Chapter 5

The geological agencies, as we have already learned, may be arranged in two great classes: first, the aqueous or superficial agencies originating in the solar heat, and producing the sedimentary or stratified rocks; and, second, the igneous or subterranean agencies originating in the central or interior heat, and producing the eruptive or unstratified rocks. Hence, we want to know first of any rock whether it is of aqueous or igneous origin. Then, if it is a sedimentary rock, whether it has been formed by the action chiefly of mechanical forces, or of chemical and organic forces. And, if it is an eruptive rock, whether it has cooled and solidified below the earth’s surface in a fissure, and is a dike or trappean rock, or has flowed out on the surface and cooled in contact with the air, and thus become an ordinary lava or volcanic rock.

Here we have the outlines of our classification, and it will be observed that we have simply reached the conclusion, in a somewhat roundabout manner, that there should always be a general correspondence between the classification of rocks and the classification of the forces that produce them. The general plan of the preceding scheme of the classification must now be clear, and the details will be explained as we go along.

1.Mechanically formed or Fragmental Rocks.—These consist of materials deposited fromsuspensionin water, and the process of their formation is throughout chiefly mechanical. The materials deposited are mere fragments of older rocks; and, if the fragments are large, we call the newly deposited sediment gravel; if finer, sand; and, if impalpably fine, clay. These fragmental rocks cannot be classified chemically, since the same handful of gravel, for instance, may contain pebbles of many different kinds of rocks, and thus be of almost any and very variable composition. Such chemical distinctions as can be established are only partial, and the classification, like the origin, must be mechanical. Accordingly, as just shown, we recognize three principal groups based upon the size of the fragments; viz.:—

(1) Conglomerate group.(2) Arenaceous group.(3) Argillaceous group.

(1) Conglomerate group.(2) Arenaceous group.(3) Argillaceous group.

(1) Conglomerate group.(2) Arenaceous group.(3) Argillaceous group.

(1) Conglomerate group.

(2) Arenaceous group.

(3) Argillaceous group.

This mode of division is possible and natural, simply because, as we observed in an early experiment, materials arranged by the mechanical action of water are always assorted according to size. When first deposited, the gravel, sand, and clay are, of course, perfectly loose and unconsolidated; but in the course of time they may, under the influence of pressure, heat, and chemical action, attain almost any degree of consolidation, becomingconglomerate,sandstone, andslate,respectively. The pressure may be vertical where it is due to the weight of newer deposits, or horizontal where it results from the cooling and shrinking of the earth’s interior. The heat may result from mechanical movements, or contact with eruptive rocks; or it may be due simply to the burial of the sediments, which, it will be seen, must virtually bring them nearer the great source of heat in the earth’s interior, on the same principle that the temperature of a man’s coat, on a cold day, is raised by putting on an overcoat. The effect of the heat, ordinarily, is simply drying, coöperating with the pressure to expel the water from the sediments; but, if the temperature is high, it may bake or vitrify them, just as in brick-making. Sediments are consolidated by chemical action when mineral substances, especially calcium carbonate, the iron oxides, and silica are deposited between the particles by infiltrating waters, cementing the particles together. This principle is easily demonstrated experimentally by taking some loose sand and wetting it repeatedly with a saturated solution of some soluble mineral, like salt or alum, allowing the water to evaporate each time before making a fresh application. The interstices between the grains are gradually filled up, and the sand soon becomes a firm rock. But the student should clearly understand that, in geology, gravel, sand, and clay are just as trulyrocksbefore their consolidation as after. It is plain then that in each of the principal groups of fragmental rocks we must recognize an unconsolidated division and a consolidated division.

(1)Conglomerate group.—The rocks belonging inthis group we know before consolidation asgravel, and after consolidation asconglomerate.

Gravel.—The pebbles, as we have already seen, are usually, though not always, well rounded or water-worn; and they may be of any size from coarse grains of sand to boulders. As a rule, however, the larger pebbles, especially, are of approximately uniform size in the same bed or layer of gravel, with, of course, sufficient fine material to fill the interstices. Although the same limited mass of gravel may show the widest possible range in chemical and mineralogical composition, yet hard rocks are evidently more likely than soft rocks to form pebbles; and hence quartz and quartz-bearing rocks usually predominate in gravels. Specimen 28.

Conglomerate.—Consolidated gravel. Children should be led to an appreciation of this point by a careful comparison of the forms of the pebbles in the gravel and conglomerate. The conglomerate seems to contain a larger proportion of fine material than ordinary gravel. But this is because the gravel is usually, as with our specimen, taken from thesurfaceof the beach, where, of course, the pebbles are clean and separate; but if it had remained there to be covered by a subsequently deposited layer, enough fine stuff would have been sifted into the holes to fill them. And in the finished gravel, just as in the conglomerate, the pebbles are usually closely packed, with just sufficient sand and clay, orpaste, as the material in which the pebbles are imbedded is called, to fill the interstices. The paste is usually similar in composition to the pebbles, with this difference: hard materials predominate in the pebbles and soft in the paste.

Stratified rocks generally show the stratification in parallel lines or bands differing in color, composition, etc.; but nothing like this can be detected in our specimens of conglomerate; and the question might be asked, How do we know that this is a stratified rock? In answer, it can be said that our hand-specimens appear unstratified simply because the rock is so coarse; but when we look at large masses, and especially when we see it in place in the quarry, that parallel arrangement of the material which we call stratification is usually very evident; and we often see precisely the same thing in gravel banks. It is, however, wholly unnecessary that we shouldseethe stratification in order to know certainly that this is a stratified or aqueous rock, because the forms of the pebbles show very plainly that they have been fashioned and deposited by moving water; and we have in the smallest specimen proof positive that our conglomerate is a consolidated sea-beach.

Conglomerate shows the same variations in composition and texture as gravel; it may be composed of almost any kind of material in pebbles of almost any size. We recognize two principal varieties of conglomerate based on the forms of the pebbles; if, as is usual, these are well rounded and water-worn, the rock is truepudding-stone(specimen 29); but, if they are angular, or show but little wear, it is calledbreccia.

(2)Arenaceous Group.—The conglomerate group passes insensibly into the arenaceous group; for, from the coarsest gravel to the finest sand, the gradation is unbroken, and every sandstone is merely a conglomerate on a small scale.

Sand.—Like gravel, sand may be of almost any composition, but as a rule it is quartzose; quartz, on account of its hardness and the absence of cleavage, being better adapted than any other common mineral to form sand. Where the composition of a sand is not specified, a quartzose sand is always understood. By examining a typical sand with a lens, and noting the glassy appearance of the grains, and then testing their hardness on a piece of glass, which they will scratch as easily as quartz, the pupil is readily convinced that each grain is simply an angular fragment of quartz. Specimen 30.

Sandstone.—Consolidated sand. In proving this, children will notice first the granular or sandy appearance of the sandstone; and then, with the lens, that the grains in the sandstone have the same forms as the sand-grains. The stratification cannot be seen very distinctly in our hand-specimens, but in larger masses it is usually very plain, as may be observed in the blocks used for building, and still better in the quarries. However, even if the stratification were not visible to the eye, we could have no doubt that sandstone is a mechanically formed stratified rock; because the form of the grains, just as in the conglomerate, tells us that. Many sandstones, too, contain the fossil remains of plants and animals, and these are always regarded as affording positive proof that the rocks containing them belong to the aqueous or stratified series.

There are many varieties of sandstone depending upon differences in composition, texture, etc., but we have not space to notice them in detail. In sandstone, just as in sand, quartz is the predominant constituent,although we sometimes find varieties composed largely or entirely of feldspar, mica, calcite, or other minerals. Specimen 31 is an example of the architectural variety known as freestone, which is merely a fine-grained, light-colored, uniform sandstone, not very hard, and breaking with about equal freedom in all directions. The consolidation of sandstones is due chiefly to chemical action. The cementing materials are commonly either:ferruginous(iron oxides), giving red or brown sandstones;calcareous, forming soft sandstones, which effervesce with acid if the cement is abundant; orsiliceous, making very strong, light-colored sandstones. Ferruginous sandstones are the most valuable for architectural purposes; for, while not excessively hard, they have a very durable cement. Siliceous sandstones are too hard; and the calcareous varieties crumble when exposed to the weather because the cement is soluble in water containing carbon dioxide, as all rain-water does. Specimen 32 is a good example of a ferruginous sandstone, and it is coarse enough so that we can see that each grain of quartz is coated with the red oxide of iron. The mica scales visible here and there in this specimen are interesting as showing that the grains are not necessarily all quartz; and it is important to observe that the mica was not made in the sandstone, but, like the quartz, has come from some older rock.

Quartzite.—This rock is simply an unusually hard sandstone. Now the hardness of any rock depends upon two things: (1) the hardness of the individual grains or particles; and (2) the firmness with which they are united one to another. Therefore, the hardest sandstones must be those in which grains of quartzare combined with an abundant siliceous cement; and that is precisely what we have in a typical quartzite, such as specimen 33. Quartzite is distinguished, in the hand-specimen, from ordinary quartz by its granular texture (compare specimens 15 and 33); and of course in large masses the stratification is an important distinguishing feature.

3.Argillaceous group.—Just as the conglomerate group shades off gradually into the arenaceous group, so we find it difficult to draw any sharp line of division between the arenaceous group and the argillaceous, but we pass from the largest pebble to the most minute clay-particle by an insensible gradation. For the sake of convenience, however, we draw the line at the limit of visibility, and say that in the true clay and slate the individual particles are invisible to the naked eye; in other words, these rocks have a perfectly compact texture, while the two preceding groups are characterized by a granular texture. Although clay, like sand and gravel, may be of almost any composition, yet it usually consists chiefly, often entirely, of the mineral kaolin. The reason for this is easily found. Quartz resists both mechanical and chemical forces, and is rarely reduced to an impalpable fineness; but all the other common minerals, such as feldspar, hornblende, mica, and calcite, on account of their cleavage and inferior hardness, are easily pulverized; but it is practically impossible that this should happen without their being broken up chemically at the same time. Decomposition follows disintegration; and, while calcite is completely dissolved and carried away, the other minerals are reduced, as we have seen, to impalpable hydrous silicates ofaluminum,i.e., to kaolin. Hence, we find that the fragmental rocks are composed principally of two minerals, quartz and kaolin,—the former predominating in the conglomerate and arenaceous groups, and the latter in the argillaceous group.

Clay.—That kaolin is the basis of common clay is proved by the argillaceous odor, which is so characteristic of moist clay. Pure kaolin clay is white and impalpable, like China clay; but pure clays are the exception. They often become coarse and gritty by admixture with sand, formingloam; and they also usually contain more or less carbonaceous matter, which makes black clays; or more or lessferrousoxide, which makes blue clays; or more or lessferricoxide, which makes red, brown, and yellow clays. By mixing these coloring materials in various proportions, almost any tint may be explained. Clays are sometimes calcareous, from the presence of shells and shell-fragments or of pulverized limestone. These usually effervesce with acid, and are commonly known asmarl. It is the calcareous material in a pulverulent and easily soluble condition that makes the marls valuable as soils.

Slate.—Consolidated clay. The compact texture and argillaceous odor are usually sufficient to prove this. To get the odor we need simply to breathe upon the specimen, and then smell of it. We find all degrees of induration in clay. It sometimes, as every one knows, becomes very hard by simple drying; but this is not slate, and no amount of mere drying will change clay into slate; for, when moistened with water, the dried clay is easily brought back to the plastic state. To make a good slate, the induration must bethe result of pressure, aided probably to some extent by heat. True slate, then, is a permanently indurated clay which will not soak up and become soft when wet.

Slate is usually easily scratched with a knife, and it is distinguished from limestone by its non-effervescence with acid. As we should expect, it shows precisely the same varieties in color and composition as clay. A good assortment of colors is afforded by the roofing-slates. Specimen 34 is a typical slate, for it not only has a compact texture and argillaceous odor, but it is very distinctly stratified. The stratification is marked by alternating bands of slightly different colors, and is much finer and more regular than we usually observe in sandstone, and of course entirely unlike the stratification of conglomerate. These differences are characteristic. Some slates, however, are so homogeneous that the stratification is scarcely visible in small pieces. Thus the roofing-slates (specimen 35) rarely show the stratification; for it is an important fact that the thin layers into which this variety splits are entirely independent of the stratification. This is the structure known as slaty cleavage; it is not due to the stratification, but is developed in the slate subsequently to its deposition, by pressure. Some roofing-slates, known as ribbon-slates, show bands of color across the flat surfaces. These bands are the true bedding, and indicate the absolute want of conformity between this structure and the cleavage. Few rocks are richer in fossils than slate, and these prove that it is a stratified rock. Slate which splits easily into thin layersparallel with the beddingis known asshale.

Porcelainite.—This is clay or slate which has beenbaked or partially vitrified by heat so as to have the hardness and texture of porcelain.

2.Chemically and Organically formed Rocks.—We have already learned that from a geological point of view the differences between chemical and organic deposition are not great, the process being essentially chemical in each case; and since the limestones and some other important rocks are deposited in both ways, it is evidently not only unnatural, but frequently impossible, to separate the chemically from the organically formed rocks. Unlike the fragmental rocks, the rocks of this division not only admit, but require, a chemical classification. This is natural because they are of chemical origin; and it is practicable because, with few exceptions, only one class of minerals is deposited at the same time in the same place,—a very convenient and important fact. Therefore our arrangement will be mineralogical, thus:—

(1) Coal Group.(2) Iron-ore Group.(3) Siliceous Group.(4) Calcareous Group.(5) Metamorphic Group (Silicates).

(1) Coal Group.(2) Iron-ore Group.(3) Siliceous Group.(4) Calcareous Group.(5) Metamorphic Group (Silicates).

(1) Coal Group.(2) Iron-ore Group.(3) Siliceous Group.(4) Calcareous Group.(5) Metamorphic Group (Silicates).

(1) Coal Group.

(2) Iron-ore Group.

(3) Siliceous Group.

(4) Calcareous Group.

(5) Metamorphic Group (Silicates).

Most of the silicate rocks are mixed,i.e., are each composed of several minerals; but some silicate rocks and all the rocks of the other divisions are simple, each species consisting of a single mineral only.

(1)Coal Group.—These are entirely of organic origin, and include two allied series, which are always merely the more or less extensively transformed tissues of plants or animals; viz.:—

CoalsandBitumens.—At the first lesson we examined a sample of peat (specimen 8), and considered the general conditions of its formation, peat being in every instance simply partially decayed marsh vegetation. It was also stated that, as during the lapse of time the transformation becomes more complete, the peat is changed in succession tolignite,bituminous coal,anthracite, andgraphite. The coals, indeed, make a very beautiful and perfect series, whether we consider the composition—there being a gradual, progressive change from the composition of ordinary woody fibre in the newest peat to the pure carbon in graphite,—or the degree of consolidation and mineralization—since there is a gradual passage from the light, porous peat, showing distinctly the vegetable forms, to the heavy crystalline graphite, bearing no trace of its vegetable origin. This relation is easily appreciated by a child, if a proper series of specimens is presented. The coals also make a chronological series, graphite and anthracite occurring only in the older formations, and lignite and peat in the newer, while bituminous coal is found in formations of intermediate age.

Bituminous coal is the typical, the representative coal; and from a good specimen of this variety we may learn two important facts:—

(1) That true coals, no less than peat, are of vegetable origin. To see this we must look at the flat or charcoal surfaces of the coal. These soil the fingers like charcoal, and usually show the vegetable forms distinctly.

(2) That coals are stratified rocks. These dirty charcoal surfaces always coincide with the stratification,being merely the successive layers of vegetation deposited and pressed together to build up the coal; and when we look at the edge of the specimen the stratification shows plainly enough.

The bitumens form a similar though less perfect series, beginning with the organic tissues, and ending, in the opinion of some of the best chemists and mineralogists, with diamond. In fact the coals and bitumens form two distinct but parallel series. The coals are exclusively of vegetable origin, while the bitumens are largely of animal origin. The organic tissues in which the two series originate are chemically similar,—the animal tissues, which produce the lighter forms of bitumen, however, containing more hydrogen and less carbon and oxygen than vegetable tissues; while the final terms, as just shown, are probably chemically identical, being pure carbon,—graphite for the coals and diamond for the bitumens; so that the entire process of change in each series is essentially carbonization, a gradual elimination of the gaseous elements, oxygen and hydrogen, until pure solid carbon alone remains.

The principal differences between the coals and bitumens are the following:—

Coals are rich in carbon, with some oxygen and little hydrogen.

Bitumens are rich in hydrogen, with some carbon and little or no oxygen.

Coals are entirely insoluble.

Bitumens are soluble in ether, benzole, turpentine, etc., and the solid forms are soluble in the more fluid, naphtha-like varieties.

Coals are never liquid, and cannot be melted or, with trifling exceptions, even softened by heat.

Many bitumens are naturally liquid, and all become so on the application of heat.

The coals partake of the characteristics of their chief constituent element, carbon, the most thoroughly solid substance known; while the bitumens similarly show the influence of hydrogen, the most perfectly fluid substance known.

The two bitumens of the greatest geological importance are asphaltum or mineral pitch and petroleum; but these substances are too familiar to require any farther description here.

(2)Iron-ore Group.—These interesting and important stratified rocks include the three principal oxides of iron,—limonite, hematite, and magnetite,—as well as the carbonate of iron, siderite; and the rocks have essentially the same characteristics as the minerals. In economical importance they are second only to the coals; and the history of their formation through the agency of organic matter is one of the most interesting chapters in chemical geology (see page26). The three oxides are easily distinguished from each other by the colors of their powders or streaks, and the magnetism of magnetite, and from all other common rocks by their high specific gravity. Magnetite is the richest in iron, and limonite the poorest. As regards the degree of crystallization and order of occurrence in the formations, they form a series parallel with the coal series, thus:—

Limonite, never crystalline, and found in recent formations.

Hematite, often crystalline, and found in older formations.

Magnetite, always crystalline, and found in oldest formations.

Siderite effervesces with strong acid; and this separates it from all other rocks, except limestone and dolomite; and from these it is distinguished by itshigh specific gravity. As a mineral, siderite is often light colored; but as a rock it is always dark, and usually black, from admixture chiefly of carbonaceous matter. In studying dynamical geology, we have learned (page28) the reason for the intimate association of siderite with beds of coal, and this accounts equally for the carbon contained in the rock itself. The connection of this rock with the coal-formations adds much to its value as an ore of iron.

Finally, the iron-ores, at least where of much economical importance, are truly stratified. This can often be seen in hand-specimens; and is well shown by their relations to other rocks, in quarries and mines; and in many cases, for limonite and hematite, by the fossils which they contain.

(3)Siliceous Group.—These rocks are composed of pure silica in the forms of quartz and opal. When first deposited, whether organically, like tripolite, or chemically, like siliceous tufa, the siliceous rocks are soft and light, and the silica is in the form of opal. Subsequently it changes to quartz, and the rocks assume the much harder and denser forms of chert and novaculite, respectively.

TripoliteorDiatomaceous Earth.—This interesting rock is soft, light, and looks like clay; but it is lighter, and the argillaceous odor is faint or wanting. It does not effervesce with acid. Hence, it is neither clay nor chalk. Notwithstanding its softness, it is really composed of a hard substance, viz., silica, in the form known as opal. By rubbing off a little of the dust, and examining it under the microscope, we easily prove that the silica is mainly or entirely of organic origin;for the dust is seen to be simply a mass of more or less fragmentary organic remains, occurring in great variety, and of wonderful beauty and minuteness. There are few rocks so unpromising on the exterior, and yet so beautiful within. We have already learned that these organic bodies are principally Diatom cases, Radiolaria shells, and Sponge spicules. We can form some idea of their minuteness from Ehrenberg’s estimate that a single cubic inch of pure tripolite contained no less than 41,000,000,000 organisms.

The lightness of tripolite (sp. gr., 1-1.5) is due to the facts that opal is a light mineral (sp. gr., 1.9-2.2), and that many of the shells are hollow. Tripolite is a good example of a soft rock composed of a hard mineral; and it owes its value as a polishing material to the fact that it consists of a hard mineral in an exceedingly fine state of division. Tripolite, when pure, is snow-white; but it is rarely pure, being commonly either argillaceous or calcareous. This rock is now forming in thousands of places, in both fresh water and the ocean.

FlintandChert.—During the course of geological time, beds of tripolite are gradually consolidated, chiefly by percolating waters, which are constantly dissolving and re-depositing the silica; and, finally, in the place of a soft, earthy rock, we get a hard, flinty one, which we callflintif it occurs in the newer, orchertif it occurs in the older, geological formations. Besides forming beds of nearly pure silica, which we call tripolite, the microscopic siliceous organisms are diffused more or less abundantly through other rocks, especially chalk and limestone. In such cases the consolidationof the silica implies its segregation also;i.e., the silica dissolved by percolating water is deposited only about certain points in the rock, building up rounded concretions or nodules. Thus, a siliceous limestone becomes, by the segregation of the silica, a pure limestone containing nodules of chert, which are usually arranged in lines parallel with the stratification. Specimen 16 is a fragment of a flint-nodule from the chalk-formation of England.

Siliceous Tufa.—Hot water, and especially hot alkaline water, circulating through the earth’s crust, is always charged with silica dissolved out of the rocks; and when such water issues on the surface in a hot spring or geyser, it is cooled by contact with the air, its solvent power is diminished thereby, and a large part of the silica is deposited around the outlet as a snowy-white porous material calledsiliceous tufa. Silica deposited in this way is, like organic silica, always in the form of opal. Siliceous tufa is distinguished from clay, slate, chalk, and limestone by the same tests as tripolite, and from tripolite itself by the absence of microscopic organisms.

Novaculite.—Through the action of percolating water and pressure, siliceous tufa, like tripolite, becomes harder and denser and is thus changed tonovaculite, which holds the same relation to chemically deposited silica that chert and flint do to organically deposited silica. The white novaculite obtained at the Hot Springs of Arkansas, and commonly known as Arkansas stone, is a typical example of this rock. The rock which, on account of the use to which it is put, is known as buhr-stone, is also an excellent exampleof chemically deposited silica. It is usually somewhat porous and fossiliferous.

(4)Calcareous Group.—These are the lime-rocks, including the carbonate of lime, in limestone and dolomite, the sulphate of lime, in gypsum, and the phosphate of lime, in phosphate rock. These rocks are even more closely connected in origin than in composition; and it is for this reason that rock-salt, which of course contains no lime, is also included in this group. Limestones are formed abundantly in the open sea, through the accumulation of shells and corals; but when portions of the sea become detached from the main body and gradually dry up, like the Dead Sea and Great Salt Lake, dolomite, gypsum, and rock-salt are deposited in succession as chemical precipitates. Phosphate rock may be regarded as a variety of limestone, resulting from the accumulation of the skeletons and excrement of the higher animals.

Limestone.—This is the lithologic or rock form of carbonate of lime or calcite, and one of the most important, interesting, and useful of all rocks. Although so simple in composition,—calcite being the only essential constituent,—limestone embraces many distinct varieties, and is really equivalent to a whole family of rocks. A highly fossiliferous limestone, such as specimen 38, is, perhaps, the best variety with which to begin the study of the species. The softness of the fossil shells of which the rock is so largely composed, and the fact that they effervesce readily with dilute acid, proves that they are still carbonate of lime; and by applying the acid more carefully,it can be seen that the compact matrix of the rock also effervesces, consisting of shells more finely broken or comminuted and mixed with more or less clay and other impurity, almost the entire rock being of organic origin.

On the coast of Florida, and in many other places, we find beautiful examples of shell-limestone now in process of formation. These are at first very open and porous, because the interstices between the nearly entire shells are not yet filled up with smaller fragments and sand. But when that is done, we shall have a rock similar to the old fossiliferous limestone. Specimen 37.

The shells and fragments, and the grains of calcareous sand, are, as a rule, quickly cemented together by the deposition of carbonate of lime between them; so that limestone is nowhere observed occurring abundantly in an unconsolidated form.

Limestone, as a rule, is not distinctly stratified in hand-specimens, but of course that it is a true sedimentary rock is abundantly proved by the fossils; and it goes almost without saying that limestone, being necessarily mainly composed of organic remains, must be to a greater extent than any other rock the great store-house of fossils; and in no other rock are the fossils so well preserved and perfect as in limestone.

Nevertheless, there are extensive formations of limestone containing no discernible traces of fossils. And some of these non-fossiliferous limestones, too, are of very recent formation. Some of the modern coral-reefs, for example, are composed of limestone which was formed only yesterday, as it were, and which, from its mode of formation, must consist entirely of corals;and yet it shows no trace of its organic origin, but is perfectly compact, or, possibly, crystalline. This frequent obliteration of the organic remains, as well as the perfect consolidation of the rock, is attributed to its solubility. The calcium carbonate is gradually dissolved by the water, and then deposited in the interstices in other parts of the rock.

Specimen 39 is that variety of limestone known aschalk. It is soft and earthy, resembling both clay and tripolite, but differing from the former in lacking the distinct argillaceous odor, and from both by its lively effervescence with acids. It appears to be entirely destitute of organic remains, but this is a defect of our vision and not of the rock; for, like the tripolite, it often appears under the microscope to be little else than a mass of shells. Tripolite is a deposit built up of the siliceous shells of Diatoms and Radiolaria, while chalk is chiefly composed of the similar but calcareous shells of Foraminifera. Our specimen is from the Cretaceous formation of England; but we have good reason to believe that chalk isnow formingon a very extensive scale. There are millions of square miles in the deeper parts of the ocean where the dredge brings up little else but a perfectly impalpable, gray, calcareous slime or ooze. When examined microscopically, this is seen to be composed chiefly of Foraminifera shells, and among these the genus Globigerina predominates; so that the deposit is frequently called Globigerina ooze. Now this gray, calcareous ooze, when dried and compacted by pressure, makes a soft,whiterock which can scarcely be distinguished from chalk; in fact, it is a modern chalk. And there seems no good reasonto doubt that the deposition of chalk has gone on continuously since Cretaceous time—for several millions of years at least.

Specimen 40 is also a white rock, easily scratched with the knife, and effervescing freely with acid, and therefore a variety of limestone. But its texture is very different from the other varieties we have studied. It has a sparkling surface, which we explain by saying that the rock is crystalline. It is, in fact, a mass of minute crystals of calcite. The crystalline limestones have not always been crystalline, but it is safe to assume that they were originally entirely uncrystalline, and in many cases rich in fossils; but the fossils have been mainly obliterated by the crystallization.

Crystallization generally in rocks is an indication of great age, so that we usually say crystalline rocks must be older than uncrystalline rocks of the same composition; and this is mainly true with the limestones. When the crystallization is rather fine, as in our specimen, resembling granulated sugar, we have what is commonly called saccharoidal limestone. This is the typical marble. Marble is not a scientific name, and the term is usually applied to any calcareous rock which will take a polish, and sometimes even to rocks which are not calcareous at all.

In the section on dynamical geology, we learned that the carbonate of calcium or calcite is deposited from the sea-water, and limestones formed, in two ways: first, in a purely chemical way, where the water becomes saturated with calcite; and, second, organically, where the calcium carbonate is taken from the water by marine organisms to form their shells and skeletons, andthe gradual accumulation of these on the ocean-floor builds up a limestone. As before stated, the difference between these two methods of deposition is not so great as it often seems, because we know that the animals never make the carbonate of calcium which they secrete, but it comes into the sea ready made with the drainage from the land.

The limestones forming at the present time are almost wholly organic; but the rock known ascalcareous tufais an exception. This is formed under the same general conditions as siliceous tufa, but much more abundantly, and in cold water as well as warm; because calcite is far more soluble (especially in water containing carbon dioxide) than opal or quartz. It is deposited, not only around the mouths of springs, but also along the beds of the streams which they form, enveloping stones, roots, grasses, etc., and building up usually a loose, spongy mass having a very characteristic turfaceous texture.

The principal accessory minerals occurring in limestone are: (1)kaolin, forming argillaceous or slaty limestone, which may be recognized by the argillaceous odor and dark color; (2)quartz, forming siliceous or cherty limestone, known by its hardness or by the nodules of flint or chert; (3)dolomite, forming dolomitic or magnesian limestone, which effervesces less freely with acid; and (4)serpentine, forming serpentinic limestone, which is sharply distinguished by the green grains of serpentine mingled with the white calcite. A concretionary texture is common with limestone. If the concretions are small, like mustard-seed, we call the rockoölite; if larger, like peas,pisolite.

Dolomite.—If for calcite, which is the sole essential constituent of all limestone, we substitute the allied mineral dolomite, we have the rock dolomite. As might be inferred from its composition, dolomite is very closely related to limestone, although there are some important differences. Physically, the two rocks differ about as the two minerals do. Dolomite is harder than limestone, and being also less soluble, it resists the action of the weather more. Dolomite, if pure, effervesces feebly, or not at all, with cold dilute acid. Here, however, we have to recognize the fact that dolomite is rarely pure; but there exists, in consequence of the admixture of calcite, a perfectly gradual passage from pure dolomite to pure limestone, and parallel with this every degree of vigor in the reaction with acid. Hence, it is entirely an arbitrary matter as to where we shall draw the line between dolomitic limestone and calcareous dolomite. Dolomite is a very much less abundant rock than limestone, and, unlike limestone, it rarely contains many fossils, and is never of organic origin;i.e., there are no organisms which secrete the mineral dolomite to form their hard parts or skeletons. Like gypsum and rock-salt, dolomite is probably never deposited in the open ocean, but only in closed basins. Like limestone, it occurs with both the compact and the crystalline textures.

Gypsum.—When pure, this rock (specimen 36) is identical with the mineral gypsum (specimen 17), except that it is rarely crystalline. It is usually, however, not only perfectly compact, but more or less dark-colored from the admixture of clay and other impurities. Its most notable characteristics are its softness, theabsence of the argillaceous odor, except where it contains much clayey impurity, and its non-effervescence with acids. The first two usually serve to distinguish it from slate, while the acid test separates it readily from limestone and all other carbonate rocks. The deposition of gypsum is purely chemical, and it occurs under about the same physical conditions as the deposition of salt;i.e., in drying-up portions of the sea. Hence we usually find gypsum associated with beds of rock-salt; and, since drying-up seas are few in number, and small compared with the whole extent of the ocean, we can easily understand why neither rock-salt nor gypsum are abundant rocks, except in a few localities.

Rock-Salt.—This interesting and useful rock, as we have already learned, is deposited in a purely chemical way, and only in drying-up portions of the sea, like the Dead Sea, Great Salt Lake, etc. In some parts of Europe there are beds of solid rock-salt over a hundred feet thick.

Phosphate Rock.—Although not specially abundant or attractive, this rock is of great economic interest and importance on account of its extensive use as a fertilizer. Under the general head of phosphate rock are included: (1) the typical guano, which is the consolidated excrement of certain marine birds inhabiting in great numbers small coral islands in the dry or rainless regions of the tropics; (2) the underlying coral rock, which is often changed to phosphate rock through the percolation of the rain-water falling on the guano; (3) accumulations of the bones and coprolites of the higher animals; (4) phosphatic limestonesfrom which the carbonate of lime has been largely dissolved away, leaving the more insoluble phosphate of lime.

(5)Metamorphic Group(stratified silicates).—All the chemically and organically formed rocks which we have studied up to this point are simple,i.e., they consist each of only one essential mineral; but most of the rocks in this great group of silicates are mixed, or consist each of several essential minerals. Quartz is the only important constituent of these rocks which is not, strictly speaking, a silicate, but in a certain sense it is also not an exception, since it may always be regarded as an excess of acid in the rock.

This group of stratified rocks composed of silicate minerals is of exceptional importance, first, on account of the large number of species which it includes, and, second, on account of the vast abundance of some of the species. These are, above all others, the rocks of which the earth’s crust is composed. With unimportant exceptions, all the rocks of this group are crystalline; and they constitute the principal part of what is generally included under the termmetamorphic rocks—a general name for all stratified rocks which have been so acted upon by heat, pressure, or chemical forces as to make them crystalline. Although the crystalline limestone, dolomite, iron-ores, etc., show us that metamorphic rocks are not wanting in the other groups.

As already explained, the metamorphic or crystalline stratified rocks are usually older than the corresponding uncrystalline rocks; but a point of greater importance here is this: the development in the silicate rocks of crystalline characters has usually made it impossible todetermine the method of their deposition, whether mechanical or chemical. In a few cases, as with the rock greensand, we know that the deposition is chemical; while it is equally certain that such common silicate rocks as gneiss, mica schist, and many others, often result from the crystallization of ordinary mechanical sediments, like sandstone and conglomerate. We classify all these rocks as of chemical origin, however, without considering the mode of their deposition, because the subsequent crystallization is itself essentially a chemical process; and that justifies us in saying that these rocks are made what they now are chiefly by the action of chemical forces. Whatever they were originally, they have become, through their crystallization, rocks having a definite mineral composition which can be classified chemically.

Some of the details of the classification of this group, as shown in the table, require explanation. In studying the silicate minerals it was stated to be important to recognize two classes—theacidicand thebasic—the dividing line falling in the neighborhood of 60 per cent. of silica. This division is important simply because Nature has in a great degree kept the acidic and basic minerals separate in the rocks; and few things in lithology are more important than the distinction of the silicate rocks in which acidic minerals predominate from those in which basic minerals predominate. The amount of silica which any rock of this group contains is shown at a glance by the chart. The vertical broken lines, with the figures at the top, indicate the proportion of silica, which increases from 30 per cent. on the right to 85 per cent. on the left; so that the percentageof silica which a rock contains determines its position, the acidic species being on the left, and the basic on the right. As most of these rocks are composed of two or more minerals mixed in very various proportions, there is usually a wide range in the percentage of silica which the same species may contain; and this is expressed in each case by the length of the dotted line under the name of the rock. Thus, in syenite, the silica ranges from 55 per cent. to 65 per cent. The horizontal line in the chart separates the gneisses, containing feldspar as an essential constituent, from the schists, in which feldspar is wanting, except as an accessory constituent. We will take up the gneisses first.

Gneiss.—This is the most important of all rocks. It forms not far from one-half of New England, and a very large proportion of the earth’s crust. The name (pronounced same asnice) is known to have originated among the Saxon miners, but its precise derivation is lost in obscurity. To find out what this very important rock is, we will consult specimen 41. The first glance shows us that it is not, like the rocks we have just been studying, composed of a single mineral, but of several minerals, the most conspicuous of which is the pink feldspar—orthoclase. This we recognize as a feldspar: (1) by its hardness, which is a little less than that of quartz, and distinguishes it from calcite, a mineral having the general appearance of feldspar; (2) by its color, which separates it from hornblende and augite; and (3) by its cleavage, which distinguishes it easily from quartz. Finally, we know it is orthoclase, and not plagioclase, by its general aspect, and by its association with an abundance of quartz, which is thenext most important constituent of the rock. The quartz is less abundant than the orthoclase, and more easily overlooked, yet anyone familiar with the mineral will not fail to recognize it. It forms small, irregular, glassy grains, entirely devoid of cleavage, and scratching glass easily. On weathered surfaces of the rock the orthoclase becomes soft and chalky, while the quartz remains clear and hard, and then the two minerals are very easily distinguished. Besides these, there are numerous black, thin, glistening scales, which we can easily prove to be elastic, and recognize as mica.

In most books on the subject, these three minerals—orthoclase, quartz, and mica—are set down as the normal or essential constituents of gneiss. But it is now recognized by the best lithologists that we may have true gneiss without any mica; or we may have hornblende in the place of mica. Quartz and orthoclase are the only essential constituents of gneiss; and when these alone are present, we have the variety known as binary gneiss. The addition to these essential constituents of mica, gives micaceous gneiss; and of hornblende, hornblendic gneiss. Of these three principal varieties, the micaceous gneiss is by far the most common and important. The mica may be either the white species, muscovite, or the black species, biotite; but it is usually the former.

Orthoclase is the predominant constituent in all typical gneiss, usually forming at least one-half of the rock. The orthoclase may, however, be replaced to a greater or less extent by albite, or even by oligoclase. But we frequently see the termgneisscarelessly, or ignorantly,applied to rocks which are destitute of feldspar, though having the general aspect of gneiss.

Augite rarely occurs in gneiss; and hence, when we observe a gneiss containing a black mineral which we know is either augite or hornblende, it is pretty safe to call it the latter.

Mica and hornblende, although the principal, are not the only, accessory minerals in gneiss; but the following species are also of common occurrence: garnet, cyanite, tourmaline, fibrolite, epidote, and chlorite. Gneisses, as the table indicates, exhibit a wide range in the proportion of silica which they contain, varying from 60 to 85 per cent.; and there is a concomitant variation in specific gravity, from about 2.5 in the most acidic to 2.8 in the most basic varieties.

That gneiss is a true, stratified rock is very clearly shown in specimen 41; but, unfortunately, the stratification is not always so evident as in this case. The mica-scales, it will be observed, lie parallel with the stratification, and assist very materially to make it visible; and gneisses containing little or no mica, as well as some that are rich in mica, frequently appear almost or quite unstratified. These obscurely stratified varieties are commonly known as granitoid gneiss, having the texture and general aspect of granite. The sedimentary origin of gneiss is also clearly proved by its interstratification with undoubted sedimentary rocks, such as limestone, iron-ores, graphite, quartzite, etc.

Syenite.—This is a much abused term, but, as now employed by the best lithologists, it is the name of a rock having a single essential constituent, viz., orthoclase. Syenite in its simplest variety contains nothingbut orthoclase; but in addition we usually have either hornblende, forming hornblendic syenite, or mica, forming micaceous syenite.

Syenite, it will be observed, is equivalent to gneiss with the quartz removed; but, while gneiss is the most abundant of all rocks, syenite is a comparatively rare rock; and this is simply another way of saying that nearly all orthoclase is associated with quartz. By admixture of quartz we get a perfectly gradual passage from syenite to gneiss. The orthoclase in syenite is more frequently replaced by plagioclase than it is in gneiss. In syenite, too, hornblende is much more abundant than mica; although just the opposite is true in gneiss. And, again, in gneiss the mica is principally muscovite; but in syenite it is almost exclusively biotite. Augite is a common accessory in the more basic syenite; but garnet, tourmaline, and the other accessory minerals, occurring so frequently in gneiss, are almost unknown in syenite. The specific gravity of syenite varies from 2.7 to 2.9.

Diorite.—This is a more important rock than syenite; but it is of analogous, though more basic, composition, containing a single essential constituent, viz., plagioclase. Any of the triclinic feldspars may occur in this rock, but oligoclase is most common. Like syenite, diorite usually contains hornblende, often in large proportion, forming hornblendic diorite, which sometimes passes into rocks composed entirely of hornblende. It also, but less frequently, contains mica, forming micaceous diorite. The mica is usually biotite, rarely muscovite. Mica and hornblende also often occur together in diorite, and the same is true ofsyenite and gneiss. Quartz is of common occurrence in the more acidic varieties of diorite, and augite in the more basic.

This is a good example of a basic rock, for all its normal constituents are basic; but the percentage of silica varies from 45 in those varieties richest in labradorite and augite to 60 or more in those containing more or less quartz and orthoclase. There is a corresponding change of color from dark to light, and of specific gravity from 2.7 to 3.1.

Diorite is not rich in accessory minerals; besides those already mentioned, the most important are chlorite, epidote, pyrite, and magnetite.

Few rocks are more clearly stratified than diorite, whether we consider the hand-specimen, or its relations to other formations. It is an abundant rock in New England.

Norite.—Like diorite, this is essentially a plagioclase rock; but there are, nevertheless, important differences. The plagioclase in diorite is mainly the more acidic species, like oligoclase; while in norite the more basic species, such as labradorite and anorthite, predominate. Hornblende, which we have observed to be an important and rather constant constituent of diorite and syenite, is much less abundant in norite; but its place is taken by augite and the allied minerals, hypersthene and enstatite. Black mica is common in norite; but white mica, orthoclase, and quartz rarely occur.

Norite is the most basic of all the feldspathic rocks, as gneiss is the most acidic; while syenite and diorite stand as connecting links, forming a gradual passagebetween the two extremes. Thus, in passing from gneiss to norite, we have observed a gradual diminution of the quartz, a gradual change in feldspar from orthoclase to the most basic plagioclase; at first a gradual increase in hornblende, and then a gradual change from hornblende to augite; and, finally, a gradual substitution of black mica for white. The amount of silica has decreased over 40 per cent.; and the specific gravity has increased from 2.5 in the lightest gneiss to at least 3.2 in the heaviest norite. We have also passed from light colored rocks to dark; and from those resisting atmospheric action to those easily decomposed.

The most characteristic accessory constituents of norite, besides those already mentioned, are magnetite and chrysolite; though garnet, serpentine, and pyrite often occur. In texture, this rock varies from compact to very coarsely crystalline. The specimen of labradorite (No. 23), from the norite of Labrador, affords some idea of the coarseness of the crystallization in much of this rock. It is not a common rock, except in certain regions, the best known of which in eastern North America are the coast of Labrador, various points in Canada north of the St. Lawrence, and the eastern border of the Adirondack Mountains. In hand-specimens, norite rarely appears stratified; but in the solid ledges the stratification is often as distinct as could be desired.

Many lithologists call the rocks here designated noritegabbro, and class them all in the eruptive division as essentially a coarse variety of diabase.In a similar manner, diorite and syenite are denied a place in the sedimentary series. But the stratified plagioclase rocks seem to have as strong a claim to recognition as gneiss.

We turn now to the important and interesting division of the non-feldspathic rocks or schists.

Mica Schist.—This is, next to gneiss, the most abundant rock in New England. Specimen 43 is a typical example, and from it we can readily learn what mica schist is. A glance suffices to show that it is chiefly composed of mica, but not entirely; for, on carefully examining the edges of the specimen, we cannot fail to see thin layers of hard, glassy quartz interwoven with the mica. The quartz layers are short and overlapping, and we have here a good illustration of the schistose texture; this is, in fact, a typical schist.

Mica schist usually consists, as in this instance, of mica and quartz; but it may be composed of mica alone; and sometimes kaolin or clay takes the place of the quartz, forming argillaceous mica schist. The mica in the latter is usually in very fine scales and rather inconspicuous, and the rock often passes into ordinary clay slate. Similarly, when the mica becomes deficient in the quartzose mica schist, a passage into ordinary quartzite is the result. A little feldspar is sometimes present in the rock, which thus passes into micaceous gneiss. Specimen 43 contains several crystals of red garnet, giving the variety garnetiferous mica schist. There is no other rock that contains such a large variety of beautiful accessory minerals as mica schist; and for the mineralogist it is one of the most attractive rocks. Few rocks are more distinctly stratified;and the stratification can usually be observed in hand-specimens. The mica in these rocks may be either muscovite or biotite, or both; but the former is most common. No rock shows a greater variation in the percentage of silica which it contains than mica schist, as we pass from varieties which are nearly all quartz to those which are nearly all mica.

Closely related to mica schist is the rock now known as hydromica schist, in which the ordinary anhydrous micas are replaced by hydromica. It is distinguished from mica schist by being somewhat softer, less harsh to the touch, and less lustrous. It is to be regarded usually as an incipient mica schist, which has not yet become anhydrous; though it may sometimes be just the reverse; viz.: an old mica schist which has become hydrated through the action of meteoric waters. It contains fewer accessory minerals than mica schist.

Hornblende Schist.—This is a stratified aggregate of hornblende and quartz. The quartz is granular and in thin layers, as in mica schist; but the micaceous structure is wanting, and consequently the rock does not cleave readily in the direction of the bedding. The hornblende is mostly finely crystalline, but sometimes occurs in large, bladed crystals. Garnet and some other minerals are of common occurrence in the rock; but it is not rich in accessories like mica schist. The chief difficulty in recognizing this rock consists in determining whether the white mineral is all quartz or partly feldspar. In the latter case, of course, it becomes a hornblendic gneiss.

Amphibolite (Hornblende Rock).—This is the name applied to a rock having hornblende as its sole essentialconstituent. Hornblende schist sometimes passes into amphibolite, through the absence of quartz; and so does diorite, when the feldspar is deficient or wanting. Specimen 20, though small, is a typical example of this rock. The physical and chemical characteristics are essentially the same as for the mineral hornblende. The texture varies from coarsely to finely crystalline. The crystals are usually short and thick, and lie in all directions in the rock, which is thus very massive, the schistose texture being entirely wanting, and the stratification rarely showing in small masses. Biotite is a common accessory in amphibolite, and garnet and magnetite frequently occur.

By the substitution of augite for hornblende, in the description of amphibolite, we get the much rarer, but otherwise very similar, rock,pyroxenite.

Talc Schist(SteatiteorSoapstone).—Although not abundant, this is a useful and familiar rock. The composition is implied in the name; and by comparing it with the specimen of talc (No. 58) we can readily see that they are essentially identical. Typical talc schist is pure talc; but the talc is often mixed with more or less quartz or feldspar; and mica, chlorite, hornblende, garnet, and other minerals are of common occurrence.

This rock embraces two distinct varieties, the massive and the schistose, or foliated. The former is the common soapstone (specimen 71), which is a confused mass of crystals lying in all directions, and with no visible stratification in the small mass. In the latter, as in specimen     , the talc scales lie in parallel planes, giving the rock a micaceous structure, and causing itto split easily in the direction of the stratification. The cleavage surfaces are often wavy or corrugated; and the same is true of all schistose rocks. Talc schist is easily distinguished from all other rocks by its light-grayish or greenish color, combined with its extreme softness, and its smooth, slippery feel.

Chlorite Schist.—The one essential constituent of this rock is chlorite, and the mineral specimen (No. 26) answers equally well as an example of the rock. As with talc schist, quartz, feldspar, and hydromica are rarely entirely absent. Besides these, the principal accessories are hornblende, magnetite, garnet, and epidote. This rock also agrees with talc schist in presenting two principal varieties, the massive and the schistose. It is easily distinguished from talc schist by its darker color and streak, which are very characteristic; while its green color, softness, and unctuous feel separate it from all other rocks.

This is the most basic of all the silicate rocks; but, in consequence of containing a large proportion of water, it is not the heaviest. It is, in fact, interesting and important to observe that all these hydrous silicate rocks—talc schist, chlorite schist, greensand, and serpentine—are distinctly lighter in each case than anhydrous rocks containing the same proportion of silica. They are also notable, as a class, for their softness, smooth feel, and green color.

Serpentine.—As the name implies, this rock is simply the mineral serpentine occurring in large masses, and its characteristics are precisely the same. It is fine-grained, massive, compact, rather soft, but very tough, and varies in color from very dark green to lightgreenish-yellow. The dark colors predominate, and specimen 25 is a typical example.

Serpentine is often intimately associated with limestone and dolomite. The white veins running irregularly through the variety known as Verd Antique Marble, however, are not calcite, as commonly supposed, but magnesite. They do not effervesce freely with cold, dilute acid, for the entire rock is magnesian, and it is probable have been at one time simply cracks along which water holding carbon dioxide has penetrated, changing the magnesia from a silicate to a carbonate.

Geologists were, at one time, almost unanimous in the opinion that all serpentine is of eruptive origin; but now it is conceded by the great majority to be in some cases a sedimentary rock. It is found interstratified with gneiss, limestone, all the schists, and many other stratified rocks. When occupying the position of an eruptive it is never an original rock; but has been formed by the alteration,in situ, of some basic anhydrous rock, most commonly olivine basalt.

Greensand.—This rock (specimen 27) consists chiefly of the mineral glauconite, mingled usually with more or less sand, clay, or calcareous matter. It is usually very friable, or in an entirely unconsolidated state. It is most abundant in the newer geological formations, especially the Cretaceous and Tertiary; and is, perhaps, the only one of the stratified silicate rocks now forming on an extensive scale in the ocean. Its value as a fertilizer, for which purpose it is extensively employed, is due to the potash that it contains.

Following is a systematic summary of the mineralogicalcomposition of the rocks of this great division of silicates; and this, combined with the classification on page69, presents in a condensed form all the more important facts contained in the preceding descriptions. Only the more constant and normal constituents of the species are enumerated in each case:—

The rocks of this great class are formed by the cooling and solidification of materials that have come up from a great depth in the earth’s crust in a melted and highly heated condition. When the fissures in the earth’s crust reach down to the great reservoirs of liquid rock, and the latter wells up and overflows on the surface, forming a volcano, then we may, as was pointed out on page33, divide the eruptive mass into two parts: first, that which has actually flowed out on the surface, and cooled and solidified in contact with the air, forming a lava flow; second, that which has failed to reach the surface, but cooled and solidified in the fissure, forming a dike.

Lava flows or volcanic rocks and dikes or plutonic rocks are identical in composition; but there is a vast difference in texture, due to the widely different conditions under which the rocks have solidified. The dike or fissure rocks solidify under enormous pressure, and this makes them heavy and solid—free from pores. They are surrounded on all sides by warm rocks: this causes them to cool very slowly, and allows the various minerals time to crystallize. Other things being equal, the slower the cooling the coarser the crystallization; and hence, the greater the depth below the surface at which the cooling takes place, the coarser the crystallization.

The volcanic rock, on the other hand, cools under very slight pressure; and the steam, which exists abundantly in nearly all igneous rocks at the time of their eruption, is able to expand, forming innumerable smallvesicles or bubbles in the liquid lava; and these remain when it has become solid. Cooling in contact with the air, the lava cools quickly, and has but little chance for crystallization. Hence, to sum up the matter, we say: plutonic rocks are solid and crystalline; and volcanic rocks are usually porous or vesicular, and uncrystalline.

As we descend into the earth’s crust, it is perfectly manifest that the volcanic must shade off insensibly into the dike rocks, and we find it impossible to draw any but an arbitrary plane of division between them; but this is no argument against this classification, for, as already stated, all is gradation in geology, and we experience just the same difficulty in drawing a line between conglomerate and sandstone, or between gneiss and mica schist, as between the dike rocks and volcanic rocks.

We will now observe to what extent the distinctions between these two great classes of eruptives can be traced in the rocks themselves, beginning with the dike rocks. But first it is important to notice the general fact, clearly expressed in the classification, that, with perhaps some trifling exceptions which need not be mentioned here, all eruptive rocks are silicates, and nearly all are feldspathic silicates. They are of definite mineralogical composition, and, like the chemically and organically formed stratified rocks, can be classified chemically. But, although there are eruptives corresponding closely in composition to the feldspathic silicates, which we have just studied, we find among them little to represent the non-feldspathic silicates, and nothing corresponding in composition to the limestones,dolomites, gypsum, flint, tripolite, siliceous tufa, iron-ores, bitumens or coals.

1.Plutonic (Dike) Rocks.—These are also known as theancienteruptive rocks, and for this reason: It is impossible, of course, for us to observe them except where they occur on or near the earth’s surface. But, since they are formed wholly below the surface, and usually at great depths in the earth, it is evident that they can appear on the surface only as the result of enormous erosion; and erosion is a slow process, demanding, in these cases, many thousands or millions of years. Therefore, the more ancient dike rocks alone are within our reach; those of recent formation being still deeply buried in the earth’s crust. It follows, as a corollary to this explanation, that the coarseness of the crystallization of any dike rock must be a rough measure of its age and of the amount of erosion which the region has suffered since its eruption.

As regards composition, the dike rocks present, as already stated, essentially the same combinations of minerals as the feldspathic silicates of the stratified series, but occurring under different physical conditions and having a widely different origin. The only important difference in texture between the two classes of rocks is that the sedimentary rocks are stratified and the dike rocks are not; and when we consider that the dike rocks sometimes present a laminated structure that resembles stratification, while the sedimentary rocks frequently appear unstratified, it is easy to understand why, in the absence of any marked difference in composition, geologists have often found it difficult to distinguish the two classes of rocks. Wealso find here the explanation and the justification of the fact that the names of the dike rocks are in most cases the same as those of the sedimentary rocks of similar composition.

Granite.—Granite (from the Latingranum, a grain) is a crystalline-granular rock, agreeing in composition with gneiss. The essential constituents are quartz and orthoclase; and when they alone are present we have the varietybinary granite. Mica, however (commonly muscovite, sometimes biotite, and frequently both) is usually added to these, formingmicaceous granite(specimen 44); and often hornblende, forminghornblendic granite(specimen 45). The orthoclase is sometimes replaced in part by triclinic species, especially albite and oligoclase. Accessory minerals are not so abundant in granite as in gneiss; but, besides those named, garnet, tourmaline, pyrite, apatite, and chlorite are most common. Orthoclase is always the predominant ingredient; and, except when there is much hornblende present, usually determines the color of the granite. Thus, specimens 44 and 45 are gray because they contain gray orthoclase; while all red granites contain red or pink orthoclase. The quartz has usually been the last of the constituents to crystallize or solidify; and, having been thus obliged to adapt itself to the contours of the orthoclase and mica, it is rarely observed in distinct crystals.

In texture, the granites vary from perfectly compact varieties, approaching petrosilex, to those which are so coarsely crystalline that single crystals of orthoclase measure several inches in length. Of course one of the most important things to be observedabout granite, especially in comparing it with gneiss, is the complete absence of anything like stratification; that, as before stated, being the only important distinction between the two rocks. Gneiss is the most abundant of all stratified rocks, and granite stands in the same relation to the eruptive series.

Syenite.—This is an instance where stratified and eruptive rocks, agreeing in composition, have the same name. That rocks consisting of orthoclase, of orthoclase and hornblende, or of orthoclase and mica,i.e., having the composition of syenite, do occur in both the eruptive and stratified series there can be no doubt. They should, however, have distinct names on account of their unlike origins; and would have but for the practical difficulty in determining, in many cases, whether the rock is stratified or not. The best that we can do now, when we desire to be specific, and have the necessary information, is to say stratified syenite or eruptive syenite, as the case may be.

Diorite.—Here, again, we find identity of names, as well as of composition, between the two great series. Eruptive diorite is an abundant and well known rock, and consists of the same minerals as stratified diorite combined in the same proportions. Diorite includes a large part of the dike rocks commonly known as “trap” and “greenstone.” The principal accessories are chlorite, epidote, pyrite, magnetite, apatite, and quartz. The texture varies from perfectly compact or felsitic to coarsely crystalline; averaging, however, less coarse than syenite and granite.


Back to IndexNext