VI

Organic compounds, on which our life and living depend, consist chiefly of four elements: carbon, hydrogen, oxygen and nitrogen. These compounds are sometimes hard to analyze, but when once the chemist has ascertained their constitution he can usually make them out of their elements—if he wants to. He will not want to do it as a business unless it pays and it will not pay unless the manufacturing process is cheaper than the natural process. This depends primarily upon the cost of the crude materials. What, then, is the market price of these four elements? Oxygen and nitrogen are free as air, and as we have seen in the second chapter, their direct combination by the electric spark is possible. Hydrogen is free in the form of water but expensive to extricate by means of the electric current. But we need more carbon than anything else and where shall we get that? Bits of crystallized carbon can be picked up in South Africa and elsewhere, but those who can afford to buy them prefer to wear them rather than use them in making synthetic food. Graphite is rare and hard to melt. We must then have recourse to the compounds of carbon. The simplest of these, carbon dioxide, exists in the air but only four parts in ten thousand by volume. To extract the carbon and get it into combination with the other elements would be a difficult and expensiveprocess. Here, then, we must call in cheap labor, the cheapest of all laborers, the plants. Pine trees on the highlands and cotton plants on the lowlands keep their green traps set all the day long and with the captured carbon dioxide build up cellulose. If, then, man wants free carbon he can best get it by charring wood in a kiln or digging up that which has been charred in nature's kiln during the Carboniferous Era. But there is no reason why he should want to go back to elemental carbon when he can have it already combined with hydrogen in the remains of modern or fossil vegetation. The synthetic products on which modern chemistry prides itself, such as vanillin, camphor and rubber, are not built up out of their elements, C, H and O, although they might be as a laboratory stunt. Instead of that the raw material of the organic chemist is chiefly cellulose, or the products of its recent or remote destructive distillation, tar and oil.

It is unnecessary to tell the reader what cellulose is since he now holds a specimen of it in his hand, pretty pure cellulose except for the sizing and the specks of carbon that mar the whiteness of its surface. This utilization of cellulose is the chief cause of the difference between the modern world and the ancient, for what is called the invention of printing is essentially the inventing of paper. The Romans made type to stamp their coins and lead pipes with and if they had had paper to print upon the world might have escaped the Dark Ages. But the clay tablets of the Babylonians were cumbersome; the wax tablets of the Greeks were perishable; the papyrus of the Egyptians was fragile; parchment was expensive and penningwas slow, so it was not until literature was put on a paper basis that democratic education became possible. At the present time sheepskin is only used for diplomas, treaties and other antiquated documents. And even if your diploma is written in Latin it is likely to be made of sulfated cellulose.

The textile industry has followed the same law of development that I have indicated in the other industries. Here again we find the three stages of progress, (1) utilization of natural products, (2) cultivation of natural products, (3) manufacture of artificial products. The ancients were dependent upon plants, animals and insects for their fibers. China used silk, Greece and Rome used wool, Egypt used flax and India used cotton. In the course of cultivation for three thousand years the animal and vegetable fibers were lengthened and strengthened and cheapened. But at last man has risen to the level of the worm and can spin threads to suit himself. He can now rival the wasp in the making of paper. He is no longer dependent upon the flax and the cotton plant, but grinds up trees to get his cellulose. A New York newspaper uses up nearly 2000 acres of forest a year. The United States grinds up about five million cords of wood a year in the manufacture of pulp for paper and other purposes.

In making "mechanical pulp" the blocks of wood, mostly spruce and hemlock, are simply pressed sidewise of the grain against wet grindstones. But in wood fiber the cellulose is in part combined with lignin, which is worse than useless. To break up the ligno-cellulose combine chemicals are used. The logs forthis are not ground fine, but cut up by disk chippers. The chips are digested for several hours under heat and pressure with acid or alkali. There are three processes in vogue. In the most common process the reagent is calcium sulfite, made by passing sulfur fumes (SO2) into lime water. In another process a solution of caustic of soda is used to disintegrate the wood. The third, known as the "sulfate" process, should rather be called the sulfide process since the active agent is an alkaline solution of sodium sulfide made by roasting sodium sulfate with the carbonaceous matter extracted from the wood. This sulfate process, though the most recent of the three, is being increasingly employed in this country, for by means of it the resinous pine wood of the South can be worked up and the final product, known as kraft paper because it is strong, is used for wrapping.

But whatever the process we get nearly pure cellulose which, as you can see by examining this page under a microscope, consists of a tangled web of thin white fibers, the remains of the original cell walls. Owing to the severe treatment it has undergone wood pulp paper does not last so long as the linen rag paper used by our ancestors. The pages of the newspapers, magazines and books printed nowadays are likely to become brown and brittle in a few years, no great loss for the most part since they have served their purpose, though it is a pity that a few copies of the worst of them could not be printed on permanent paper for preservation in libraries so that future generations could congratulate themselves on their progress in civilization.

But in our absorption in the printed page we must not forget the other uses of paper. The paper clothing, so often prophesied, has not yet arrived. Even paper collars have gone out of fashion—if they ever were in. In Germany during the war paper was used for socks, shirts and shoes as well as handkerchiefs and napkins but it could not stand wear and washing. Our sanitary engineers have set us to drinking out of sharp-edged paper cups and we blot our faces instead of wiping them. Twine is spun of paper and furniture made of the twine, a rival of rattan. Cloth and matting woven of paper yarn are being used for burlap and grass in the making of bags and suitcases.

Here, however, we are not so much interested in manufactures of cellulose itself, that is, wood, paper and cotton, as we are in its chemical derivatives. Cellulose, as we can see from the symbol, C6H10O5, is composed of the three elements of carbon, hydrogen and oxygen. These are present in the same proportion as in starch (C6H10O5), while glucose or grape sugar (C6H12O6) has one molecule of water more. But glucose is soluble in cold water and starch is soluble in hot, while cellulose is soluble in neither. Consequently cellulose cannot serve us for food, although some of the vegetarian animals, notably the goat, have a digestive apparatus that can handle it. In Finland and Germany birch wood pulp and straw were used not only as an ingredient of cattle food but also put into war bread. It is not likely, however, that the human stomach even under the pressure of famine is able to get much nutriment out of sawdust. But by digesting with dilute acid sawdust can be transformed intosugars and these by fermentation into alcohol, so it would be possible for a man after he has read his morning paper to get drunk on it.

If the cellulose, instead of being digested a long time in dilute acid, is dipped into a solution of sulfuric acid (50 to 80 per cent.) and then washed and dried it acquires a hard, tough and translucent coating that makes it water-proof and grease-proof. This is the "parchment paper" that has largely replaced sheepskin. Strong alkali has a similar effect to strong acid. In 1844 John Mercer, a Lancashire calico printer, discovered that by passing cotton cloth or yarn through a cold 30 per cent. solution of caustic soda the fiber is shortened and strengthened. For over forty years little attention was paid to this discovery, but when it was found that if the material was stretched so that it could not shrink on drying the twisted ribbons of the cotton fiber were changed into smooth-walled cylinders like silk, the process came into general use and nowadays much that passes for silk is "mercerized" cotton.

Another step was taken when Cross of London discovered that when the mercerized cotton was treated with carbon disulfide it was dissolved to a yellow liquid. This liquid contains the cellulose in solution as a cellulose xanthate and on acidifying or heating the cellulose is recovered in a hydrated form. If this yellow solution of cellulose is squirted out of tubes through extremely minute holes into acidulated water, each tiny stream becomes instantly solidified into a silky thread which may be spun and woven like that ejected from the spinneret of the silkworm. The origin of natural silk, if we think about it, rather detractsfrom the pleasure of wearing it, and if "he who needlessly sets foot upon a worm" is to be avoided as a friend we must hope that the advance of the artificial silk industry will be rapid enough to relieve us of the necessity of boiling thousands of baby worms in their cradles whenever we want silk stockings.

On a plain rush hurdle a silkworm layWhen a proud young princess came that way.The haughty daughter of a lordly kingThrew a sidelong glance at the humble thing,Little thinking she walked in prideIn the winding sheet where the silkworm died.

But so far we have not reached a stage where we can altogether dispense with the services of the silkworm. The viscose threads made by the process look as well as silk, but they are not so strong, especially when wet.

Besides the viscose method there are several other methods of getting cellulose into solution so that artificial fibers may be made from it. A strong solution of zinc chloride will serve and this process used to be employed for making the threads to be charred into carbon filaments for incandescent bulbs. Cellulose is also soluble in an ammoniacal solution of copper hydroxide. The liquid thus formed is squirted through a fine nozzle into a precipitating solution of caustic soda and glucose, which brings back the cellulose to its original form.

In the chapter on explosives I explained how cellulose treated with nitric acid in the presence of sulfuric acid was nitrated. The cellulose molecule having three hydroxyl (—OH) groups, can take up one, two or three nitrate groups (—ONO2). The higher nitrates are known asguncotton and form the basis of modern dynamite and smokeless powder. The lower nitrates, known as pyroxylin, are less explosive, although still very inflammable. All these nitrates are, like the original cellulose, insoluble in water, but unlike the original cellulose, soluble in a mixture of ether and alcohol. The solution is called collodion and is now in common use to spread a new skin over a wound. The great war might be traced back to Nobel's cut finger. Alfred Nobel was a Swedish chemist—and a pacifist. One day while working in the laboratory he cut his finger, as chemists are apt to do, and, again as chemists are apt to do, he dissolved some guncotton in ether-alcohol and swabbed it on the wound. At this point, however, his conduct diverges from the ordinary, for instead of standing idle, impatiently waving his hand in the air to dry the film as most people, including chemists, are apt to do, he put his mind on it and it occurred to him that this sticky stuff, slowly hardening to an elastic mass, might be just the thing he was hunting as an absorbent and solidifier of nitroglycerin. So instead of throwing away the extra collodion that he had made he mixed it with nitroglycerin and found that it set to a jelly. The "blasting gelatin" thus discovered proved to be so insensitive to shock that it could be safely transported or fired from a cannon. This was the first of the high explosives that have been the chief factor in modern warfare.

But on the whole, collodion has healed more wounds than it has caused besides being of infinite service to mankind otherwise. It has made modern photographypossible, for the film we use in the camera and moving picture projector consists of a gelatin coating on a pyroxylin backing. If collodion is forced through fine glass tubes instead of through a slit, it comes out a thread instead of a film. If the collodion jet is run into a vat of cold water the ether and alcohol dissolve; if it is run into a chamber of warm air they evaporate. The thread of nitrated cellulose may be rendered less inflammable by taking out the nitrate groups by treatment with ammonium or calcium sulfide. This restores the original cellulose, but now it is an endless thread of any desired thickness, whereas the native fiber was in size and length adapted to the needs of the cottonseed instead of the needs of man. The old motto, "If you want a thing done the way you want it you must do it yourself," explains why the chemist has been called in to supplement the work of nature in catering to human wants.

Instead of nitric acid we may use strong acetic acid to dissolve the cotton. The resulting cellulose acetates are less inflammable than the nitrates, but they are more brittle and more expensive. Motion picture films made from them can be used in any hall without the necessity of imprisoning the operator in a fire-proof box where if anything happens he can burn up all by himself without disturbing the audience. The cellulose acetates are being used for auto goggles and gas masks as well as for windows in leather curtains and transparent coverings for index cards. A new use that has lately become important is the varnishing of aeroplane wings, as it does not readily absorb water or catch fireand makes the cloth taut and air-tight. Aeroplane wings can be made of cellulose acetate sheets as transparent as those of a dragon-fly and not easy to see against the sky.

The nitrates, sulfates and acetates are the salts or esters of the respective acids, but recently true ethers or oxides of cellulose have been prepared that may prove still better since they contain no acid radicle and are neutral and stable.

These are in brief the chief processes for making what is commonly but quite improperly called "artificial silk." They are not the same substance as silkworm silk and ought not to be—though they sometimes are—sold as such. They are none of them as strong as the silk fiber when wet, although if I should venture to say which of the various makes weakens the most on wetting I should get myself into trouble. I will only say that if you have a grudge against some fisherman give him a fly line of artificial silk, 'most any kind.

The nitrate process was discovered by Count Hilaire de Chardonnet while he was at the Polytechnic School of Paris, and he devoted his life and his fortune trying to perfect it. Samples of the artificial silk were exhibited at the Paris Exposition in 1889 and two years later he started a factory at Basançon. In 1892, Cross and Bevan, English chemists, discovered the viscose or xanthate process, and later the acetate process. But although all four of these processes were invented in France and England, Germany reaped most benefit from the new industry, which was bringing into that country $6,000,000 a year before the war. The largestproducer in the world was the Vereinigte Glanzstoff-Fabriken of Elberfeld, which was paying annual dividends of 34 per cent. in 1914.

The raw materials, as may be seen, are cheap and abundant, merely cellulose, salt, sulfur, carbon, air and water. Any kind of cellulose can be used, cotton waste, rags, paper, or even wood pulp. The processes are various, the names of the products are numerous and the uses are innumerable. Even the most inattentive must have noticed the widespread employment of these new forms of cellulose. We can buy from a street barrow for fifteen cents near-silk neckties that look as well as those sold for seventy-five. As for wear—well, they all of them wear till after we get tired of wearing them. Paper "vulcanized" by being run through a 30 per cent. solution of zinc chloride and subjected to hydraulic pressure comes out hard and horny and may be used for trunks and suit cases. Viscose tubes for sausage containers are more sanitary and appetizing than the customary casings. Viscose replaces ramie or cotton in the Welsbach gas mantles. Viscose film, transparent and a thousandth of an inch thick (cellophane), serves for candy wrappers. Cellulose acetate cylinders spun out of larger orifices than silk are trying—not very successfully as yet—to compete with hog's bristles and horsehair. Stir powdered metals into the cellulose solution and you have the Bayko yarn. Bayko (from the manufacturers, Farbenfabriken vorm. Friedr. Bayer and Company) is one of those telescoped names like Socony, Nylic, Fominco, Alco, Ropeco, Ripans, Penn-Yan, Anzac, Dagor, Dora and Cadets, which will be the despair of future philologers.

A PAPER MILL IN ACTIONA PAPER MILL IN ACTION

This photograph was taken in the barking room of the big pulp mill of the Great Northern Paper Company at Millinocket, Maine

This photograph was taken in the barking room of the big pulp mill of the Great Northern Paper Company at Millinocket, Maine

CELLULOSE FROM WOOD PULPCELLULOSE FROM WOOD PULP

This is now made into a large variety of useful articles of which a few examples are here pictured

This is now made into a large variety of useful articles of which a few examples are here pictured

Soluble cellulose may enable us in time to dispense with the weaver as well as the silkworm. It may by one operation give us fabrics instead of threads. A machine has been invented for manufacturing net and lace, the liquid material being poured on one side of a roller and the fabric being reeled off on the other side. The process seems capable of indefinite extension and application to various sorts of woven, knit and reticulated goods. The raw material is cotton waste and the finished fabric is a good substitute for silk. As in the process of making artificial silk the cellulose is dissolved in a cupro-ammoniacal solution, but instead of being forced out through minute openings to form threads, as in that process, the paste is allowed to flow upon a revolving cylinder which is engraved with the pattern of the desired textile. A scraper removes the excess and the turning of the cylinder brings the paste in the engraved lines down into a bath which solidifies it.

Tulle or net is now what is chiefly being turned out, but the engraved design may be as elaborate and artistic as desired, and various materials can be used. Since the threads wherever they cross are united, the fabric is naturally stronger than the ordinary. It is all of a piece and not composed of parts. In short, we seem to be on the eve of a revolution in textiles that is the same as that taking place in building materials. Our concrete structures, however great, are all one stone. They are not built up out of blocks, but cast as a whole.

Lace has always been the aristocrat among textiles. It has maintained its exclusiveness hitherto by beingbased upon hand labor. In no other way could one get so much painful, patient toil put into such a light and portable form. A filmy thing twined about a neck or dropping from a wrist represented years of work by poor peasant girls or pallid, unpaid nuns. A visit to a lace factory, even to the public rooms where the wornout women were not to be seen, is enough to make one resolve never to purchase any such thing made by hand again. But our good resolutions do not last long and in time we forget the strained eyes and bowed backs, or, what is worse, value our bit of lace all the more because it means that some poor woman has put her life and health into it, netting and weaving, purling and knotting, twining and twisting, throwing and drawing, thread by thread, day after day, until her eyes can no longer see and her fingers have become stiffened.

But man is not naturally cruel. He does not really enjoy being a slave driver, either of human or animal slaves, although he can be hardened to it with shocking ease if there seems no other way of getting what he wants. So he usually welcomes that Great Liberator, the Machine. He prefers to drive the tireless engine than to whip the straining horses. He had rather see the farmer riding at ease in a mowing machine than bending his back over a scythe.

The Machine is not only the Great Liberator, it is the Great Leveler also. It is the most powerful of the forces for democracy. An aristocracy can hardly be maintained except by distinction in dress, and distinction in dress can only be maintained by sumptuary laws or costliness. Sumptuary laws are unconstitutional in this country, hence the stress laid upon costliness.But machinery tends to bring styles and fabrics within the reach of all. The shopgirl is almost as well dressed on the street as her rich customer. The man who buys ready-made clothing is only a few weeks behind the vanguard of the fashion. There is often no difference perceptible to the ordinary eye between cheap and high-priced clothing once the price tag is off. Jewels as a portable form of concentrated costliness have been in favor from the earliest ages, but now they are losing their factitious value through the advance of invention. Rubies of unprecedented size, not imitation, but genuine rubies, can now be manufactured at reasonable rates. And now we may hope that lace may soon be within the reach of all, not merely lace of the established forms, but new and more varied and intricate and beautiful designs, such as the imagination has been able to conceive, but the hand cannot execute.

Dissolving nitrocellulose in ether and alcohol we get the collodion varnish that we are all familiar with since we have used it on our cut fingers. Spread it on cloth instead of your skin and it makes a very good leather substitute. As we all know to our cost the number of animals to be skinned has not increased so rapidly in recent years as the number of feet to be shod. After having gone barefoot for a million years or so the majority of mankind have decided to wear shoes and this change in fashion comes at a time, roughly speaking, when pasture land is getting scarce. Also there are books to be bound and other new things to be done for which leather is needed. The war has intensified the stringency; so has feminine fashion. The conventions require that the shoe-tops extend nearly to skirt-bottomand this means that an inch or so must be added to the shoe-top every year. Consequent to this rise in leather we have to pay as much for one shoe as we used to pay for a pair.

Here, then, is a chance for Necessity to exercise her maternal function. And she has responded nobly. A progeny of new substances have been brought forth and, what is most encouraging to see, they are no longer trying to worm their way into favor as surreptitious surrogates under the names of "leatheret," "leatherine," "leatheroid" and "leather-this-or-that" but come out boldly under names of their own coinage and declare themselves not an imitation, not even a substitute, but "better than leather." This policy has had the curious result of compelling the cowhide men to take full pages in the magazines to call attention to the forgotten virtues of good old-fashioned sole-leather! There are now upon the market synthetic shoes that a vegetarian could wear with a clear conscience. The soles are made of some rubber composition; the uppers of cellulose fabric (canvas) coated with a cellulose solution such as I have described.

Each firm keeps its own process for such substance a dead secret, but without prying into these we can learn enough to satisfy our legitimate curiosity. The first of the artificial fabrics was the old-fashioned and still indispensable oil-cloth, that is canvas painted or printed with linseed oil carrying the desired pigments. Linseed oil belongs to the class of compounds that the chemist calls "unsaturated" and the psychologist would call "unsatisfied." They take up oxygen from the air and become solid, hence are calledthe "drying oils," although this does not mean that they lose water, for they have not any to lose. Later, ground cork was mixed with the linseed oil and then it went by its Latin name, "linoleum."

The next step was to cut loose altogether from the natural oils and use for the varnish a solution of some of the cellulose esters, usually the nitrate (pyroxylin or guncotton), more rarely the acetate. As a solvent the ether-alcohol mixture forming collodion was, as we have seen, the first to be employed, but now various other solvents are in use, among them castor oil, methyl alcohol, acetone, and the acetates of amyl or ethyl. Some of these will be recognized as belonging to the fruit essences that we considered in Chapter V, and doubtless most of us have perceived an odor as of over-ripe pears, bananas or apples mysteriously emanating from a newly lacquered radiator. With powdered bronze, imitation gold, aluminum or something of the kind a metallic finish can be put on any surface.

Canvas coated or impregnated with such soluble cellulose gives us new flexible and durable fabrics that have other advantages over leather besides being cheaper and more abundant. Without such material for curtains and cushions the automobile business would have been sorely hampered. It promises to provide us with a book binding that will not crumble to powder in the course of twenty years. Linen collars may be water-proofed and possibly Dame Fashion—being a fickle lady—may some day relent and let us wear such sanitary and economical neckwear. For shoes, purses, belts and the like the cellulose varnish or veneer is usually colored and stamped to resemblethe grain of any kind of leather desired, even snake or alligator.

If instead of dissolving the cellulose nitrate and spreading it on fabric we combine it with camphor we get celluloid, a plastic solid capable of innumerable applications. But that is another story and must be reserved for the next chapter.

But before leaving the subject of cellulose proper I must refer back again to its chief source, wood. We inherited from the Indians a well-wooded continent. But the pioneer carried an ax on his shoulder and began using it immediately. For three hundred years the trees have been cut down faster than they could grow, first to clear the land, next for fuel, then for lumber and lastly for paper. Consequently we are within sight of a shortage of wood as we are of coal and oil. But the coal and oil are irrecoverable while the wood may be regrown, though it would require another three hundred years and more to grow some of the trees we have cut down. For fuel a pound of coal is about equal to two pounds of wood, and a pound of gasoline to three pounds of wood in heating value, so there would be a great loss in efficiency and economy if the world had to go back to a wood basis. But when that time shall come, as, of course, it must come some time, the wood will doubtless not be burned in its natural state but will be converted into hydrogen and carbon monoxide in a gas producer or will be distilled in closed ovens giving charcoal and gas and saving the by-products, the tar and acid liquors. As it is now the lumberman wastes two-thirds of every tree he cuts down. The rest is left in the forest as stump and topsor thrown out at the mill as sawdust and slabs. The slabs and other scraps may be used as fuel or worked up into small wood articles like laths and clothes-pins. The sawdust is burned or left to rot. But it is possible, although it may not be profitable, to save all this waste.

In a former chapter I showed the advantages of the introduction of by-product coke-ovens. The same principle applies to wood as to coal. If a cord of wood (128 cubic feet) is subjected to a process of destructive distillation it yields about 50 bushels of charcoal, 11,500 cubic feet of gas, 25 gallons of tar, 10 gallons of crude wood alcohol and 200 pounds of crude acetate of lime. Resinous woods such as pine and fir distilled with steam give turpentine and rosin. The acetate of lime gives acetic acid and acetone. The wood (methyl) alcohol is almost as useful as grain (ethyl) alcohol in arts and industry and has the advantage of killing off those who drink it promptly instead of slowly.

The chemist is an economical soul. He is never content until he has converted every kind of waste product into some kind of profitable by-product. He now has his glittering eye fixed upon the mountains of sawdust that pile up about the lumber mills. He also has a notion that he can beat lumber for some purposes.

In the last chapter I told how Alfred Nobel cut his finger and, daubing it over with collodion, was led to the discovery of high explosive, dynamite. I remarked that the first part of this process—the hurting and the healing of the finger—might happen to anybody but not everybody would be led to discovery thereby. That is true enough, but we must not think that the Swedish chemist was the only observant man in the world. About this same time a young man in Albany, named John Wesley Hyatt, got a sore finger and resorted to the same remedy and was led to as great a discovery. His father was a blacksmith and his education was confined to what he could get at the seminary of Eddytown, New York, before he was sixteen. At that age he set out for the West to make his fortune. He made it, but after a long, hard struggle. His trade of typesetter gave him a living in Illinois, New York or wherever he wanted to go, but he was not content with his wages or his hours. However, he did not strike to reduce his hours or increase his wages. On the contrary, he increased his working time and used it to increase his income. He spent his nights and Sundays in making billiard balls, not at all the sort of thing you would expect of a young man of his Christian name. But working with billiard balls is more profitable than playingwith them—though that is not the sort of thing you would expect a man of my surname to say. Hyatt had seen in the papers an offer of a prize of $10,000 for the discovery of a satisfactory substitute for ivory in the making of billiard balls and he set out to get that prize. I don't know whether he ever got it or not, but I have in my hand a newly published circular announcing that Mr. Hyatt has now perfected a process for making billiard balls "better than ivory." Meantime he has turned out several hundred other inventions, many of them much more useful and profitable, but I imagine that he takes less satisfaction in any of them than he does in having solved the problem that he undertook fifty years ago.

The reason for the prize was that the game on the billiard table was getting more popular and the game in the African jungle was getting scarcer, especially elephants having tusks more than 2-7/16 inches in diameter. The raising of elephants is not an industry that promises as quick returns as raising chickens or Belgian hares. To make a ball having exactly the weight, color and resiliency to which billiard players have become accustomed seemed an impossibility. Hyatt tried compressed wood, but while he did not succeed in making billiard balls he did build up a profitable business in stamped checkers and dominoes.

Setting type in the way they did it in the sixties was hard on the hands. And if the skin got worn thin or broken the dirty lead type were liable to infect the fingers. One day in 1863 Hyatt, finding his fingers were getting raw, went to the cupboard where was kept the "liquid cuticle" used by the printers. But whenhe got there he found it was bare, for the vial had tipped over—you know how easily they tip over—and the collodion had run out and solidified on the shelf. Possibly Hyatt was annoyed, but if so he did not waste time raging around the office to find out who tipped over that bottle. Instead he pulled off from the wood a bit of the dried film as big as his thumb nail and examined it with that "'satiable curtiosity," as Kipling calls it, which is characteristic of the born inventor. He found it tough and elastic and it occurred to him that it might be worth $10,000. It turned out to be worth many times that.

Collodion, as I have explained in previous chapters, is a solution in ether and alcohol of guncotton (otherwise known as pyroxylin or nitrocellulose), which is made by the action of nitric acid on cotton. Hyatt tried mixing the collodion with ivory powder, also using it to cover balls of the necessary weight and solidity, but they did not work very well and besides were explosive. A Colorado saloon keeper wrote in to complain that one of the billiard players had touched a ball with a lighted cigar, which set it off and every man in the room had drawn his gun.

The trouble with the dissolved guncotton was that it could not be molded. It did not swell up and set; it merely dried up and shrunk. When the solvent evaporated it left a wrinkled, shriveled, horny film, satisfactory to the surgeon but not to the man who wanted to make balls and hairpins and knife handles out of it. In England Alexander Parkes began working on the problem in 1855 and stuck to it for ten years before he, or rather his backers, gave up. He tried mixing invarious things to stiffen up the pyroxylin. Of these, camphor, which he tried in 1865, worked the best, but since he used castor oil to soften the mass articles made of "parkesine" did not hold up in all weathers.

Another Englishman, Daniel Spill, an associate of Parkes, took up the problem where he had dropped it and turned out a better product, "xylonite," though still sticking to the idea that castor oil was necessary to get the two solids, the guncotton and the camphor, together.

But Hyatt, hearing that camphor could be used and not knowing enough about what others had done to follow their false trails, simply mixed his camphor and guncotton together without any solvent and put the mixture in a hot press. The two solids dissolved one another and when the press was opened there was a clear, solid, homogeneous block of—what he named—"celluloid." The problem was solved and in the simplest imaginable way. Tissue paper, that is, cellulose, is treated with nitric acid in the presence of sulfuric acid. The nitration is not carried so far as to produce the guncotton used in explosives but only far enough to make a soluble nitrocellulose or pyroxylin. This is pulped and mixed with half the quantity of camphor, pressed into cakes and dried. If this mixture is put into steam-heated molds and subjected to hydraulic pressure it takes any desired form. The process remains essentially the same as was worked out by the Hyatt brothers in the factory they set up in Newark in 1872 and some of their original machines are still in use. But this protean plastic takes innumerable forms and almost as many names. Each factory has its ownsecrets and lays claim to peculiar merits. The fundamental product itself is not patented, so trade names are copyrighted to protect the product. I have already mentioned three, "parkesine," "xylonite" and "celluloid," and I may add, without exhausting the list of species belonging to this genus, "viscoloid," "lithoxyl," "fiberloid," "coraline," "eburite," "pulveroid," "ivorine," "pergamoid," "duroid," "ivortus," "crystalloid," "transparene," "litnoid," "petroid," "pasbosene," "cellonite" and "pyralin."

Celluloid can be given any color or colors by mixing in aniline dyes or metallic pigments. The color may be confined to the surface or to the interior or pervade the whole. If the nitrated tissue paper is bleached the celluloid is transparent or colorless. In that case it is necessary to add an antacid such as urea to prevent its getting yellow or opaque. To make it opaque and less inflammable oxides or chlorides of zinc, aluminum, magnesium, etc., are mixed in.

Without going into the question of their variations and relative merits we may consider the advantages of the pyroxylin plastics in general. Here we have a new substance, the product of the creative genius of man, and therefore adaptable to his needs. It is hard but light, tough but elastic, easily made and tolerably cheap. Heated to the boiling point of water it becomes soft and flexible. It can be turned, carved, ground, polished, bent, pressed, stamped, molded or blown. To make a block of any desired size simply pile up the sheets and put them in a hot press. To get sheets of any desired thickness, simply shave them off the block. To make a tube of any desired size, shape or thicknesssquirt out the mixture through a ring-shaped hole or roll the sheets around a hot bar. Cut the tube into sections and you have rings to be shaped and stamped into box bodies or napkin rings. Print words or pictures on a celluloid sheet, put a thin transparent sheet over it and weld them together, then you have something like the horn book of our ancestors, but better.

Nowadays such things as celluloid and pyralin can be sold under their own name, but in the early days the artificial plastics, like every new thing, had to resort tocamouflage, a very humiliating expedient since in some cases they were better than the material they were forced to imitate. Tortoise shell, for instance, cracks, splits and twists, but a "tortoise shell" comb of celluloid looks as well and lasts better. Horn articles are limited to size of the ceratinous appendages that can be borne on the animal's head, but an imitation of horn can be made of any thickness by wrapping celluloid sheets about a cone. Ivory, which also has a laminated structure, may be imitated by rolling together alternate white opaque and colorless translucent sheets. Some of the sheets are wrinkled in order to produce the knots and irregularities of the grain of natural ivory. Man's chief difficulty in all such work is to imitate the imperfections of nature. His whites are too white, his surfaces are too smooth, his shapes are too regular, his products are too pure.

The precious red coral of the Mediterranean can be perfectly imitated by taking a cast of a coral branch and filling in the mold with celluloid of the same color and hardness. The clear luster of amber, the dead black of ebony, the cloudiness of onyx, the opalescenceof alabaster, the glow of carnelian—once confined to the selfish enjoyment of the rich—are now within the reach of every one, thanks to this chameleon material. Mosaics may be multiplied indefinitely by laying together sheets and sticks of celluloid, suitably cut and colored to make up the picture, fusing the mass, and then shaving off thin layers from the end. Thatchef d'œuvreof the Venetian glass makers, the Battle of Isus, from the House of the Faun in Pompeii, can be reproduced as fast as the machine can shave them off the block. And the tesserae do not fall out like those you bought on the Rialto.

The process thus does for mosaics, ivory and coral what printing does for pictures. It is a mechanical multiplier and only by such means can we ever attain to a state of democratic luxury. The product, in cases where the imitation is accurate, is equally valuable except to those who delight in thinking that coral insects, Italian craftsmen and elephants have been laboring for years to put a trinket into their hands. The Lord may be trusted to deal with such selfish souls according to their deserts.

But it is very low praise for a synthetic product that it can pass itself off, more or less acceptably, as a natural product. If that is all we could do without it. It must be an improvement in some respects on anything to be found in nature or it does not represent a real advance. So celluloid and its congeners are not confined to the shapes of shell and coral and crystal, or to the grain of ivory and wood and horn, the colors of amber and amethyst and lapis lazuli, but can be givenforms and textures and tints that were never known before 1869.

Let me see now, have I mentioned all the uses of celluloid? Oh, no, there are handles for canes, umbrellas, mirrors and brushes, knives, whistles, toys, blown animals, card cases, chains, charms, brooches, badges, bracelets, rings, book bindings, hairpins, campaign buttons, cuff and collar buttons, cuffs, collars and dickies, tags, cups, knobs, paper cutters, picture frames, chessmen, pool balls, ping pong balls, piano keys, dental plates, masks for disfigured faces, penholders, eyeglass frames, goggles, playing cards—and you can carry on the list as far as you like.

Celluloid has its disadvantages. You may mold, you may color the stuff as you will, the scent of the camphor will cling around it still. This is not usually objectionable except where the celluloid is trying to pass itself off for something else, in which case it deserves no sympathy. It is attacked and dissolved by hot acids and alkalies. It softens up when heated, which is handy in shaping it though not so desirable afterward. But the worst of its failings is its combustibility. It is not explosive, but it takes fire from a flame and burns furiously with clouds of black smoke.

But celluloid is only one of many plastic substances that have been introduced to the present generation. A new and important group of them is now being opened up, the so-called "condensation products." If you will take down any old volume of chemical research you will find occasionally words to this effect: "The reaction resulted in nothing but an insoluble resinwhich was not further investigated." Such a passage would be marked with a tear if chemists were given to crying over their failures. For it is the epitaph of a buried hope. It likely meant the loss of months of labor. The reason the chemist did not do anything further with the gummy stuff that stuck up his test tube was because he did not know what to do with it. It could not be dissolved, it could not be crystallized, it could not be distilled, therefore it could not be purified, analyzed and identified.

What had happened was in most cases this. The molecule of the compound that the chemist was trying to make had combined with others of its kind to form a molecule too big to be managed by such means. Financiers call the process a "merger." Chemists call it "polymerization." The resin was a molecular trust, indissoluble, uncontrollable and contaminating everything it touched.

But chemists—like governments—have learned wisdom in recent years. They have not yet discovered in all cases how to undo the process of polymerization, or, if you prefer the financial phrase, how to unscramble the eggs. But they have found that these molecular mergers are very useful things in their way. For instance there is a liquid known as isoprene (C5H8). This on heating or standing turns into a gum, that is nothing less than rubber, which is some multiple of C5H8.

For another instance there is formaldehyde, an acrid smelling gas, used as a disinfectant. This has the simplest possible formula for a carbohydrate, CH2O. But in the leaf of a plant this molecule multiplies itself bysix and turns into a sweet solid glucose (C6H12O6), or with the loss of water into starch (C6H10O5) or cellulose (C6H10O5).

But formaldehyde is so insatiate that it not only combines with itself but seizes upon other substances, particularly those having an acquisitive nature like its own. Such a substance is carbolic acid (phenol) which, as we all know, is used as a disinfectant like formaldehyde because it, too, has the power of attacking decomposable organic matter. Now Prof. Adolf von Baeyer discovered in 1872 that when phenol and formaldehyde were brought into contact they seized upon one another and formed a combine of unusual tenacity, that is, a resin. But as I have said, chemists in those days were shy of resins. Kleeberg in 1891 tried to make something out of it and W.H. Story in 1895 went so far as to name the product "resinite," but nothing came of it until 1909 when L.H. Baekeland undertook a serious and systematic study of this reaction in New York. Baekeland was a Belgian chemist, born at Ghent in 1863 and professor at Bruges. While a student at Ghent he took up photography as a hobby and began to work on the problem of doing away with the dark-room by producing a printing paper that could be developed under ordinary light. When he came over to America in 1889 he brought his idea with him and four years later turned out "Velox," with which doubtless the reader is familiar. Velox was never patented because, as Dr. Baekeland explained in his speech of acceptance of the Perkin medal from the chemists of America, lawsuits are too expensive. Manufacturers seem to be coming generally to the opinion that a syntheticname copyrighted as a trademark affords better protection than a patent.

Later Dr. Baekeland turned his attention to the phenol condensation products, working gradually up from test tubes to ton vats according to his motto: "Make your mistakes on a small scale and your profits on a large scale." He found that when equal weights of phenol and formaldehyde were mixed and warmed in the presence of an alkaline catalytic agent the solution separated into two layers, the upper aqueous and the lower a resinous precipitate. This resin was soft, viscous and soluble in alcohol or acetone. But if it was heated under pressure it changed into another and a new kind of resin that was hard, inelastic, unplastic, infusible and insoluble. The chemical name of this product is "polymerized oxybenzyl methylene glycol anhydride," but nobody calls it that, not even chemists. It is called "Bakelite" after its inventor.

The two stages in its preparation are convenient in many ways. For instance, porous wood may be soaked in the soft resin and then by heat and pressure it is changed to the bakelite form and the wood comes out with a hard finish that may be given the brilliant polish of Japanese lacquer. Paper, cardboard, cloth, wood pulp, sawdust, asbestos and the like may be impregnated with the resin, producing tough and hard material suitable for various purposes. Brass work painted with it and then baked at 300° F. acquires a lacquered surface that is unaffected by soap. Forced in powder or sheet form into molds under a pressure of 1200 to 2000 pounds to the square inch it takes the most delicate impressions. Billiard balls of bakeliteare claimed to be better than ivory because, having no grain, they do not swell unequally with heat and humidity and so lose their sphericity. Pipestems and beads of bakelite have the clear brilliancy of amber and greater strength. Fountain pens made of it are transparent so you can see how much ink you have left. A new and enlarging field for bakelite and allied products is the making of noiseless gears for automobiles and other machinery, also of air-plane propellers.

Celluloid is more plastic and elastic than bakelite. It is therefore more easily worked in sheets and small objects. Celluloid can be made perfectly transparent and colorless while bakelite is confined to the range between a clear amber and an opaque brown or black. On the other hand bakelite has the advantage in being tasteless, odorless, inert, insoluble and non-inflammable. This last quality and its high electrical resistance give bakelite its chief field of usefulness. Electricity was discovered by the Greeks, who found that amber (electron) when rubbed would pick up straws. This means simply that amber, like all such resinous substances, natural or artificial, is a non-conductor or di-electric and does not carry off and scatter the electricity collected on the surface by the friction. Bakelite is used in its liquid form for impregnating coils to keep the wires from shortcircuiting and in its solid form for commutators, magnetos, switch blocks, distributors, and all sorts of electrical apparatus for automobiles, telephones, wireless telegraphy, electric lighting, etc.

Bakelite, however, is only one of an indefinite number of such condensation products. As Baeyer said long ago: "It seems that all the aldehydes will, undersuitable circumstances, unite with the aromatic hydrocarbons to form resins." So instead of phenol, other coal tar products such as cresol, naphthol or benzene itself may be used. The carbon links (-CH2-, methylene) necessary to hook these carbon rings together may be obtained from other substances than the aldehydes, for instance from the amines, or ammonia derivatives. Three chemists, L.V. Kedman, A.J. Weith and F.P. Broek, working in 1910 on the Industrial Fellowships of the late Robert Kennedy Duncan at the University of Kansas, developed a process using formin instead of formaldehyde. Formin—or, if you insist upon its full name, hexa-methylene-tetramine—is a sugar-like substance with a fish-like smell. This mixed with crystallized carbolic acid and slightly warmed melts to a golden liquid that sets on pouring into molds. It is still plastic and can be bent into any desired shape, but on further heating it becomes hard without the need of pressure. Ammonia is given off in this process instead of water which is the by-product in the case of formaldehyde. The product is similar to bakelite, exactly how similar is a question that the courts will have to decide. The inventors threatened to call it Phenyl-endeka-saligeno-saligenin, but, rightly fearing that this would interfere with its salability, they have named it "redmanol."

A phenolic condensation product closely related to bakelite and redmanol is condensite, the invention of Jonas Walter Aylesworth. Aylesworth was trained in what he referred to as "the greatest university of the world, the Edison laboratory." He entered this university at the age of nineteen at a salary of $3 aweek, but Edison soon found that he had in his new boy an assistant who could stand being shut up in the laboratory working day and night as long as he could. After nine years of close association with Edison he set up a little laboratory in his own back yard to work out new plastics. He found that by acting on naphthalene—the moth-ball stuff—with chlorine he got a series of useful products called "halowaxes." The lower chlorinated products are oils, which may be used for impregnating paper or soft wood, making it non-inflammable and impregnable to water. If four atoms of chlorine enter the naphthalene molecule the product is a hard wax that rings like a metal.

Condensite is anhydrous and infusible, and like its rivals finds its chief employment in the insulation parts of electrical apparatus. The records of the Edison phonograph are made of it. So are the buttons of our blue-jackets. The Government at the outbreak of the war ordered 40,000 goggles in condensite frames to protect the eyes of our gunners from the glare and acid fumes.

The various synthetics played an important part in the war. According to an ancient military pun the endurance of soldiers depends upon the strength of their soles. The new compound rubber soles were found useful in our army and the Germans attribute their success in making a little leather go a long way during the late war to the use of a new synthetic tanning material known as "neradol." There are various forms of this. Some are phenolic condensation products of formaldehyde like those we have been considering, but some use coal-tar compounds having nophenol groups, such as naphthalene sulfonic acid. These are now being made in England under such names as "paradol," "cresyntan" and "syntan." They have the advantage of the natural tannins such as bark in that they are of known strength and can be varied to suit.

This very grasping compound, formaldehyde, will attack almost anything, even molecules many times its size. Gelatinous and albuminous substances of all sorts are solidified by it. Glue, skimmed milk, blood, eggs, yeast, brewer's slops, may by this magic agent be rescued from waste and reappear in our buttons, hairpins, roofing, phonographs, shoes or shoe-polish. The French have made great use of casein hardened by formaldehyde into what is known as "galalith" (i.e., milkstone). This is harder than celluloid and non-inflammable, but has the disadvantages of being more brittle and of absorbing moisture. A mixture of casein and celluloid has something of the merits of both.

The Japanese, as we should expect, are using the juice of the soy bean, familiar as a condiment to all who patronize chop-sueys or use Worcestershire sauce. The soy glucine coagulated by formalin gives a plastic said to be better and cheaper than celluloid. Its inventor, S. Sato, of Sendai University, has named it, according to American precedent, "Satolite," and has organized a million-dollar Satolite Company at Mukojima.

The algin extracted from the Pacific kelp can be used as a rubber surrogate for water-proofing cloth. When combined with heavier alkaline bases it forms a tough and elastic substance that can be rolled intotransparent sheets like celluloid or turned into buttons and knife handles.

In Australia when the war shut off the supply of tin the Government commission appointed to devise means of preserving fruits recommended the use of cardboard containers varnished with "magramite." This is a name the Australians coined for synthetic resin made from phenol and formaldehyde like bakelite. Magramite dissolved in alcohol is painted on the cardboard cans and when these are stoved the coating becomes insoluble.

Tarasoff has made a series of condensation products from phenol and formaldehyde with the addition of sulfonated oils. These are formed by the action of sulfuric acid on coconut, castor, cottonseed or mineral oils. The products of this combination are white plastics, opaque, insoluble and infusible.

Since I am here chiefly concerned with "Creative Chemistry," that is, with the art of making substances not found in nature, I have not spoken of shellac, asphaltum, rosin, ozocerite and the innumerable gums, resins and waxes, animal, mineral and vegetable, that are used either by themselves or in combination with the synthetics. What particular "dope" or "mud" is used to coat a canvas or form a telephone receiver is often hard to find out. The manufacturer finds secrecy safer than the patent office and the chemist of a rival establishment is apt to be baffled in his attempt to analyze and imitate. But we of the outside world are not concerned with this, though we are interested in the manifold applications of these new materials.

There seems to be no limit to these compounds andevery week the journals report new processes and patents. But we must not allow the new ones to crowd out the remembrance of the oldest and most famous of the synthetic plasters, hard rubber, to which a separate chapter must be devoted.

There is one law that regulates all animate and inanimate things. It is formulated in various ways, for instance:

Running down a hill is easy. In Latin it reads,facilis descensus Averni.Herbert Spencer calls it the dissolution of definite coherent heterogeneity into indefinite incoherent homogeneity. Mother Goose expresses it in the fable of Humpty Dumpty, and the business man extracts the moral as, "You can't unscramble an egg." The theologian calls it the dogma of natural depravity. The physicist calls it the second law of thermodynamics. Clausius formulates it as "The entropy of the world tends toward a maximum." It is easier to smash up than to build up. Children find that this is true of their toys; the Bolsheviki have found that it is true of a civilization. So, too, the chemist knows analysis is easier than synthesis and that creative chemistry is the highest branch of his art.

This explains why chemists discovered how to take rubber apart over sixty years before they could find out how to put it together. The first is easy. Just put some raw rubber into a retort and heat it. If you can stand the odor you will observe the caoutchouc decomposing and a benzine-like liquid distilling over.This is called "isoprene." Any Freshman chemist could write the reaction for this operation. It is simply

C10H16→     2C5H8caoutchouc          isoprene

That is, one molecule of the gum splits up into two molecules of the liquid. It is just as easy to write the reaction in the reverse directions, as 2 isoprene→ 1 caoutchouc, but nobody could make it go in that direction. Yet it could be done. It had been done. But the man who did it did not know how he did it and could not do it again. Professor Tilden in May, 1892, read a paper before the Birmingham Philosophical Society in which he said:


Back to IndexNext