted in twenty-four hours varies from twelve to fifteen pints; in cattle from ten to forty pints; in sheep from one-half to one and three-quarter pints. The normal color of the urine varies. In the horse it is yellow or yellowish-red; in cattle and sheep yellowish; and in the dog a straw yellow. The specific gravity varies with the quantity secreted and the ration fed. When the quantity of urine secreted is above the average, the specific gravity is usually low.
THE NECESSITY OF EXAMINING THE URINE.—In diseases of the urinary apparatus, a careful examination of the urine is very necessary in order to be able to form a correct diagnosis. In domestic animals it is impractical to attempt to determine the exact amount of urine passed within a certain time, but we can make a general estimate of the quantity passed by carefully observing the animal and noting the condition of the bedding in the stall. The sample of urine to be examined is best taken from urine collected at different periods during the day. We should note its color and consistency. The different substances in the urine can be determined only by determining the specific gravity, testing with certain chemical reagents and by making a microscopic examination of the sediment. Normal urine from the horse may be turbid or cloudy and more or less slimy, because of the presence of mucin. This is less true of other species. In disease the color of the urine may be changed to a pale yellow, red or brown. For example, in congestion of the kidneys the urine is light in color and rather transparent; in southern cattle fever it may be red; and in azoturia it may be brown.
EXCESSIVE URINATION.—The horse is the most common sufferer from excessive secretion of urine. The most commoncausesare musty feeds, such as hay, grain and shipped feeds. New oats, succulent feeds and acrid plants may sometimes cause it. In the fall of the year, when the season is changing from warm to cool weather and the horse eliminates less water from the body by way of the skin, the kidneys may become more active and the quantity of urine secreted be greatly increased. This, however, is a normal physiological condition and should not be confused with this disease.
The firstsymptomnoted is the frequent passing of a large quantity of urine. The animal drinks more water than usual and the appetite is poor. Dulness and a weak, emaciated condition are prominent symptoms. Death occurs unless the cause of the disease is removed. If the poisonous substance has been acting for some time, it is difficult to cure the animal.
This disease can bepreventedby eliminating spoiled feeds from the ration fed to animals in our care. Early in the attack the necessary attention to the ration and the feeding of a clean, nourishing ration is sufficient to correct the disease. The quantity of water drunk by the animal should be limited. Complete rest is indicated. Laxatives, stimulants and tonics should be given if necessary.
NEPHRITIS.—Congestion and inflammation of the kidneys commonly occur in mixed and specific infectious diseases, such as septicaemia, pyaemia and influenza. The toxic effect of spoiled feeds, impure drinking water, and irritating drugs like cantharides and turpentine may so irritate the kidneys as to cause them to become inflamed. Chilling of the skin and nervousness or extreme fear may sometimes cause a congestion of these organs. Inflammation of the kidneys is a common complication of azoturia. Irritation from parasites should be included among the causes of this disease.
Thesymptomsvary in the different stages of the disease. During the period of active congestion the quantity of urine secreted is increased. The scant secretion of urine, dark in color and thick or turbid, is suggestive of an inflammation of the kidneys. The animal moves stiffly, the back may be arched, urination is painful and the urine is passed in very small amounts. The appetite is irregular or suppressed, the pulse strong at first but later small and weak, and the body temperature is elevated. On making a rectal examination we find the bladder empty and the kidneys enlarged and sensitive.
When the kidneys become so badly diseased that they can no longer perform their function of separating from the blood the nitrogenous end-products of digestion, uraemic poisoning occurs. In this later stage of the disease the animal staggers about if moved, and finally goes down in the stall and is unable to get up. Death is usually preceded by convulsions and coma.
The prognosisis very unfavorable, death occurring in the majority of cases. In azoturia of horses and in infectious diseases, the inflammation is nearly always acute. The color of the urine, its high specific gravity and the small quantity passed are valuable symptoms to consider in the recognition of this disease. Chronic inflammation generally develops slowly and may not give rise to any very prominent symptoms at first.
The preventive treatmentof nephritis consists in careful nursing of animals affected with acute infectious diseases, a clean water supply and avoiding the feeding of spoiled feeds. Thecurative treatmentis largely careful nursing. The animal should be given comfortable, well-ventilated quarters and complete rest. Chilling of the skin should be especially guarded against by protecting the body with heavy blankets and applying roller bandages to the limbs when necessary. The diet must be of such a nature as not to increase the work of the kidneys. For the first few days the animal should receive very little feed or water. Later a sloppy diet of sweet milk, green feed and mashes should be fed. Such purgatives as aloes and Glauber's salts are indicated at a very early stage in the disease. We must encourage the elimination of waste products by way of the skin in the larger animals by vigorous rubbing, blanketing and the administration of such drugs as pilocarpine. If the animal becomes weak, general and heart tonics may be given.
CYSTITIS.—Inflammation of the bladder is not an uncommon disease of horses. It is commonlycausedby retention of the urine, calculi in the bladder and chilling of the body. Irritating drugs that are eliminated from the body in the urine, and infection of the bladder by germs may cause it.
The symptomsare usually marked. The inflammation is characterized by more or less pain, depending on the degree of the inflammation, and frequent passing of urine. Only a small amount of urine is passed at each attempt, and in severe inflammation it may contain pus or blood. Colicky pains sometimes occur. The pain is usually manifested by a stiff, straddling gait and tenderness when pressure on the bladder is made by introducing the hand into the rectum or vagina, and pressing over the region of the bladder. General symptoms, such as elevation in body temperature and irregular appetite, may be manifested.
The treatmentshould be first directed at removing the cause. If a cystic calculus is present in the bladder it should be removed. If the retention of the urine is caused by some local condition, and this is very often the case in nervous, well-bred animals, this must first be corrected. It is best to feed green and soft feeds, such as bran mash and chopped hay, and, if the animal will take them, gruels. A physic of castor or linseed oil should be given occasionally. It is very necessary that the animal be kept quiet. Comfortable, clean quarters and a good bed should be provided. Whenever necessary the animal should be blanketed. The medicinal treatment consists in irrigating the bladder with antiseptic solutions, and administering drugs that when eliminated by way of the urine may change its composition and render it less irritating. The following mixture may be given: potassium chlorate two ounces, salol one-half ounce, and powdered nux vomica one ounce. This mixture may be divided into sixteen powders. One of the powders should be given with each feed.
RETENTION OF THE URINE.—This may be due to a variety ofcauses. In the ox and ram, small calculi collect in the S-shaped curvature of the urethra, or at its terminal extremity. In the horse, cystic calculi are more common than urethral. In cattle and hogs, fatty secretions from the inflamed lining membrane of the sheath of the male may accumulate, and obstruct the flow of urine from the anterior opening. The giving of feed rich in salts, concentrated urine resulting from feeding of too dry a ration, insufficient exercise and inflammation of the bladder are the direct causes of calculi.
Compression of the urethra by growths or tumors, strictures of the urethra, distended bladder, spasm of the neck of the bladder in nervous animals, paralysis of the bladder and injuries to the penis are common causes of retention of the urine.
The early symptoms in ruminantsare not usually recognized until a day or two after retention of the urine has occurred. The symptoms are then quite marked. The animal acts dull, refuses to eat, rumination is stopped, and there is a constant effort to urinate, as indicated by the raising of the tail and rhythmical contractions of the urinary muscles just below the anus. Urine may dribble from the sheath or the flow may be completely suppressed. The odor of urine may be marked.
Horses show symptomsof abdominal pain. The animal may move about the stall, lie down and get up again, or make unsuccessful attempts to urinate. On examination the bladder is found to be greatly distended with urine. In the horse the retention is recognized at an earlier period than in ruminants, because of the prompt, decided symptom of pain.
Retention of the urine commonly terminates in rupture of the bladder in ruminants. When this occurs, the symptoms of pain are less evident. Death occurs from uraemic poisoning and peritonitis. The outcome is less favorable in ruminants than in solipeds.
Inflammation of the sheathcan be readily recognized because of the local swelling.
The following lines of treatmentare recommended: A ration or feed that favors the formation of calculi should not be fed to animals; inflammation of the sheath should receive prompt treatment—this consists in irrigating the part with warm, soapy or alkaline water, followed by an antiseptic wash; we may attempt to work the urethral calculi forward and out of the S-curve in the urethra; if this is unsuccessful, urethrotomy for their removal may be attempted.
The retention of the urine in horses, because of spasm or paralysis of certain muscles, may be treated by passing the catheter. Sometimes spreading litter under the horse and keeping it quiet may induce it to urinate. Hot packs over the region of the back may be used. The treatment for calculi is entirely surgical. The operation for the removal of cystic calculi in the horse, although difficult, is followed by good results.
1. Describe the urinary apparatus.
2. Give the composition of the urine and quantity secreted in the differentanimals.
3. State method of determining quantity and composition of urine secretedby different domestic animals.
4. Give the causes and treatment of excessive urination.
5. Give the causes and treatment of congestion and inflammation of the kidneys.
6. Give the causes of cystitis; symptoms; treatment.
7. Give the causes and treatment of retention of the urine.
GENERAL DISCUSSION.—The study of the organs concerned with the reproduction of the species is essential in order to acquire a knowledge of their several functions. It is only through an understanding of these functions that we can prepare ourselves to correctly recognize, and successfully treat, or prevent, such diseases as may involve the organs of generation. A knowledge of the structure and function of the generative organs of the female is of greater importance from the standpoint of disease, than is a similar knowledge of the generative organs of the male. The female is concerned with the complete reproductive process, which may be divided into four stages. These arecopulation,fecundation,gestationandparturition. The male is concerned only withcopulationandfertilizationof the ovum by the spermatozoa, while the female must protect and nourish the embryo and foetus until it has become sufficiently developed to live independently of the protection and nourishment afforded it within the womb. When the final stage of gestation is reached, birth or the act of parturition occurs.
GENITAL ORGANS OF THE FEMALE.—The female generative organs are the ovaries, fallopian tubules, uterus, vagina, vulva and mammary glands.
The ovariesare analogous to the testicles of the male. Their function is to secrete ova. This pair of glands is suspended from the superior region (sublumbar) of the abdominal cavity by folds of the lining membrane. Leading from the ovaries, but connected with the surface of these glands only during the period of oestrum or heat, are the fallopian tubules. Their function is to carry the ovum from the ovaries to the uterus.
The uterus or wombis a membranous sack situated in the sublumbar region and at the inlet to the pelvic cavity. It is held in position by numerous folds of the lining membrane of the abdominal cavity. We may divide the womb into three divisions, cornua, body and cervix.
The cornua or horns are long and cylindrical in shape. This portion of the womb is greatly developed in animals, like the sow and bitch, that give birth to several young. In the impregnated animal the wall of the cornua that contains one or several foetuses, and the body as well, becomes greatly thickened and the lining membrane more vascular.
The body is short in all domestic animals and connects the horns with the cervix or neck. The latter is represented by a narrow portion that projects backward into the vagina. In the cow the cervix is less prominent than in the mare and the tissue that forms it, quite firm. In the cow the opening in the cervix, the os, is very small.
The vaginais a musculo-membranous canal that leads from the womb. In the mare and cow it is about one foot in length. Its function is to take part in copulation and parturition.
The vulvais the external opening of the maternal passages. It shows a vertical slit enclosed by lips, and interiorly it forms a passage that is continuous with the vagina. This passage is about six inches long in the larger animals. The different features that should be noted are the clitoris, a small erectile organ located at the inferior portion of the opening, the meatus urinaris, the external opening of the urethra, situated in a depression in the floor of the vulva, and the hymen, an incomplete membranous partition that may be found separating the vulva from the vagina.
The mammary glands or udderssecrete the milk that nourishes the young. The glands vary in number. The mare has two, the cow four (Fig. 17), the ewe two and animals that give birth to several young, eight or more. Each gland is surmounted by a teat or nipple. The glandular tissue consists of caecal vesicles that form grape-like clusters around the milk tubules. The milk tubules from the different portions of the gland converge and form larger tubules that finally empty into small sinuses or reservoirs at the base of the teat. Leading from these sinuses are one or several milk ducts that open at the summit of the teat.
GENITAL ORGANS OF THE MALE.—The genital organs of the male are the testicles, the ducts or canals leading from the testicles, the seminal vesicles, the glands lying along the urethra, and the penis.
[Illustration: FIG. 17.—Photograph of model of udder of cow: milk duct; milk sinuses; and glandular tissue.]
The testiclesare the glandular organs that secrete the spermatozoa, the essential elements of the seminal fluid. These glands are lodged in the scrotal sack, situated between the two thighs.
Lying along the superior border of the testicle is a mass of ducts, theepididymis. Thevas deferensis the canal or duct that passes from the epididymis to the region of the bladder and terminates near its neck by emptying into the seminal vesicles.
The seminal vesiclesare two membranous pouches situated just above the bladder. They act as receptacles for the seminal fluid. Two short ducts, theejaculatory, carry the seminal fluid from the seminal vesicles to the urethra.
The prostate glandis situated near the origin of the urethra.Cowper's glandslie along the course of the urethra and near the origin of the penis. These glands empty their secretions into the urethra and dilute the seminal fluid.
The penisis the male organ of copulation. It originates at the arch of the ischium and extends forward between the thighs. It may be divided into fixed and free portions. The free portion is lodged in the prepuce or sheath, but at the time of erection protrudes from it.
STERILITY, IMPOTENCY.—Fecundation does not always follow intercourse of the male and female. Impotency in the male and sterility in the female frequently occur.
The causesare quite varied. A normal copulation may be impossible because of injuries to, and deformities of, the parts and tumor growths. Deformed genital organs and obstructions of the os by growths and scar tissue are causes of sterility in the female.
Failure to breed is commonly caused by faulty methods of feeding and care. Over-feeding and insufficient exercise may result in the body tissues becoming loaded with fat. This may cause a temporary sterility, but if persisted in, as is frequently the case in show animals, the sterility becomes permanent because of the genital glands failing to secrete ova and spermatozoa, or the lack of vitality of the male and female elements. Old age and debility from disease or poor care may induce loss of sexual desire and an absence of, or weakened spermatozoa in, the seminal fluid. The refusal of the male to serve certain females is sometimes noted.
Tuberculosis may affect the ovaries and cause permanent sterility. In inflammation of the lining membrane of the womb and vagina, the secretions are abnormal and may collect in the womb and the passages leading to it. These secretions destroy the vitality of the spermatozoa, and this condition may be considered a common cause of sterility in the larger animals. Many vigorous young males are made impotent by excessive copulation. The excessive use of the male at any time may result in failure to impregnate a large percentage of the females that he serves.
Barren females do not become pregnant after frequent intercourse with the male. Young sterile females may not come in heat. Sometimes unnatural periods of heat are manifested, the animal coming in heat frequently or remaining in heat for a longer period than usual. This sometimes occurs in tuberculosis of the ovaries. In chronic inflammation of the maternal passage there is more or less discharge from the vulva. Both sexes may be overly fat or weakened and debilitated by disease. Deformity of the generative organs and growths may be found on making an examination. Absence of, or lack of vitality of the spermatozoa may be determined by microscopic examination of the seminal fluid.
The treatmentis largely preventive. It is very important that breeding animals be kept in proper physical condition by avoiding the feeding of too heavy or too light a ration, and allowing them sufficient exercise. The male is more often affected by the latter cause than the female. This is because the average stockman does not consider exercise given under the right conditions an important factor in maintaining the vigor of the male. Young males should not be given excessive intercourse with the female. Such practice is certain to seriously affect the potency of the animal. The excessive use of the stallion can be avoided by practising artificial impregnation of a part of the mares that he is called to serve. Sterility caused by growths and closure of the os may be corrected by an operation.
Chronic inflammation of the maternal passages should be treated by irrigating the parts with a one per cent warm water solution of lysol, or liquor cresolis compound. The parts should be irrigated daily for as long a period as necessary. Fat animals should be subjected to a rigid diet and given plenty of exercise. Following this treatment a stimulating ration may be fed for the purpose of encouraging the sexual desire. In weak and debilitated animals, the cause should first be removed and a proper ration fed. Cantharides and strychnine are the drugs most highly recommended for increasing the sexual desire.
SIGNS OF PREGNANCY.—The signs which characterize pregnancy are numerous and varied. For convenience we may classify the many signs of pregnancy under two heads, probable and positive. Under the head of probable signs, we may group the following symptoms of pregnancy: cessation of heat; changes in the animal's disposition; increase in the volume of the abdomen and tendency to put on fat. The positive signs are the change in the volume of the udder; the secretion of milk; the movement of the foetus and presence of the foetus in the womb, as determined by rectal examination or by the feel of the abdomen.
The probable signsare not reliable, and should be considered only in connection with some positive sign. Persons who base their opinion of the condition of an animal that is supposed to be pregnant on probable signs, are frequently mistaken. It has frequently happened that animals whose condition was not at all certain have given birth to young, without giving rise to what may be termed characteristic probable signs.
The earliest probable symptom is the cessation of heat. In the large pregnant animals, irregular heat periods may occur, but in the majority of cases we may safely consider the animal impregnated if several heat periods are passed over.
It has been generally observed that the disposition of the pregnant animal is changed. They become more quiet and less nervous and irritable. The tendency of pregnant animals to put on fat is frequently taken advantage of by the stockman, who may allow the boar to run with the herd during the latter period of fattening.
The increase in the volume of the abdomen may be considered apositivesign of pregnancy in the small animals, but in the mare and cow it can not be depended on. Animals that are pregnant for the first time, do not show as great an increase in the volume of the abdomen as do animals that have gone through successive pregnant periods. The volume of the abdomen may vary greatly in the different individuals, and can not be depended on as a positive indication of pregnancy during the first two-thirds of the period of pregnancy in the larger domestic animals.
Comparatively early in pregnancy, the presence of a foetus can be determined by feeling the uterus through the wall of the rectum. In the small domestic animals the feeling of the abdomen gives the best results. In the cow this method of diagnosis is practised during the latter periods of pregnancy. The examiner stands with his back toward the animal's head, and on the right side of the cow and the left side of the mare. The palm of the hand is applied against the abdominal wall, about eight or ten inches in front of the stifle and just below the flank. Moderate pressure is used, and if a hard, voluminous mass is felt, or if the foetus moves, it is a sure sign that the animal is pregnant. It is not uncommon for the foetus to show some movement in the morning, or after the animal drinks freely of cold water. The increase in the volume of the udder occurs at a comparatively early period in animals that are pregnant for the first time. The secretion of milk and the dropping of the muscles of the quarters indicate that parturition is near. The Abderhalden test for determining whether or not an animal is pregnant is now practised.
HYGIENE OF PREGNANT ANIMALS.—Pregnant animals that are confined in a pasture that is free from injurious weeds and not too rough or hilly, and where the animals have access to clean water and the necessary shelter, seldom suffer from an abnormal birth. Here they live under the most favorable conditions for taking exercise, securing a suitable diet and avoiding injury. It may not be possible in managing breeding animals to provide such surroundings at all times, but we should observe every possible hygienic precaution, especially if the animal has reached the later periods of pregnancy.
All pregnant animals are inclined to be lazy, but, if permitted, will take the necessary exercise. Pregnant mares are usually worked. Such exercise does no harm, providing the work is not hard or of an unusual character. Cows are usually subject to more natural conditions than other domestic animals.
Protecting pregnant animals against injuries resulting from crowding, slipping and fighting is an important part of their care. Injuries from crowding together in the sleeping quarters and about feeding-troughs, or through doors and climbing over low partitions are common causes of injury in pregnant sows. Crowding together in the stable or yard, or through doorways, fighting, and slipping on floors, or icy places sometimes results in injury. It is rare, however, for cows to abort from an injury, but parturition may not be completely free from disagreeable complications. Under the conditions mentioned retention of the fetal membranes is common.
Ewes frequently suffer from too close confinement during late winter. Sows are often subject to the most unhygienic conditions. This is shown in the heavy death-rate in sows and pigs. During the late winter and early spring the conditions may be such as not to permit of exercise. Stormy, snowy, muddy weather is common at this season of the year. Persons caring for ewes and sows should see that they take sufficient exercise. It may be necessary to drive them about for a short time each day. At such times it may be advisable to give them a laxative dose of oil, or give a laxative with the feed. When there is any indication of constipation, this should be practised.
Pregnant animals should be fed carefully. We may feed animals that are not in this condition in a careless fashion, but if pregnant, over-feeding, the feeding of a fattening ration, or spoiled feed, and sudden changes in the feed can not be practised with any degree of safety. A bulky ration of dry feed and drinking impure, or too little, water may cause constipation, acute indigestion and abortion. The ration fed should contain the necessary inorganic and organic elements for the building up of the body tissues of the foetus.
At the end of the parturition period, separate quarters should be provided. The mare or cow should be given a comfortable clean stall away from the other animals. The ewe should be provided with a warm room if the weather is cold. It is always best to give the sow a separate pen that is dry and clean, and away from the other animals. All danger from injury to the mother and young should be guarded against.
ABORTION.—The expulsion of the foetus at any time during the period of gestation, when it is not sufficiently developed to live independently of the mother, is termed abortion. Abortion may be eitheraccidentalorinfectious. Accidental abortion is more commonly met with in the mare and sow than the infectious form. In ruminants the opposite holds true.
The causes of accidental abortionare faulty methods of feeding and care. Injuries, acute indigestion, mouldy, spoiled feeds, chilling resulting from exposure and drinking ice-cold water, nervousness brought on by fright, or excitement and general diseases are the common causes of abortion.
Infectious abortionis most common in cows. Other domestic animals that may be affected are the mare, sow and ewe.
It is causedby a specific germ. TheBacillus abortusof Bang is the cause of abortion in cows, but the specific germ that produces abortion in other species of animals has not been proven. In this country, Keer, Good, Giltner and others have proven that the Bang bacillus of abortion is infectious for other species of animals, and outbreaks of this disease have been said to occur among breeding ewes pastured and fed on infected premises. Its infectiousness for the females of other species has never been proven in natural outbreaks.
The disease-producing germs are present in the body of the foetus, the fetal membranes, the discharge from the maternal passages, the faeces and milk of aborting animals. The male may carry the infection in the sheath, urethra and on the penis. The natural avenues of infection are the maternal passages and digestive tract.
It is very seldom that abortion is carried from one herd to another by means other than through the breeding of animals free from abortion to animals affected by this disease. The purchase of a bull or cow from an infected herd and breeding them to animals that are free from disease, is a common method of spreading the disease. After serving the diseased animal, the male may carry the bacillus of abortion into the maternal passages of the next cow he serves. There are numerous cases on record where the bull was a permanent carrier of the Bacillus abortus and infected nearly every animal served. The distribution of the disease in the herd following the introduction of a cow, sow, or ewe that has aborted before or after being purchased, takes place through contact of the other animals with the virus that may be present on the floor, or in the manure, or by taking the virus into the digestive tract along with the feed and drinking water. Experimental evidence indicates the latter avenue of infection.
The stallion is the most common source of infectious abortion in mares. An infected stallion may distribute the disease to a large percentage of the mares that he serves. For this reason nearly all of the mares in a certain locality may abort.
In case the infection occurs at the time of service, the abortion usually takes place during the first half of the period of pregnancy. Cows that become pregnant without recovering from the inflammation of the lining membrane of the genital tract, may abort at a very early period. McFadyean and Stockman from the artificially inoculated cases of infectious abortion in cows, showed that the period of incubation averaged 126 days.
The symptoms of accidental abortionare extremely variable. Animals that abort during the early periods of pregnancy may show so little disturbance, that the animal can be treated as if nothing had happened. During the latter half of pregnancy, and especially when the accident is caused by an injury, the symptoms are more serious. Loss of appetite, dulness, restlessness, abdominal pain and haemorrhage are the symptoms commonly noted. If the foetus is dead, it may be necessary to assist the animal in expelling it. In the latter case, death of the mother may occur.
A slight falling of the flanks, swelling of the lips of the vulva and a retention of the fetal membranes, or discharge from the vulva may be the only symptoms noted at the time abortion occurs.
The symptoms of infectious abortionvary in the different periods of pregnancy. At an early period, the foetus may be passed with so little evidence of labor that the animal pays little attention to it. The recurrence of heat may be the first intimation of the abortion. All cases of abortion are followed by more or less discharge from the vulva. This is especially true if the fetal membranes are retained. In such cases, the discharge has a very disagreeable odor. In most cases the foetus is dead. When born alive, it is weak and puny, and usually dies or is destroyed within a few days. When the attendant fails to give the animal the necessary attention, or is careless in his manipulation of the parts, inflammation of the womb, caused by the decomposition of the retained membranes, or the introduction of irritating germs on the ropes, instruments and hands, may occur. Death commonly follows this complication.
It is very important that the infectious form be diagnosed early in the outbreak. For all practical purposes we are justified in diagnosing infectious abortion, if several animals in the herd abort, especially if it follows the introduction of new animals. Methods of serum diagnosis, the agglutination and complement-fixation tests, are now used in the diagnosis of this disease.
The preventive treatmentof the accidental form consists in avoiding conditions that may result in this accident. Pregnant animals should not be exposed to injuries from other animals or from the surroundings. Animals which show a predisposition to abort should not be bred. We should see that all animals receive the necessary exercise and a proper ration.
If the animal indicates by her actions that abortion may take place, we should give her comfortable, quiet quarters. It is very necessary to keep her quiet, and if restless, morphine may be given. A very light diet should be fed and constipation prevented by administering a laxative. The necessary attention should be given in case abortion occurs.
The enforcement ofpreventiveorquarantine measuresis very important in the control of infectious abortion. This is especially true of breeding herds and dairy cows. Breeders do not recognize the importance of keeping their herds clean or free from disease. It is a well-known fact among stockmen that abortion and other infectious diseases have been frequently introduced into the herd through the purchase of one or more breeding animals. Because of the prevalence of infectious abortion among cows, it is advisable to subject newly purchased breeding animals, or a cow that has been bred outside of the herd, to a short quarantine period before allowing them to mix with the herd. The breeding of cows from neighboring herds to the herd bull is not a safe practice. In communities where there are outbreaks of this disease, animals that abort, or show indications of aborting, should be quarantined for a period of from two to three months. The separation from the herd should be so complete as to eliminate any danger of carrying the disease to the healthy animals on the clothing and farm tools. If this method of control were practised at the very beginning of the outbreaks, the disease could be checked in the large majority of herds.
The foetus and membranes should be destroyed by burning. In case the animal does not pass the fetal membranes, they should be completely removed. In the cow, it is advisable to wait twenty-four hours before doing this. The animal's stall should be thoroughly cleaned and disinfected. It is very advisable to give the entire stable a thorough disinfecting. For this purpose a three or four per cent water solution of liquor cresolis compound may be used. It is advisable to apply it with a spray pump. The floor and feed troughs should be sprinkled daily with the disinfectant. All manure should be removed to a place where the animals can not come in contact with it. It is not advisable to confine the cows to a small yard. The more range they have the easier it is to control the disease.
Individual treatmentis very necessary. In infectious abortion the mucous lining of the womb and the passages leading to it become inflamed. This should be treated by irrigating the parts with a warm water solution of a disinfectant that is non-irritating. This treatment should be repeated daily for a period of from two to four weeks. We must be very careful not to irritate the parts. A one-half per cent water solution of liquor cresolis compound may be used.
Animals that abort should not be bred until they have completely recovered. Small animals that have no special value as breeding animals should be marketed. Cows and mares should not be bred for a period of at least three months.
Infected males should not be used for service. The male should receive the necessary attention in the way of irrigating the sheath before and after each service.
PHYSIOLOGY OF PARTURITION.—Parturition or birth, when occurring in the mare, is designated as foaling; in the cow, calving; in the sheep, lambing; and in the sow, farrowing. A normal or natural birth occurs when no complications are present and the mother needs no assistance. When the act is complicated and prolonged, it is termed abnormal birth. The length of time required for different individuals of the same species to give birth to their young varies widely. It may require but a few minutes, or be prolonged for a day or more. The cause of this variation in the length of time required for different animals to bring forth their young, can be better understood if we study the anatomy of the parts and their functions.
Throughout the pregnant period theexpulsion of the foetusis being prepared for. As the foetus develops there is a corresponding development of the muscular wall of the womb. The last period of pregnancy is characterized by the relaxation of the muscles and ligaments that form the pelvic walls, and a relaxation and dilation of the maternal passages. In addition, degenerative changes occur in the structures that attach the foetus to the womb, the normal structures being gradually destroyed by a fatty degeneration. This results in a separation between the fetal and maternal placenta. The contents of the womb begin to affect the organ in the same manner as a foreign body, irritating the nerve endings and producing contractions of the muscles. These contractions of the muscles help greatly in breaking down the attachments until finally the labor pains begin in earnest, and the foetus is gradually forced out of the womb, through the dilated os and into the vagina and vulva.
A normal birthis possible, only when the expelling power of the womb is able to overcome the resistance offered by the foetus and its membranes, the pelvic walls and the vagina and vulva.
[Illustration: FIG. 18.—Photograph of model of uterus of cow containing a foetus: foetus; umbilical cord; placenta; horn containing foetus; and opposite horn. Note the difference in the development of the two horns.]
The relative size of the foetus to the inlet of the pelvic cavity and its position are the most important factors for the veterinarian and stockman to consider (Fig. 18). On leaving the womb, the foetus passes into the vagina and vulva. This portion of the maternal passages is situated in the pelvic cavity which continues the abdominal cavity posteriorly. The pelvic walls are formed by bones and ligaments that are covered by heavy muscles. As previously mentioned, the ligaments and muscles relax toward the end of pregnancy in order to prepare the way for the passage of the foetus. Before entering the pelvis it is necessary for the foetus to be forced through the inlet to this cavity. This is the most difficult part of the birth, as the bones that form the framework of the pelvis completely enclose the entrance to it. It is only in the young mother that the pelvic bones give way slightly to the pressure on them by the foetus. It can be readily understood, that when the young is large in proportion to the diameter of the pelvic inlet, it is difficult for it to pass through. This occurs when mothers belonging to a small breed, are impregnated by a sire belonging to a large breed of animals. It may also occur if the mother is fed too fattening a ration and not permitted sufficient exercise.