by
M. T. Myres
Department of Biology, University of CalgaryCalgary, Alberta, Canada T2N 1N4
Seabird ornithologists have generally paid little attention to the possible roles played by long-term climatic cycles or air-ocean interactions on population changes at established colonies or on the processes of colony establishment or extinction. Yet, a rapidly expanding literature in the physical sciences suggests that seabird numbers are not naturally stable at particular colonies for any great length of time. It is suggested that the establishment of new colonies at one end of the range may counter the decline of colonies at the other end. Perhaps these changes in small marginal colonies are important, and they may be more indicative and significant (when detected and explained) than are much larger changes in numbers in bigger reproductive units in the center of a species' range. Fluctuations in seabird numbers must in future be first considered as possible responses either to short-term, or turnarounds in longer term, natural climatic or oceanographic cycles, or to trends ranging in length from a few years to at least several decades.
Seabird ornithologists have generally paid little attention to the possible roles played by long-term climatic cycles or air-ocean interactions on population changes at established colonies or on the processes of colony establishment or extinction. Yet, a rapidly expanding literature in the physical sciences suggests that seabird numbers are not naturally stable at particular colonies for any great length of time. It is suggested that the establishment of new colonies at one end of the range may counter the decline of colonies at the other end. Perhaps these changes in small marginal colonies are important, and they may be more indicative and significant (when detected and explained) than are much larger changes in numbers in bigger reproductive units in the center of a species' range. Fluctuations in seabird numbers must in future be first considered as possible responses either to short-term, or turnarounds in longer term, natural climatic or oceanographic cycles, or to trends ranging in length from a few years to at least several decades.
During the last 30 years extensive literature in the fields of physical and biological oceanography has accumulated that is not readily accessible to the nonprofessional student of seabirds and not as widely understood by career seabird ornithologists as it should be. This literature in oceanography and marine fisheries is as extensive in Russian and Japanese together as in the main languages of Western Europe combined; this abundance compounds the problem of becoming familiar with it if, as a student of seabirds, one's interest in the literature is initially somewhat marginal. Nevertheless, to achieve the best possible appreciation of the oceanographic influences affecting seabirds, particularly in the north Pacific Ocean and its adjacent embayment seas, it is necessary to make the effort.
Because of the rigor of carrying out their primary duties while at sea, only a very few North American and European oceanographers or fishery biologists have found time to interest themselves in seabirds and then, with a few notable individual exceptions, only as an off-duty pastime. The reason is not far to seek. It is far less important to examine the ecology of organisms at the next highest level of the food chain to the ones that are the primary concern than it is to examine the next lowest level (the food of the fishes or, in the case of phytoplankton, the physical and chemical environment in which the organisms grow best).
Seabirds are at the very top of the marine food chain, and they are not wholly aquatic in any case since they mainly travel through the air rather than the water and reproduce on land rather than in the sea. Only with the relatively recent recognition that seabirds contribute to the recycling of nutrients back into the ocean to an important degree, have seabirds gained a new scientific constituency.
At about the same time, governments have begun to recognize that seabirds are relatively easily examined indicators of the presence of unseen chemical pollutants in coastal seas, perhaps primarily for the very same reasons that they were previously so largely ignored; namely, that they are at the top of the food chains (and so accumulate the most-persistent and least-degradable pollutants) and that the on-land failures in their reproductive biology are readily visible.
During the last 10 years, it has become evident that yet another fundamental science is even more basic to the achievement of a balanced and in-depth understanding of the influence of the environment upon seabirds—the combined field of astrophysics, geophysics, and climatology. New developments in this field (when they are not published inNatureorScience) appear in journals that are less familiar to seabird ornithologists than those in which the fishery biologists and biological oceanographers publish their findings.
Unfortunately, important advances in understanding the dynamics and energy transport mechanisms of both the atmosphere and the water masses of the oceans are not being picked up by students of seabirds because of the natural lag in communication that occurs between disparate disciplines. Only in the last few years have oceanographers and climatologists been invited to address gatherings of ornithologists, and the modesty with which they have sometimes done so has limited the impact of their offerings.
At this symposium, it was left to a biologist with no pretentions in either physics or mathematics to demonstrate the need for seabird ornithologists to understand basic environmental processes well beyond their usual range of interests. I did so with a series of slides taken from this "other" literature, and I had intended to include in the published version of this paper an extensive bibliography, subdivided into category groupings, so that seabird ornithologists could make their own selection of the points in the spectrum at which they most needed information.
Unfortunately, limitations upon space in this volume, daily additions to the exploding literature, and my own inability to keep up with understanding this have forced me to omit any references and not to attempt to expound detailed specific physical mechanisms.
Thus unencumbered here, I shall briefly outline instead what I perceive to be some of the significance for seabird ornithology and conservation of the rapidly expanding understanding of the oceans, the air-sea interface, atmospheric dynamics, and influences upon the world's climate of extraterrestrial events.
There is no need to dwell on the well-known events that could be mentioned under this heading. Seabird ornithologists are familiar with the fact that the atmosphere is the medium of seabirds both when searching the ocean for feeding areas and when on migration, and also a violent enemy, as when particular storms cause occasional "wrecks" of seabirds inland from coastlines. As a refinement of the former, Manikowski of Poland suggests that seabirds respond to the passage of weather systems, so that their distribution over the open ocean may be constantly changing. Whereas some species may attempt to avoid the stormy conditions of low-pressure areas (cyclonic conditions), others more highly specialized for exploiting the aerodynamic properties of wind over a moving water surface may possibly, instead, try to avoid large high-pressure regions (anticyclonic conditions with little or no wind). My student, Juan Guzman, is attempting to determine whether this may be so; if it is, it might be possible, for example, to predict some things about the distribution patterns and population structure of southern hemisphere shearwaters while they are visiting the oceans of the northern hemisphere during the nonbreeding season.
In comparison with the "wrecks" brought about by storms, which are of short duration and not usually very serious, seabird ornithologists are also familiar with relatively brief and localized disasters caused by changes in the ocean itself. The best-known example is a slight change in the boundary of an ocean current (or other shift in the position of a distinctive water mass) that results in the failure of food fishes to appear as they normally would, close to breeding sites of conspicuous colonial seabirds, such as the periodic shift in the El Niño off the west coast of South America. A scarcely studied refinement of this type of event would be the effects of less-pronounced oceanic changes that might reduce the planktonic food supply of nocturnally active, burrow-nesting seabirds. In such instances, the effects might also be a breeding failure for only one or two seasons; in all probability such events occur, but whether they are as likely to be detected by us is problematical. However, the populations of most seabirds are probably already adapted to survive short-term crises of this type because, having long adult life spans, reproductive adults that fail to raise young one year may mostly live to succeed in doing so in the next or succeeding year, when the oceanic "anomaly" has disappeared. What constitutes an "anomaly" will be considered again shortly.
A third critical condition for seabirds may be local or widespread, temporary or final, or some combination of these. A single local spill, or outfall, of a chemical pollutant will be short term if we can take steps to alleviate the consequences or stem the flow. Alternately, we may consider it to be long term if we take the view that it is one additional act of violence resulting from the "progress" of Industrial Man, and that it is never going to shift into reverse gear. We may say that the effect on seabird populations of spills of oil products or chemical pollutants in coastal waters of a region will be a "final solution" for any that become wholly extinct before the oil wells go dry or the industries fail. On the other hand, the effect will have been merely a perturbation of the population if the species survives and outlives these activities. Recent upturns in populations of peregrine falcons(Falco peregrinus)and pelicans(Pelecanus sp.)in certain places where environmental controls have been enacted give us hope that crises of several years' duration can be withstood by at least those species that once were common in relation to their respective food sources or available safe breeding habitats. The really critical features to document are the means whereby abandoned breeding sites are reoccupied and the time it takes.
It must never be forgotten that we know almost nothing about the ecology of subadult or nonreproductive adult seabirds during the years they are at sea unconfined by membership in a breeding unit and that we know almost nothing about the activities of pelagic seabirds in the nonbreeding season. These birds may be far from land and hard to study, but what happens during those phases of their lives is basic to the composition of the colony and condition of the birds when breeding. A start would be to learn everything that is known and is being discovered about the oceans by oceanographers and, thus forearmed, go looking for the seabirds with certain questions clearly in mind.
A scientist's working life lasts only a few decades, and few studies of seabirds by a single author or agency have been continued for longer than 5-10 years on any one problem. Further, while we as individuals may live to be equally active in a certain field of research 20 years hence, our collective conscience and collective muscle consist of several levels of government that tend to exhibit 4- or 5-year changes of direction and priorities. Certainly, the civil service may live on as an inertial recorder of collective experience. Certainly, too, those who live under one form or another of dictatorship or, as in some Canadian provinces, where conservative patterns of voting occur, may experience a continuity of research and development and conservation policies that exceed the 4- to 5-year turnaround pattern that is most common. Yet, even these more continuous systems may come to an end quite suddenly because of economic or political happenstance.
The point of this digression is to show that seabird ornithologists must not rely on government programs to provide continuous data over a long period of years—not, at least, in most countries. Monitoring the biological circumstances of seabirds is not the same as recording the temperature regularly by machine at a weather station, since this activity is unlikely to be terminated unless the society collapses altogether. We may know that in some countries the amateur naturalist exists in such numbers that records of seabirds will continue to be made whatever the circumstances. Nevertheless, planning of censuses that will be repeated every 10 years is best assured if government and career biologists combine with the amateur element, so that any one of them can continue the work if any other element should be incapacitated. At any one time, either the amateur or the government or the university personnel may be the prime mover, and each of these forms now exists in various countries.
What the scientific literature in the fields of the geophysical, atmospheric, and oceanographic disciplines demonstrates is that natural climatic oscillations probably range in length from the 11-year sunspot cycle through several decades (or a human lifetime) to several hundred years. So, when our children are the new trustees of seabird colonies 20 or 40 years hence, they must interpret their data using the full range of physical as well as biological data that we can leave for them. Indeed, the information is, I believe, already available over a long enough period (since 1940 at least) to allow some speculative interpretations of what may have been happening to our seabird populations, whether or not we knew or had any evidence of it.
I have already suggested that extraterrestrial events, particularly the 11-year sunspot cycle, are increasingly believed to influence the atmosphere of this planet. The Chinese and Japanese have remarkably precise records of the northern limits of certain agricultural crops at particular times, the phenology of flowering, and the freezing of lakes. These demonstrate long-term trends in overall climate in eastern Asia that extend over hundreds of years. The climate of Japan is influenced by the high-pressure area in winter over mainland East Asia. There is evidence that severe ice conditions in the Bering Sea during the early 1970's may have been due to an eastward shifting of this high-pressure area. Again, the water mass of the Kuroshio Extension and the West Wind Drift takes several years to travel across the Pacific Ocean, and there is an established temperature variation that travels like a slow wave with it. Off Japan, the Kuroshio Current periodically develops meanders which slow the speed of the eastward flow. Cold and warm "pools" of water approach the west coast of Canada and the western United States from time to time.
Ocean currents are driven by the atmospheric motion above them, which consists of several convective cells between the equator and each pole. The outcome is zonal winds, such as the trade winds and the westerlies. However, as the influence of the sun on the atmosphere is variable, the input of heat and the extent of the major high-pressure areas vary, as does the path of the jet stream. The recent droughts in northern Africa and unusually heavy rains in Australia are both linked to a southward shift of the Intertropical Convergence Zone in the atmosphere and a "corrugation" of the wind circulation from a more normal zonal (latitudinal) path. These shifts in the atmospheric circulation are almost certainly transmitted also to the ocean currents and the marine ecosystem, with the influence being felt for a long period of years.
One of the oceanic domains of the North Pacific is the transitional domain, which lies east-west where the West Wind Drift impinges upon the coasts of British Columbia and Washington State. It is precisely in this sector that there was a well-documented "temperature anomaly" in 1957-58. Since an anomaly implies something completely out of the ordinary, I seriously question the appropriateness of the term for an event that may or may not be recurrent (at the time it was a pronounced variation from the oceanographic records accumulated up to that time, but the period had not been a very long one). It is no coincidence that the numbers of albatrosses recorded at Ocean Weather Station "Papa" was higher during this warm-water "anomaly" than subsequently (indeed, an 18-year record of the seabirds recorded at "Papa" also exhibits other interesting fluctuations from the base-line data in certain years).
Recent analyses of sediments from off the coast of California have demonstrated long-term fluctuations in sardine populations extending back at least 1,800 years, with increases lasting 20-150 years and spaced 20-200 years apart. The number of anchovies declined steadily. Yet until now, El Niño events have been treated as anomalies in that region as well as off the coast of Peru. Just as we recognize that different species of fish follow the warm water north on such occasions, we must also recognize the rather distinct seabird species assemblage that is trapped, as it were, in the Gulf of California. Clearly, like the termination point of the West Wind Drift at about the 45-55° parallel, the coast of Baja California and southern California State, from the 25-35° parallel where the California Current begins to swing away from the coast to the west as the North Equatorial Current, is another zone of instability.
I think that it is no accident that the southern limit of several northern species of North Pacific seabirds ends in southeastern Alaska or northern British Columbia, and that the northern limit of the ranges of several other species occurs in Washington State or southern British Columbia. Indeed, the west coast of Vancouver Island is not rich in species, and several of those that exist are not present in great numbers. This is a region of rather more variable conditions than elsewhere, and species evidently find that it is difficult to colonize and it quickly becomes unsuitable again. Since 1940, indeed, there has been a parallel decline in the annual mean sea-surface temperature at a number of coastal recording stations in British Columbia, and this seems to have been a rebound from a less well-documented rise in sea-surface temperatures during the 20 years before that, which culminated in a peak around 1940. Salinity has likewise trended downwards during the last 30 years. The seabird colony size data before 1960 are so nonquantitative that it is impossible to be sure what changes in seabird populations and breeding sites may have taken place in response to these physical changes.
The lesson is that we must now examine all future census and distribution data with trends in sea-surface temperature and salinity in mind as two of several likely factors influencing them. We must no more ignore data outside our own field than a salmon ecologist might.
We know little of the accuracy of censuses of seabird numbers made between 1850 and 1950. There has been a tendency to assume that numbers of seabirds at long-established colonies have been relatively unchanging, even though the expansion of some species into previously unrecorded breeding sites in low numbers is well documented. Contraction of breeding ranges, likewise, has most commonly been attributed to the influence of man. Recent literature from the physical sciences, on the contrary, suggests that seabird numbers at particular colonies are most unlikely to have been stable for any great length of time, at least at high or middle latitudes and particularly at points where boundaries between currents impinge on continental coasts. Indeed, some early estimates of colony sizes may not have been as much in error as we may have assumed, neither when apparently too large nor when apparently unlocated by previous visitors.
The halving of a large colony over a period of 20 to 50 years in the middle of the range of a species and the establishment and disappearance of smaller breeding groups at opposite extremes of the range (both latitudinally and longitudinally), may equally reflect natural long-term climatic or oceanographic changes and may naturally be reversed at some time in the future, perhaps within half a century. The implication for conservation of seabird colonies that are at the contracting end of a species' range is that cultural rather than biological criteria may be the best determinants.