FOOTNOTES:

Any one can convince himself of this by studying the ingenious theories of evolutionist biology. They may be reduced to two types, which are often intermingled. One type, following the principles of neo-Darwinism, regards instinct as a sum of accidental differences preserved by selection: such and such a useful behavior, naturally adopted by the individual in virtue of an accidental predisposition of the germ, has been transmitted from germto germ, waiting for chance to add fresh improvements to it by the same method. The other type regards instinct as lapsed intelligence: the action, found useful by the species or by certain of its representatives, is supposed to have engendered a habit, which, by hereditary transmission, has become an instinct. Of these two types of theory, the first has the advantage of being able to bring in hereditary transmission without raising grave objection; for the accidental modification which it places at the origin of the instinct is not supposed to have been acquired by the individual, but to have been inherent in the germ. But, on the other hand, it is absolutely incapable of explaining instincts as sagacious as those of most insects. These instincts surely could not have attained, all at once, their present degree of complexity; they have probably evolved; but, in a hypothesis like that of the neo-Darwinians, the evolution of instinct could have come to pass only by the progressive addition of new pieces which, in some way, by happy accidents, came to fit into the old. Now it is evident that, in most cases, instinct could not have perfected itself by simple accretion: each new piece really requires, if all is not to be spoiled, a complete recasting of the whole. How could mere chance work a recasting of the kind? I agree that an accidental modification of the germ may be passed on hereditarily, and may somehow wait for fresh accidental modifications to come and complicate it. I agree also that natural selection may eliminate all those of the more complicated forms of instinct that are not fit to survive. Still, in order that the life of the instinct may evolve, complications fit to survive have to be produced. Now they will be produced only if, in certain cases, the addition of a new element brings about the correlative change of all the old elements. No one will maintain that chance could perform such amiracle: in one form or another we shall appeal to intelligence. We shall suppose that it is by an effort, more or less conscious, that the living being develops a higher instinct. But then we shall have to admit that an acquired habit can become hereditary, and that it does so regularly enough to ensure an evolution. The thing is doubtful, to put it mildly. Even if we could refer the instincts of animals to habits intelligently acquired and hereditarily transmitted, it is not clear how this sort of explanation could be extended to the vegetable world, where effort is never intelligent, even supposing it is sometimes conscious. And yet, when we see with what sureness and precision climbing plants use their tendrils, what marvelously combined manœuvres the orchids perform to procure their fertilization by means of insects,[68]how can we help thinking that these are so many instincts?

This is not saying that the theory of the neo-Darwinians must be altogether rejected, any more than that of the neo-Lamarckians. The first are probably right in holding that evolution takes place from germ to germ rather than from individual to individual; the second are right in saying that at the origin of instinct there is an effort (although it is something quite different, we believe, from anintelligenteffort). But the former are probably wrong when they make the evolution of instinct anaccidentalevolution, and the latter when they regard the effort from which instinct proceeds as anindividualeffort. The effort by which a species modifies its instinct, and modifies itself as well, must be a much deeper thing, dependent solely neither on circumstances nor on individuals. It is not purely accidental, although accident has a large place in it; and it does not depend solely on the initiative of individuals, although individuals collaborate in it.

Compare the different forms of the same instinct in different species of hymenoptera. The impression derived is not always that of an increasing complexity made of elements that have been added together one after the other. Nor does it suggest the idea of steps up a ladder. Rather do we think, in many cases at least, of the circumference of a circle, from different points of which these different varieties have started, all facing the same centre, all making an effort in that direction, but each approaching it only to the extent of its means, and to the extent also to which this central point has been illumined for it. In other words, instinct is everywhere complete, but it is more or less simplified, and, above all, simplifieddifferently. On the other hand, in cases where we do get the impression of an ascending scale, as if one and the same instinct had gone on complicating itself more and more in one direction and along a straight line, the species which are thus arranged by their instincts into a linear series are by no means always akin. Thus, the comparative study, in recent years, of the social instinct in the different apidae proves that the instinct of the meliponines is intermediary in complexity between the still rudimentary tendency of the humble bees and the consummate science of the true bees; yet there can be no kinship between the bees and the meliponines.[69]Most likely, the degree of complexity of these different societies has nothing to do with any greater or smaller number of added elements. We seem rather to be before amusical theme, which had first been transposed, the theme as a whole, into a certain number of tones and on which, still the whole theme, different variations had been played, some very simple, others very skilful.As to the original theme, it is everywhere and nowhere. It is in vain that we try to express it in terms of any idea: it must have been, originally,feltrather thanthought. We get the same impression before the paralyzing instinct of certain wasps. We know that the different species of hymenoptera that have this paralyzing instinct lay their eggs in spiders, beetles or caterpillars, which, having first been subjected by the wasp to a skilful surgical operation, will go on living motionless a certain number of days, and thus provide the larvae with fresh meat. In the sting which they give to the nerve-centres of their victim, in order to destroy its power of moving without killing it, these different species of hymenoptera take into account, so to speak, the different species of prey they respectively attack. The Scolia, which attacks a larva of the rose-beetle, stings it in one point only, but in this point the motor ganglia are concentrated, and those ganglia alone: the stinging of other ganglia might cause death and putrefaction, which it must avoid.[70]The yellow-winged Sphex, which has chosen the cricket for its victim, knows that the cricket has three nerve-centres which serve its three pairs of legs—or at least it acts as if it knew this. It stings the insect first under the neck, then behind the prothorax, and then where the thorax joins the abdomen.[71]The Ammophila Hirsuta gives nine successive strokes of its sting upon nine nerve-centres of its caterpillar, and then seizes the head and squeezes it in its mandibles, enough to cause paralysis without death.[72]The general theme is "the necessity of paralyzing without killing"; the variations are subordinated to the structure of the victim on which they are played. No doubt the operation is notalways perfect. It has recently been shown that the Ammophila sometimes kills the caterpillar instead of paralyzing it, that sometimes also it paralyzes it incompletely.[73]But, because instinct is, like intelligence, fallible, because it also shows individual deviations, it does not at all follow that the instinct of the Ammophila has been acquired, as has been claimed, by tentative intelligent experiments. Even supposing that the Ammophila has come in course of time to recognize, one after another, by tentative experiment, the points of its victim which must be stung to render it motionless, and also the special treatment that must be inflicted on the head to bring about paralysis without death, how can we imagine that elements so special of a knowledge so precise have been regularly transmitted, one by one, by heredity? If, in all our present experience, there were a single indisputable example of a transmission of this kind, the inheritance of acquired characters would be questioned by no one. As a matter of fact, the hereditary transmission of a contracted habit is effected in an irregular and far from precise manner, supposing it is ever really effected at all.

But the whole difficulty comes from our desire to express the knowledge of the hymenoptera in terms of intelligence. It is this that compels us to compare the Ammophila with the entomologist, who knows the caterpillar as he knows everything else—from the outside, and without having on his part a special or vital interest. The Ammophila, we imagine, must learn, one by one, like the entomologist, the positions of the nerve-centres of the caterpillar—must acquire at least the practical knowledge of these positions by trying the effects of its sting. But there is no need for such a view if we suppose asympathy(in the etymological sense of the word) betweenthe Ammophila and its victim, which teaches it from within, so to say, concerning the vulnerability of the caterpillar. This feeling of vulnerability might owe nothing to outward perception, but result from the mere presence together of the Ammophila and the caterpillar, considered no longer as two organisms, but as two activities. It would express, in a concrete form, therelationof the one to the other. Certainly, a scientific theory cannot appeal to considerations of this kind. It must not put action before organization, sympathy before perception and knowledge. But, once more, either philosophy has nothing to see here, or its rôle begins where that of science ends.

Whether it makes instinct a "compound reflex," or a habit formed intelligently that has become automatism, or a sum of small accidental advantages accumulated and fixed by selection, in every case science claims to resolve instinct completely either intointelligentactions, or into mechanisms built up piece by piece like those combined by ourintelligence. I agree indeed that science is here within its function. It gives us, in default of a real analysis of the object, a translation of this object in terms of intelligence. But is it not plain that science itself invites philosophy to consider things in another way? If our biology was still that of Aristotle, if it regarded the series of living beings as unilinear, if it showed us the whole of life evolving towards intelligence and passing, to that end, through sensibility and instinct, we should be right, we, the intelligent beings, in turning back towards the earlier and consequently inferior manifestations of life and in claiming to fit them, without deforming them, into the molds of our understanding. But one of the clearest results of biology has been to show that evolution has taken place along divergent lines. It is at the extremity of two of these lines—the two principal—that we findintelligence and instinct in forms almost pure. Why, then, should instinct be resolvable into intelligent elements? Why, even, into terms entirely intelligible? Is it not obvious that to think here of the intelligent, or of the absolutely intelligible, is to go back to the Aristotelian theory of nature? No doubt it is better to go back to that than to stop short before instinct as before an unfathomable mystery. But, though instinct is not within the domain of intelligence, it is not situated beyond the limits of mind. In the phenomena of feeling, in unreflecting sympathy and antipathy, we experience in ourselves—though under a much vaguer form, and one too much penetrated with intelligence—something of what must happen in the consciousness of an insect acting by instinct. Evolution does but sunder, in order to develop them to the end, elements which, at their origin, interpenetrated each other. More precisely, intelligence is, before anything else, the faculty of relating one point of space to another, one material object to another; it applies to all things, but remains outside them; and of a deep cause it perceives only the effects spread out side by side. Whatever be the force that is at work in the genesis of the nervous system of the caterpillar, to our eyes and our intelligence it is only a juxtaposition of nerves and nervous centres. It is true that we thus get the whole outer effect of it. The Ammophila, no doubt, discerns but a very little of that force, just what concerns itself; but at least it discerns it from within, quite otherwise than by a process of knowledge—by an intuition (livedrather thanrepresented), which is probably like what we call divining sympathy.

A very significant fact is the swing to and fro of scientific theories of instinct, from regarding it as intelligent to regarding it as simply intelligible, or, shall I say, between likening it to an intelligence "lapsed" and reducing itto a pure mechanism.[74]Each of these systems of explanation triumphs in its criticism of the other, the first when it shows us that instinct cannot be a mere reflex, the other when it declares that instinct is something different from intelligence, even fallen into unconsciousness. What can this mean but that they are two symbolisms, equally acceptable in certain respects, and, in other respects, equally inadequate to their object? The concrete explanation, no longer scientific, but metaphysical, must be sought along quite another path, not in the direction of intelligence, but in that of "sympathy."

Instinct is sympathy. If this sympathy could extend its object and also reflect upon itself, it would give us the key to vital operations—just as intelligence, developed and disciplined, guides us into matter. For—we cannot too often repeat it—intelligence and instinct are turned in opposite directions, the former towards inert matter, the latter towards life. Intelligence, by means of science, which is its work, will deliver up to us more and more completely the secret of physical operations; of life it brings us, and moreover only claims to bring us, a translation in terms of inertia. It goes all round life, taking from outside the greatest possible number of views of it, drawing it into itself instead of entering into it. But it is to the very inwardness of life thatintuitionleads us—by intuition I mean instinct that has become disinterested, self-conscious, capable of reflecting upon its object and of enlarging it indefinitely.

That an effort of this kind is not impossible, is provedby the existence in man of an aesthetic faculty along with normal perception. Our eye perceives the features of the living being, merely as assembled, not as mutually organized. The intention of life, the simple movement that runs through the lines, that binds them together and gives them significance, escapes it. This intention is just what the artist tries to regain, in placing himself back within the object by a kind of sympathy, in breaking down, by an effort of intuition, the barrier that space puts up between him and his model. It is true that this aesthetic intuition, like external perception, only attains the individual. But we can conceive an inquiry turned in the same direction as art, which would take lifein generalfor its object, just as physical science, in following to the end the direction pointed out by external perception, prolongs the individual facts into general laws. No doubt this philosophy will never obtain a knowledge of its object comparable to that which science has of its own. Intelligence remains the luminous nucleus around which instinct, even enlarged and purified into intuition, forms only a vague nebulosity. But, in default of knowledge properly so called, reserved to pure intelligence, intuition may enable us to grasp what it is that intelligence fails to give us, and indicate the means of supplementing it. On the one hand, it will utilize the mechanism of intelligence itself to show how intellectual molds cease to be strictly applicable; and on the other hand, by its own work, it will suggest to us the vague feeling, if nothing more, of what must take the place of intellectual molds. Thus, intuition may bring the intellect to recognize that life does not quite go into the category of the many nor yet into that of the one; that neither mechanical causality nor finality can give a sufficient interpretation of the vital process. Then, by the sympathetic communication whichit establishes between us and the rest of the living, by the expansion of our consciousness which it brings about, it introduces us into life's own domain, which is reciprocal interpenetration, endlessly continued creation. But, though it thereby transcends intelligence, it is from intelligence that has come the push that has made it rise to the point it has reached. Without intelligence, it would have remained in the form of instinct, riveted to the special object of its practical interest, and turned outward by it into movements of locomotion.

How theory of knowledge must take account of these two faculties, intellect and intuition, and how also, for want of establishing a sufficiently clear distinction between them, it becomes involved in inextricable difficulties, creating phantoms of ideas to which there cling phantoms of problems, we shall endeavor to show a little further on. We shall see that the problem of knowledge, from this point of view, is one with the metaphysical problem, and that both one and the other depend upon experience. On the one hand, indeed, if intelligence is charged with matter and instinct with life, we must squeeze them both in order to get the double essence from them; metaphysics is therefore dependent upon theory of knowledge. But, on the other hand, if consciousness has thus split up into intuition and intelligence, it is because of the need it had to apply itself to matter at the same time as it had to follow the stream of life. The double form of consciousness is then due to the double form of the real, and theory of knowledge must be dependent upon metaphysics. In fact, each of these two lines of thought leads to the other; they form a circle, and there can be no other centre to the circle but the empirical study of evolution. It is only in seeing consciousness run through matter, lose itself there and find itself there again, divide and reconstituteitself, that we shall form an idea of the mutual opposition of the two terms, as also, perhaps, of their common origin. But, on the other hand, by dwelling on this opposition of the two elements and on this identity of origin, perhaps we shall bring out more clearly the meaning of evolution itself.

Such will be the aim of our next chapter. But the facts that we have just noticed must have already suggested to us the idea that life is connected either with consciousness or with something that resembles it.

Throughout the whole extent of the animal kingdom, we have said, consciousness seems proportionate to the living being's power of choice. It lights up the zone of potentialities that surrounds the act. It fills the interval between what is done and what might be done. Looked at from without, we may regard it as a simple aid to action, a light that action kindles, a momentary spark flying up from the friction of real action against possible actions. But we must also point out that things would go on in just the same way if consciousness, instead of being the effect, were the cause. We might suppose that consciousness, even in the most rudimentary animal, covers by right an enormous field, but is compressed in fact in a kind of vise: each advance of the nervous centres, by giving the organism a choice between a larger number of actions, calls forth the potentialities that are capable of surrounding the real, thus opening the vise wider and allowing consciousness to pass more freely. In this second hypothesis, as in the first, consciousness is still the instrument of action; but it is even more true to say that action is the instrument of consciousness; for the complicating of action with action, and the opposing of action to action, are for the imprisoned consciousness the only possible means to set itself free. How, then, shall we choose between the two hypotheses?If the first is true, consciousness must express exactly, at each instant, the state of the brain; there is strict parallelism (so far as intelligible) between the psychical and the cerebral state. On the second hypothesis, on the contrary, there is indeed solidarity and interdependence between the brain and consciousness, but not parallelism: the more complicated the brain becomes, thus giving the organism greater choice of possible actions, the more does consciousness outrun its physical concomitant. Thus, the recollection of the same spectacle probably modifies in the same way a dog's brain and a man's brain, if the perception has been the same; yet the recollection must be very different in the man's consciousness from what it is in the dog's. In the dog, the recollection remains the captive of perception; it is brought back to consciousness only when an analogous perception recalls it by reproducing the same spectacle, and then it is manifested by the recognition,actedrather thanthought, of the present perception much more than by an actual reappearance of the recollection itself. Man, on the contrary, is capable of calling up the recollection at will, at any moment, independently of the present perception. He is not limited toplayinghis past life again; herepresentsanddreamsit. The local modification of the brain to which the recollection is attached being the same in each case, the psychological difference between the two recollections cannot have its ground in a particular difference of detail between the two cerebral mechanisms, but in the difference between the two brains taken each as a whole. The more complex of the two, in putting a greater number of mechanisms in opposition to one another, has enabled consciousness to disengage itself from the restraint of one and all and to reach independence. That things do happen in this way, that the second of the two hypotheses is that which mustbe chosen, is what we have tried to prove, in a former work, by the study of facts that best bring into relief the relation of the conscious state to the cerebral state, the facts of normal and pathological recognition, in particular the forms of aphasia.[75]But it could have been proved by pure reasoning, before even it was evidenced by facts. We have shown on what self-contradictory postulate, on what confusion of two mutually incompatible symbolisms, the hypothesis of equivalence between the cerebral state and the psychic state rests.[76]

The evolution of life, looked at from this point, receives a clearer meaning, although it cannot be subsumed under any actualidea. It is as if a broad current of consciousness had penetrated matter, loaded, as all consciousness is, with an enormous multiplicity of interwoven potentialities. It has carried matter along to organization, but its movement has been at once infinitely retarded and infinitely divided. On the one hand, indeed, consciousness has had to fall asleep, like the chrysalis in the envelope in which it is preparing for itself wings; and, on the other hand, the manifold tendencies it contained have been distributed among divergent series of organisms which, moreover, express these tendencies outwardly in movements rather than internally in representations. In the course of this evolution, while some beings have fallen more and more asleep, others have more and more completely awakened, and the torpor of some has served the activity of others. But the waking could be effected in two different ways. Life, that is to say consciousness launched into matter, fixed its attention either on its own movement or on the matter it was passing through; and it has thusbeen turned either in the direction of intuition or in that of intellect. Intuition, at first sight, seems far preferable to intellect, since in it life and consciousness remain within themselves. But a glance at the evolution of living beings shows us that intuition could not go very far. On the side of intuition, consciousness found itself so restricted by its envelope that intuition had to shrink into instinct, that is, to embrace only the very small portion of life that interested it; and this it embraces only in the dark, touching it while hardly seeing it. On this side, the horizon was soon shut out. On the contrary, consciousness, in shaping itself into intelligence, that is to say in concentrating itself at first on matter, seems to externalize itself in relation to itself; but, just because it adapts itself thereby to objects from without, it succeeds in moving among them and in evading the barriers they oppose to it, thus opening to itself an unlimited field. Once freed, moreover, it can turn inwards on itself, and awaken the potentialities of intuition which still slumber within it.

From this point of view, not only does consciousness appear as the motive principle of evolution, but also, among conscious beings themselves, man comes to occupy a privileged place. Between him and the animals the difference is no longer one of degree, but of kind. We shall show how this conclusion is arrived at in our next chapter. Let us now show how the preceding analyses suggest it.

A noteworthy fact is the extraordinary disproportion between the consequences of an invention and the invention itself. We have said that intelligence is modeled on matter and that it aims in the first place at fabrication. But does it fabricate in order to fabricate or does it not pursue involuntarily, and even unconsciously, something entirely different? Fabricating consists in shaping matter, in making it supple and in bending it, in converting it intoan instrument in order to become master of it. It is thismasterythat profits humanity, much more even than the material result of the invention itself. Though we derive an immediate advantage from the thing made, as an intelligent animal might do, and though this advantage be all the inventor sought, it is a slight matter compared with the new ideas and new feelings that the invention may give rise to in every direction, as if the essential part of the effect were to raise us above ourselves and enlarge our horizon. Between the effect and the cause the disproportion is so great that it is difficult to regard the cause asproducerof its effect. It releases it, whilst settling, indeed, its direction. Everything happens as though the grip of intelligence on matter were, in its main intention, tolet something passthat matter is holding back.

The same impression arises when we compare the brain of man with that of the animals. The difference at first appears to be only a difference of size and complexity. But, judging by function, there must be something else besides. In the animal, the motor mechanisms that the brain succeeds in setting up, or, in other words, the habits contracted voluntarily, have no other object nor effect than the accomplishment of the movements marked out in these habits, stored in these mechanisms. But, in man, the motor habit may have a second result, out of proportion to the first: it can hold other motor habits in check, and thereby, in overcoming automatism, set consciousness free. We know what vast regions in the human brain language occupies. The cerebral mechanisms that correspond to the words have this in particular, that they can be made to grapple with other mechanisms, those, for instance, that correspond to the things themselves, or even be made to grapple with one another. Meanwhile consciousness, which would have been dragged down anddrowned in the accomplishment of the act, is restored and set free.[77]

The difference must therefore be more radical than a superficial examination would lead us to suppose. It is the difference between a mechanism which engages the attention and a mechanism from which it can be diverted. The primitive steam-engine, as Newcomen conceived it, required the presence of a person exclusively employed to turn on and off the taps, either to let the steam into the cylinder or to throw the cold spray into it in order to condense the steam. It is said that a boy employed on this work, and very tired of having to do it, got the idea of tying the handles of the taps, with cords, to the beam of the engine. Then the machine opened and closed the taps itself; it worked all alone. Now, if an observer had compared the structure of this second machine with that of the first without taking into account the two boys left to watch over them, he would have found only a slight difference of complexity. That is, indeed, all we can perceive when we look only at the machines. But if we cast a glance at the two boys, we shall see that whilst one is wholly taken up by the watching, the other is free to go and play as he chooses, and that, from this point of view, the difference between the two machines is radical, the first holding the attention captive, the second setting it at liberty. A difference of the same kind, we think, would be found between the brain of an animal and the human brain.

If, now, we should wish to express this in terms offinality, we should have to say that consciousness, after having been obliged, in order to set itself free, to divide organization into two complementary parts, vegetables on one hand and animals on the other, has sought an issue in the double direction of instinct and of intelligence. It has not found it with instinct, and it has not obtained it on the side of intelligence except by a sudden leap from the animal to man. So that, in the last analysis, man might be considered the reason for the existence of the entire organization of life on our planet. But this would be only a manner of speaking. There is, in reality, only a current of existence and the opposing current; thence proceeds the whole evolution of life. We must now grasp more closely the opposition of these two currents. Perhaps we shall thus discover for them a common source. By this we shall also, no doubt, penetrate the most obscure regions of metaphysics. However, as the two directions we have to follow are clearly marked, in intelligence on the one hand, in instinct and intuition on the other, we are not afraid of straying. A survey of the evolution of life suggests to us a certain conception of knowledge, and also a certain metaphysics, which imply each other. Once made clear, this metaphysics and this critique may throw some light, in their turn, on evolution as a whole.

FOOTNOTES:[51]This view of adaptation has been noted by M.F. Marin in a remarkable article on the origin of species, "L'Origine des espèces" (Revue scientifique, Nov. 1901, p. 580).[52]De Saporta and Marion,L'Évolution des cryptogames, 1881, p. 37.[53]On fixation and parasitism in general, see the work of Houssay,La Forme et la vie, Paris, 1900, pp. 721-807.[54]Cope,op. cit.p. 76.[55]Just as the plant, in certain cases, recovers the faculty of moving actively which slumbers in it, so the animal, in exceptional circumstances, can replace itself in the conditions of the vegetative life and develop in itself an equivalent of the chlorophyllian function. It appears, indeed, from recent experiments of Maria von Linden, that the chrysalides and the caterpillars of certain lepidoptera, under the influence of light, fix the carbon of the carbonic acid contained in the atmosphere (M. von Linden, "L'Assimilation de l'acide carbonique par les chrysalides de Lépidoptères,"C.R. de la Soc. de biologie, 1905, pp. 692 ff.).[56]Archives de physiologie, 1892.[57]De Manacéine, "Quelques observations expérimentales sur l'influence de l'insomnie absolue" (Arch. ital. de biologie, t. xxi., 1894, pp. 322 ff.). Recently, analogous observations have been made on a man who died of inanition after a fast of thirty-five days. See, on this subject, in theAnnée biologiqueof 1898, p. 338, the résumé of an article (in Russian) by Tarakevitch and Stchasny.[58]Cuvier said: "The nervous system is, at bottom, the whole animal; the other systems are there only to serve it." ("Sur un nouveau rapprochement à établir entre les classes qui composent le regne animal,"Arch. du Muséum d'histoire naturelle, Paris, 1812, pp. 73-84.) Of course, it would be necessary to apply a great many restrictions to this formula—for example, to allow for the cases of degradation and retrogression in which the nervous system passes into the background. And, moreover, with the nervous system must be included the sensorial apparatus on the one hand and the motor on the other, between which it acts as intermediary. Cf. Foster, art. "Physiology," in theEncyclopaedia Britannica, Edinburgh, 1885, p. 17.[59]See, on these different points, the work of Gaudry,Essai de paléontologie philosophique, Paris, 1896, pp. 14-16 and 78-79.[60]See, on this subject, Shaler,The Individual, New York, 1900, pp. 118-125.[61]This point is disputed by M. René Quinton, who regards the carnivorous and ruminant mammals, as well as certain birds, as subsequent to man (R. Quinton,L'Eau de mer milieu organique, Paris, 1904, p. 435). We may say here that our general conclusions, although very different from M. Quinton's, are not irreconcilable with them; for if evolution has really been such as we represent it, the vertebrates must have made an effort to maintain themselves in the most favorable conditions of activity—the very conditions, indeed, which life had chosen in the beginning.[62]M. Paul Lacombe has laid great stress on the important influence that great inventions have exercised on the evolution of humanity (P. Lacombe,De l'histoire considérée comme science, Paris, 1894. See, in particular, pp. 168-247).[63]Bouvier, "La Nidification des abeilles à l'air libre" (C.R. de l'Ac. des sciences, 7 mai 1906).[64]Plato,Phaedrus, 265 E.[65]We shall return to these points in the next chapter.[66]We shall return to this point in chapter iii., p. 259.[67]Matière et mémoire, chap. i.[68]See the two works of Darwin,Climbing PlantsandThe Fertilization of Orchids by Insects.[69]Buttel-Reepen, "Die phylogenetische Entstehung des Bienenstaates" (Biol. Centralblatt, xxiii. 1903), p. 108 in particular.[70]Fabre,Souvenirs entomologiques, 3esérie, Paris, 1890, pp. 1-69.[71]Fabre,Souvenirs entomologiques, 1resérie, Paris, 3eédition, Paris, 1894, pp. 93 ff.[72]Fabre,Nouveaux souvenirs entomologiques, Paris, 1882, pp. 14 ff.[73]Peckham,Wasps, Solitary and Social, Westminster, 1905, pp. 28 ff.[74]See, in particular, among recent works, Bethe, "Dürfen wir den Ameisen und Bienen psychische Qualitäten zuschreiben?" (Arch. f. d. ges. Physiologie, 1898), and Forel, "Un Aperçu de psychologie comparée" (Année psychologique, 1895).[75]Matière et mémoire, chaps. ii. and iii.[76]"Le Paralogisme psycho-physiologique" (Revue de métaphysique, Nov. 1904).[77]A geologist whom we have already had occasion to cite, N.S. Shaler, well says that "when we come to man, it seems as if we find the ancient subjection of mind to body abolished, and the intellectual parts develop with an extraordinary rapidity, the structure of the body remaining identical in essentials" (Shaler,The Interpretation of Nature, Boston, 1899, p. 187).

[51]This view of adaptation has been noted by M.F. Marin in a remarkable article on the origin of species, "L'Origine des espèces" (Revue scientifique, Nov. 1901, p. 580).

[51]This view of adaptation has been noted by M.F. Marin in a remarkable article on the origin of species, "L'Origine des espèces" (Revue scientifique, Nov. 1901, p. 580).

[52]De Saporta and Marion,L'Évolution des cryptogames, 1881, p. 37.

[52]De Saporta and Marion,L'Évolution des cryptogames, 1881, p. 37.

[53]On fixation and parasitism in general, see the work of Houssay,La Forme et la vie, Paris, 1900, pp. 721-807.

[53]On fixation and parasitism in general, see the work of Houssay,La Forme et la vie, Paris, 1900, pp. 721-807.

[54]Cope,op. cit.p. 76.

[54]Cope,op. cit.p. 76.

[55]Just as the plant, in certain cases, recovers the faculty of moving actively which slumbers in it, so the animal, in exceptional circumstances, can replace itself in the conditions of the vegetative life and develop in itself an equivalent of the chlorophyllian function. It appears, indeed, from recent experiments of Maria von Linden, that the chrysalides and the caterpillars of certain lepidoptera, under the influence of light, fix the carbon of the carbonic acid contained in the atmosphere (M. von Linden, "L'Assimilation de l'acide carbonique par les chrysalides de Lépidoptères,"C.R. de la Soc. de biologie, 1905, pp. 692 ff.).

[55]Just as the plant, in certain cases, recovers the faculty of moving actively which slumbers in it, so the animal, in exceptional circumstances, can replace itself in the conditions of the vegetative life and develop in itself an equivalent of the chlorophyllian function. It appears, indeed, from recent experiments of Maria von Linden, that the chrysalides and the caterpillars of certain lepidoptera, under the influence of light, fix the carbon of the carbonic acid contained in the atmosphere (M. von Linden, "L'Assimilation de l'acide carbonique par les chrysalides de Lépidoptères,"C.R. de la Soc. de biologie, 1905, pp. 692 ff.).

[56]Archives de physiologie, 1892.

[56]Archives de physiologie, 1892.

[57]De Manacéine, "Quelques observations expérimentales sur l'influence de l'insomnie absolue" (Arch. ital. de biologie, t. xxi., 1894, pp. 322 ff.). Recently, analogous observations have been made on a man who died of inanition after a fast of thirty-five days. See, on this subject, in theAnnée biologiqueof 1898, p. 338, the résumé of an article (in Russian) by Tarakevitch and Stchasny.

[57]De Manacéine, "Quelques observations expérimentales sur l'influence de l'insomnie absolue" (Arch. ital. de biologie, t. xxi., 1894, pp. 322 ff.). Recently, analogous observations have been made on a man who died of inanition after a fast of thirty-five days. See, on this subject, in theAnnée biologiqueof 1898, p. 338, the résumé of an article (in Russian) by Tarakevitch and Stchasny.

[58]Cuvier said: "The nervous system is, at bottom, the whole animal; the other systems are there only to serve it." ("Sur un nouveau rapprochement à établir entre les classes qui composent le regne animal,"Arch. du Muséum d'histoire naturelle, Paris, 1812, pp. 73-84.) Of course, it would be necessary to apply a great many restrictions to this formula—for example, to allow for the cases of degradation and retrogression in which the nervous system passes into the background. And, moreover, with the nervous system must be included the sensorial apparatus on the one hand and the motor on the other, between which it acts as intermediary. Cf. Foster, art. "Physiology," in theEncyclopaedia Britannica, Edinburgh, 1885, p. 17.

[58]Cuvier said: "The nervous system is, at bottom, the whole animal; the other systems are there only to serve it." ("Sur un nouveau rapprochement à établir entre les classes qui composent le regne animal,"Arch. du Muséum d'histoire naturelle, Paris, 1812, pp. 73-84.) Of course, it would be necessary to apply a great many restrictions to this formula—for example, to allow for the cases of degradation and retrogression in which the nervous system passes into the background. And, moreover, with the nervous system must be included the sensorial apparatus on the one hand and the motor on the other, between which it acts as intermediary. Cf. Foster, art. "Physiology," in theEncyclopaedia Britannica, Edinburgh, 1885, p. 17.

[59]See, on these different points, the work of Gaudry,Essai de paléontologie philosophique, Paris, 1896, pp. 14-16 and 78-79.

[59]See, on these different points, the work of Gaudry,Essai de paléontologie philosophique, Paris, 1896, pp. 14-16 and 78-79.

[60]See, on this subject, Shaler,The Individual, New York, 1900, pp. 118-125.

[60]See, on this subject, Shaler,The Individual, New York, 1900, pp. 118-125.

[61]This point is disputed by M. René Quinton, who regards the carnivorous and ruminant mammals, as well as certain birds, as subsequent to man (R. Quinton,L'Eau de mer milieu organique, Paris, 1904, p. 435). We may say here that our general conclusions, although very different from M. Quinton's, are not irreconcilable with them; for if evolution has really been such as we represent it, the vertebrates must have made an effort to maintain themselves in the most favorable conditions of activity—the very conditions, indeed, which life had chosen in the beginning.

[61]This point is disputed by M. René Quinton, who regards the carnivorous and ruminant mammals, as well as certain birds, as subsequent to man (R. Quinton,L'Eau de mer milieu organique, Paris, 1904, p. 435). We may say here that our general conclusions, although very different from M. Quinton's, are not irreconcilable with them; for if evolution has really been such as we represent it, the vertebrates must have made an effort to maintain themselves in the most favorable conditions of activity—the very conditions, indeed, which life had chosen in the beginning.

[62]M. Paul Lacombe has laid great stress on the important influence that great inventions have exercised on the evolution of humanity (P. Lacombe,De l'histoire considérée comme science, Paris, 1894. See, in particular, pp. 168-247).

[62]M. Paul Lacombe has laid great stress on the important influence that great inventions have exercised on the evolution of humanity (P. Lacombe,De l'histoire considérée comme science, Paris, 1894. See, in particular, pp. 168-247).

[63]Bouvier, "La Nidification des abeilles à l'air libre" (C.R. de l'Ac. des sciences, 7 mai 1906).

[63]Bouvier, "La Nidification des abeilles à l'air libre" (C.R. de l'Ac. des sciences, 7 mai 1906).

[64]Plato,Phaedrus, 265 E.

[64]Plato,Phaedrus, 265 E.

[65]We shall return to these points in the next chapter.

[65]We shall return to these points in the next chapter.

[66]We shall return to this point in chapter iii., p. 259.

[66]We shall return to this point in chapter iii., p. 259.

[67]Matière et mémoire, chap. i.

[67]Matière et mémoire, chap. i.

[68]See the two works of Darwin,Climbing PlantsandThe Fertilization of Orchids by Insects.

[68]See the two works of Darwin,Climbing PlantsandThe Fertilization of Orchids by Insects.

[69]Buttel-Reepen, "Die phylogenetische Entstehung des Bienenstaates" (Biol. Centralblatt, xxiii. 1903), p. 108 in particular.

[69]Buttel-Reepen, "Die phylogenetische Entstehung des Bienenstaates" (Biol. Centralblatt, xxiii. 1903), p. 108 in particular.

[70]Fabre,Souvenirs entomologiques, 3esérie, Paris, 1890, pp. 1-69.

[70]Fabre,Souvenirs entomologiques, 3esérie, Paris, 1890, pp. 1-69.

[71]Fabre,Souvenirs entomologiques, 1resérie, Paris, 3eédition, Paris, 1894, pp. 93 ff.

[71]Fabre,Souvenirs entomologiques, 1resérie, Paris, 3eédition, Paris, 1894, pp. 93 ff.

[72]Fabre,Nouveaux souvenirs entomologiques, Paris, 1882, pp. 14 ff.

[72]Fabre,Nouveaux souvenirs entomologiques, Paris, 1882, pp. 14 ff.

[73]Peckham,Wasps, Solitary and Social, Westminster, 1905, pp. 28 ff.

[73]Peckham,Wasps, Solitary and Social, Westminster, 1905, pp. 28 ff.

[74]See, in particular, among recent works, Bethe, "Dürfen wir den Ameisen und Bienen psychische Qualitäten zuschreiben?" (Arch. f. d. ges. Physiologie, 1898), and Forel, "Un Aperçu de psychologie comparée" (Année psychologique, 1895).

[74]See, in particular, among recent works, Bethe, "Dürfen wir den Ameisen und Bienen psychische Qualitäten zuschreiben?" (Arch. f. d. ges. Physiologie, 1898), and Forel, "Un Aperçu de psychologie comparée" (Année psychologique, 1895).

[75]Matière et mémoire, chaps. ii. and iii.

[75]Matière et mémoire, chaps. ii. and iii.

[76]"Le Paralogisme psycho-physiologique" (Revue de métaphysique, Nov. 1904).

[76]"Le Paralogisme psycho-physiologique" (Revue de métaphysique, Nov. 1904).

[77]A geologist whom we have already had occasion to cite, N.S. Shaler, well says that "when we come to man, it seems as if we find the ancient subjection of mind to body abolished, and the intellectual parts develop with an extraordinary rapidity, the structure of the body remaining identical in essentials" (Shaler,The Interpretation of Nature, Boston, 1899, p. 187).

[77]A geologist whom we have already had occasion to cite, N.S. Shaler, well says that "when we come to man, it seems as if we find the ancient subjection of mind to body abolished, and the intellectual parts develop with an extraordinary rapidity, the structure of the body remaining identical in essentials" (Shaler,The Interpretation of Nature, Boston, 1899, p. 187).

ON THE MEANING OF LIFE—THE ORDER OF NATURE AND THE FORM OF INTELLIGENCE

In the course of our first chapter we traced a line of demarcation between the inorganic and the organized, but we pointed out that the division of unorganized matter into separate bodies is relative to our senses and to our intellect, and that matter, looked at as an undivided whole, must be a flux rather than a thing. In this we were preparing the way for a reconciliation between the inert and the living.

On the other side, we have shown in our second chapter that the same opposition is found again between instinct and intelligence, the one turned to certain determinations of life, the other molded on the configuration of matter. But instinct and intelligence, we have also said, stand out from the same background, which, for want of a better name, we may call consciousness in general, and which must be coextensive with universal life. In this way, we have disclosed the possibility of showing the genesis of intelligence in setting out from general consciousness, which embraces it.

We are now, then, to attempt a genesis of intellect at the same time as a genesis of material bodies—two enterprises that are evidently correlative, if it be true that the main lines of our intellect mark out the general form of our action on matter, and that the detail of matter is ruled by the requirements of our action. Intellectualityand materiality have been constituted, in detail, by reciprocal adaptation. Both are derived from a wider and higher form of existence. It is there that we must replace them, in order to see them issue forth.

Such an attempt may appear, at first, more daring than the boldest speculations of metaphysicians. It claims to go further than psychology, further than cosmology, further than traditional metaphysics; for psychology, cosmology and metaphysics take intelligence, in all that is essential to it, as given, instead of, as we now propose, engendering it in its form and in its matter. The enterprise is in reality much more modest, as we are going to show. But let us first say how it differs from others.

To begin with psychology, we are not to believe that itengendersintelligence when it follows the progressive development of it through the animal series. Comparative psychology teaches us that the more an animal is intelligent, the more it tends to reflect on the actions by which it makes use of things, and thus to approximate to man. But its actions have already by themselves adopted the principal lines of human action; they have made out the same general directions in the material world as we have; they depend upon the same objects bound together by the same relations; so that animal intelligence, although it does not form concepts properly so called, already moves in a conceptual atmosphere. Absorbed at every instant by the actions it performs and the attitudes it must adopt, drawn outward by them and so externalized in relation to itself, it no doubt plays rather than thinks its ideas; this play none the less already corresponds, in the main, to the general plan of human intelligence.[78]To explain the intelligence of man by that of the animal consiststhen simply in following the development of an embryo of humanity into complete humanity. We show how a certain direction has been followed further and further by beings more and more intelligent. But the moment we admit the direction, intelligence is given.

In a cosmogony like that of Spencer, intelligence is taken for granted, as matter also at the same time. We are shown matter obeying laws, objects connected with objects and facts with facts by constant relations, consciousness receiving the imprint of these relations and laws, and thus adopting the general configuration of nature and shaping itself into intellect. But how can we fail to see that intelligence is supposed when we admit objects and facts?A prioriand apart from any hypothesis on the nature of the matter, it is evident that the materiality of a body does not stop at the point at which we touch it: a body is present wherever its influence is felt; its attractive force, to speak only of that, is exerted on the sun, on the planets, perhaps on the entire universe. The more physics advances, the more it effaces the individuality of bodies and even of the particles into which the scientific imagination began by decomposing them: bodies and corpuscles tend to dissolve into a universal interaction. Our perceptions give us the plan of our eventual action on things much more than that of things themselves. The outlines we find in objects simply mark what we can attain and modify in them. The lines we see traced through matter are just the paths on which we are called to move. Outlines and paths have declared themselves in the measure and proportion that consciousness has prepared for action on unorganized matter—that is to say, in the measure and proportion that intelligence has been formed. It is doubtful whether animals built on a different plan—a mollusc or an insect, for instance—cut matter upalong the same articulations. It is not indeed necessary that they should separate it into bodies at all. In order to follow the indications of instinct, there is no need to perceiveobjects, it is enough to distinguishproperties. Intelligence, on the contrary, even in its humblest form, already aims at getting matter to act on matter. If on one side matter lends itself to a division into active and passive bodies, or more simply into coexistent and distinct fragments, it is from this side that intelligence will regard it; and the more it busies itself with dividing, the more it will spread out in space, in the form of extension adjoining extension, a matter that undoubtedly itself has a tendency to spatiality, but whose parts are yet in a state of reciprocal implication and interpenetration. Thus the same movement by which the mind is brought to form itself into intellect, that is to say, into distinct concepts, brings matter to break itself up into objects excluding one another.The more consciousness is intellectualized, the more is matter spatialized.So that the evolutionist philosophy, when it imagines in space a matter cut up on the very lines that our action will follow, has given itself in advance, ready made, the intelligence of which it claims to show the genesis.

Metaphysics applies itself to a work of the same kind, though subtler and more self-conscious, when it deducesa priorithe categories of thought. It compresses intellect, reduces it to its quintessence, holds it tight in a principle so simple that it can be thought empty: from this principle we then draw out what we have virtually put into it. In this way we may no doubt show the coherence of intelligence, define intellect, give its formula, but we do not trace its genesis. An enterprise like that of Fichte, although more philosophical than that of Spencer, in that it pays more respect to the true order of things, hardly leads us any further. Fichte takes thought in a concentratedstate, and expands it into reality; Spencer starts from external reality, and condenses it into intellect. But, in the one case as in the other, the intellect must be taken at the beginning as given—either condensed or expanded, grasped in itself by a direct vision or perceived by reflection in nature, as in a mirror.

The agreement of most philosophers on this point comes from the fact that they are at one in affirming the unity of nature, and in representing this unity under an abstract and geometrical form. Between the organized and the unorganized they do not see and they will not see the cleft. Some start from the inorganic, and, by compounding it with itself, claim to form the living; others place life first, and proceed towards matter by a skilfully manageddecrescendo; but, for both, there are only differences ofdegreein nature—degrees of complexity in the first hypothesis, of intensity in the second. Once this principle is admitted, intelligence becomes as vast as reality; for it is unquestionable that whatever is geometrical in things is entirely accessible to human intelligence, and if the continuity between geometry and the rest is perfect, all the rest must indeed be equally intelligible, equally intelligent. Such is the postulate of most systems. Any one can easily be convinced of this by comparing doctrines that seem to have no common point, no common measure, those of Fichte and Spencer for instance, two names that we happen to have just brought together.

At the root of these speculations, then, there are the two convictions correlative and complementary, that nature is one and that the function of intellect is to embrace it in its entirety. The faculty of knowing being supposed coextensive with the whole of experience, there can no longer be any question of engendering it. It is already given, and we merely have to use it, as we use our sight totake in the horizon. It is true that opinions differ as to the value of the result. For some, it is reality itself that the intellect embraces; for others, it is only a phantom. But, phantom or reality, what intelligence grasps is thought to be all that can be attained.

Hence the exaggerated confidence of philosophy in the powers of the individual mind. Whether it is dogmatic or critical, whether it admits the relativity of our knowledge or claims to be established within the absolute, a philosophy is generally the work of a philosopher, a single and unitary vision of the whole. It is to be taken or left.

More modest, and also alone capable of being completed and perfected, is the philosophy we advocate. Human intelligence, as we represent it, is not at all what Plato taught in the allegory of the cave. Its function is not to look at passing shadows nor yet to turn itself round and contemplate the glaring sun. It has something else to do. Harnessed, like yoked oxen, to a heavy task, we feel the play of our muscles and joints, the weight of the plow and the resistance of the soil. To act and to know that we are acting, to come into touch with reality and even to live it, but only in the measure in which it concerns the work that is being accomplished and the furrow that is being plowed, such is the function of human intelligence. Yet a beneficent fluid bathes us, whence we draw the very force to labor and to live. From this ocean of life, in which we are immersed, we are continually drawing something, and we feel that our being, or at least the intellect that guides it, has been formed therein by a kind of local concentration. Philosophy can only be an effort to dissolve again into the Whole. Intelligence, reabsorbed into its principle, may thus live back again its own genesis. But the enterprise cannot be achieved in one stroke; it isnecessarily collective and progressive. It consists in an interchange of impressions which, correcting and adding to each other, will end by expanding the humanity in us and making us even transcend it.

But this method has against it the most inveterate habits of the mind. It at once suggests the idea of a vicious circle. In vain, we shall be told, you claim to go beyond intelligence: how can you do that except by intelligence? All that is clear in your consciousness is intelligence. You are inside your own thought; you cannot get out of it. Say, if you like, that the intellect is capable of progress, that it will see more and more clearly into a greater and greater number of things; but do not speak of engendering it, for it is with your intellect itself that you would have to do the work.

The objection presents itself naturally to the mind. But the same reasoning would prove also the impossibility of acquiring any new habit. It is of the essence of reasoning to shut us up in the circle of the given. But action breaks the circle. If we had never seen a man swim, we might say that swimming is an impossible thing, inasmuch as, to learn to swim, we must begin by holding ourselves up in the water and, consequently, already know how to swim. Reasoning, in fact, always nails us down to the solid ground. But if, quite simply, I throw myself into the water without fear, I may keep myself up well enough at first by merely struggling, and gradually adapt myself to the new environment: I shall thus have learnt to swim. So, in theory, there is a kind of absurdity in trying to know otherwise than by intelligence; but if the risk be frankly accepted, action will perhaps cut the knot that reasoning has tied and will not unloose.

Besides, the risk will appear to grow less, the more our point of view is adopted. We have shown that intellect has detached itself from a vastly wider reality, but that there has never been a clean cut between the two; all around conceptual thought there remains an indistinct fringe which recalls its origin. And further we compared the intellect to a solid nucleus formed by means of condensation. This nucleus does not differ radically from the fluid surrounding it. It can only be reabsorbed in it because it is made of the same substance. He who throws himself into the water, having known only the resistance of the solid earth, will immediately be drowned if he does not struggle against the fluidity of the new environment: he must perforce still cling to that solidity, so to speak, which even water presents. Only on this condition can he get used to the fluid's fluidity. So of our thought, when it has decided to make the leap.

But leap it must, that is, leave its own environment. Reason, reasoning on its powers, will never succeed in extending them, though the extension would not appear at all unreasonable once it were accomplished. Thousands and thousands of variations on the theme of walking will never yield a rule for swimming: come, enter the water, and when you know how to swim, you will understand how the mechanism of swimming is connected with that of walking. Swimming is an extension of walking, but walking would never have pushed you on to swimming. So you may speculate as intelligently as you will on the mechanism of intelligence; you will never, by this method, succeed in going beyond it. You may get something more complex, but not something higher nor even something different. You must take things by storm: you must thrust intelligence outside itself by an act of will.

So the vicious circle is only apparent. It is, on the contrary, real, we think, in every other method of philosophy. This we must try to show in a few words, if onlyto prove that philosophy cannot and must not accept the relation established by pure intellectualism between the theory of knowledge and the theory of the known, between metaphysics and science.

At first sight, it may seem prudent to leave the consideration of facts to positive science, to let physics and chemistry busy themselves with matter, the biological and psychological sciences with life. The task of the philosopher is then clearly defined. He takes facts and laws from the scientists' hand; and whether he tries to go beyond them in order to reach their deeper causes, or whether he thinks it impossible to go further and even proves it by the analysis of scientific knowledge, in both cases he has for the facts and relations, handed over by science, the sort of respect that is due to a final verdict. To this knowledge he adds a critique of the faculty of knowing, and also, if he thinks proper, a metaphysic; but thematterof knowledge he regards as the affair of science and not of philosophy.

But how does he fail to see that the real result of this so-called division of labor is to mix up everything and confuse everything? The metaphysic or the critique that the philosopher has reserved for himself he has to receive, ready-made, from positive science, it being already contained in the descriptions and analyses, the whole care of which he left to the scientists. For not having wished to intervene, at the beginning, in questions of fact, he finds himself reduced, in questions of principle, to formulating purely and simply in more precise terms the unconscious and consequently inconsistent metaphysic and critique which the very attitude of science to reality marks out. Let us not be deceived by an apparent analogy between natural things and human things. Here we are not in the judiciary domain, where the description of fact and thejudgment on the fact are two distinct things, distinct for the very simple reason that above the fact, and independent of it, there is a law promulgated by a legislator. Here the laws are internal to the facts and relative to the lines that have been followed in cutting the real into distinct facts. We cannot describe the outward appearance of the object without prejudging its inner nature and its organization. Form is no longer entirely isolable from matter, and he who has begun by reserving to philosophy questions of principle, and who has thereby tried to put philosophy above the sciences, as a "court of cassation" is above the courts of assizes and of appeal, will gradually come to make no more of philosophy than a registration court, charged at most with wording more precisely the sentences that are brought to it, pronounced and irrevocable.

Positive science is, in fact, a work of pure intellect. Now, whether our conception of the intellect be accepted or rejected, there is one point on which everybody will agree with us, and that is that the intellect is at home in the presence of unorganized matter. This matter it makes use of more and more by mechanical inventions, and mechanical inventions become the easier to it the more it thinks matter as mechanism. The intellect bears within itself, in the form of natural logic, a latent geometrism that is set free in the measure and proportion that the intellect penetrates into the inner nature of inert matter. Intelligence is in tune with this matter, and that is why the physics and metaphysics of inert matter are so near each other. Now, when the intellect undertakes the study of life, it necessarily treats the living like the inert, applying the same forms to this new object, carrying over into this new field the same habits that have succeeded so well in the old; and it is right to do so, for only on suchterms does the living offer to our action the same hold as inert matter. But the truth we thus arrive at becomes altogether relative to our faculty of action. It is no more than asymbolicverity. It cannot have the same value as the physical verity, being only an extension of physics to an object which we area prioriagreed to look at only in its external aspect. The duty of philosophy should be to intervene here actively, to examine the living without any reservation as to practical utility, by freeing itself from forms and habits that are strictly intellectual. Its own special object is to speculate, that is to say, to see; its attitude toward the living should not be that of science, which aims only at action, and which, being able to act only by means of inert matter, presents to itself the rest of reality in this single respect. What must the result be, if it leave biological and psychological facts to positive science alone, as it has left, and rightly left, physical facts? It will accepta prioria mechanistic conception of all nature, a conception unreflected and even unconscious, the outcome of the material need. It willa prioriaccept the doctrine of the simple unity of knowledge and of the abstract unity of nature.

The moment it does so, its fate is sealed. The philosopher has no longer any choice save between a metaphysical dogmatism and a metaphysical skepticism, both of which rest, at bottom, on the same postulate, and neither of which adds anything to positive science. He may hypostasize the unity of nature, or, what comes to the same thing, the unity of science, in a being who is nothing since he does nothing, an ineffectual God who simply sums up in himself all the given; or in an eternal Matter from whose womb have been poured out the properties of things and the laws of nature; or, again, in a pure Form which endeavors to seize an unseizable multiplicity, and which is,as we will, the form of nature or the form of thought. All these philosophies tell us, in their different languages, that science is right to treat the living as the inert, and that there is no difference of value, no distinction to be made between the results which intellect arrives at in applying its categories, whether it rests on inert matter or attacks life.

In many cases, however, we feel the frame cracking. But as we did not begin by distinguishing between the inert and the living, the one adapted in advance to the frame in which we insert it, the other incapable of being held in the frame otherwise than by a convention which eliminates from it all that is essential, we find ourselves, in the end, reduced to regarding everything the frame contains with equal suspicion. To a metaphysical dogmatism, which has erected into an absolute the factitious unity of science, there succeeds a skepticism or a relativism that universalizes and extends to all the results of science the artificial character of some among them. So philosophy swings to and fro between the doctrine that regards absolute reality as unknowable and that which, in the idea it gives us of this reality, says nothing more than science has said. For having wished to prevent all conflict between science and philosophy, we have sacrificed philosophy without any appreciable gain to science. And for having tried to avoid the seeming vicious circle which consists in using the intellect to transcend the intellect, we find ourselves turning in a real circle, that which consists in laboriously rediscovering by metaphysics a unity that we began by positinga priori, a unity that we admitted blindly and unconsciously by the very act of abandoning the whole of experience to science and the whole of reality to the pure understanding.

Let us begin, on the contrary, by tracing a line of demarcation between the inert and the living. We shall find that the inert enters naturally into the frames of the intellect, but that the living is adapted to these frames only artificially, so that we must adopt a special attitude towards it and examine it with other eyes than those of positive science. Philosophy, then, invades the domain of experience. She busies herself with many things which hitherto have not concerned her. Science, theory of knowledge, and metaphysics find themselves on the same ground. At first there may be a certain confusion. All three may think they have lost something. But all three will profit from the meeting.

Positive science, indeed, may pride itself on the uniform value attributed to its affirmations in the whole field of experience. But, if they are all placed on the same footing, they are all tainted with the same relativity. It is not so, if we begin by making the distinction which, in our view, is forced upon us. The understanding is at home in the domain of unorganized matter. On this matter human action is naturally exercised; and action, as we said above, cannot be set in motion in the unreal. Thus, of physics—so long as we are considering only its general form and not the particular cutting out of matter in which it is manifested—we may say that it touches the absolute. On the contrary, it is by accident—chance or convention, as you please—that science obtains a hold on the living analogous to the hold it has on matter. Here the use of conceptual frames is no longer natural. I do not wish to say that it is not legitimate, in the scientific meaning of the term. If science is to extend our action on things, and if we can act only with inert matter for instrument, science can and must continue to treat the living as it has treated the inert. But, in doing so, it must be understood that the further it penetrates thedepths oflife, the more symbolic, the more relative to the contingencies of action, the knowledge it supplies to us becomes. On this new ground philosophy ought then to follow science, in order to superpose on scientific truth a knowledge of another kind, which may be called metaphysical. Thus combined, all our knowledge, both scientific and metaphysical, is heightened. In the absolute we live and move and have our being. The knowledge we possess of it is incomplete, no doubt, but not external or relative. It is reality itself, in the profoundest meaning of the word, that we reach by the combined and progressive development of science and of philosophy.

Thus, in renouncing the factitious unity which the understanding imposes on nature from outside, we shall perhaps find its true, inward and living unity. For the effort we make to transcend the pure understanding introduces us into that more vast something out of which our understanding is cut, and from which it has detached itself. And, as matter is determined by intelligence, as there is between them an evident agreement, we cannot make the genesis of the one without making the genesis of the other. An identical process must have cut out matter and the intellect, at the same time, from a stuff that contained both. Into this reality we shall get back more and more completely, in proportion as we compel ourselves to transcend pure intelligence.

Let us then concentrate attention on that which we have that is at the same time the most removed from externality and the least penetrated with intellectuality. Let us seek, in the depths of our experience, the point where we feel ourselves most intimately within our own life. It is into pure duration that we then plunge back, a duration in which the past, always moving on, is swellingunceasingly with a present that is absolutely new. But, at the same time, we feel the spring of our will strained to its utmost limit. We must, by a strong recoil of our personality on itself, gather up our past which is slipping away, in order to thrust it, compact and undivided, into a present which it will create by entering. Rare indeed are the moments when we are self-possessed to this extent: it is then that our actions are truly free. And even at these moments we do not completely possess ourselves. Our feeling of duration, I should say the actual coinciding of ourself with itself, admits of degrees. But the more the feeling is deep and the coincidence complete, the more the life in which it replaces us absorbs intellectuality by transcending it. For the natural function of the intellect is to bind like to like, and it is only facts that can be repeated that are entirely adaptable to intellectual conceptions. Now, our intellect does undoubtedly grasp the real moments of real duration after they are past; we do so by reconstituting the new state of consciousness out of a series of views taken of it from the outside, each of which resembles as much as possible something already known; in this sense we may say that the state of consciousness contains intellectuality implicitly. Yet the state of consciousness overflows the intellect; it is indeed incommensurable with the intellect, being itself indivisible and new.

Now let us relax the strain, let us interrupt the effort to crowd as much as possible of the past into the present. If the relaxation were complete, there would no longer be either memory or will—which amounts to saying that, in fact, we never do fall into this absolute passivity, any more than we can make ourselves absolutely free. But, in the limit, we get a glimpse of an existence made of a present which recommences unceasingly—devoid of realduration, nothing but the instantaneous which dies and is born again endlessly. Is the existence of matter of this nature? Not altogether, for analysis resolves it into elementary vibrations, the shortest of which are of very slight duration, almost vanishing, but not nothing. It may be presumed, nevertheless, that physical existence inclines in this second direction, as psychical existence in the first.

Behind "spirituality" on the one hand, and "materiality" with intellectuality on the other, there are then two processes opposite in their direction, and we pass from the first to the second by way of inversion, or perhaps even by simple interruption, if it is true that inversion and interruption are two terms which in this case must be held to be synonymous, as we shall show at more length later on. This presumption is confirmed when we consider things from the point of view of extension, and no longer from that of duration alone.

The more we succeed in making ourselves conscious of our progress in pure duration, the more we feel the different parts of our being enter into each other, and our whole personality concentrate itself in a point, or rather a sharp edge, pressed against the future and cutting into it unceasingly. It is in this that life and action are free. But suppose we let ourselves go and, instead of acting, dream. At once the self is scattered; our past, which till then was gathered together into the indivisible impulsion it communicated to us, is broken up into a thousand recollections made external to one another. They give up interpenetrating in the degree that they become fixed. Our personality thus descends in the direction of space. It coasts around it continually in sensation. We will not dwell here on a point we have studied elsewhere. Let us merely recall that extensionadmits of degrees, that all sensation is extensive in a certain measure, and that the idea of unextended sensations, artificially localized in space, is a mere view of the mind, suggested by an unconscious metaphysic much more than by psychological observation.

No doubt we make only the first steps in the direction of the extended, even when we let ourselves go as much as we can. But suppose for a moment that matter consists in this very movement pushed further, and that physics is simply psychics inverted. We shall now understand why the mind feels at its ease, moves about naturally in space, when matter suggests the more distinct idea of it. This space it already possessed as an implicit idea in its own eventualdetension, that is to say, of its own possibleextension. The mind finds space in things, but could have got it without them if it had had imagination strong enough to push the inversion of its own natural movement to the end. On the other hand, we are able to explain how matter accentuates still more its materiality, when viewed by the mind. Matter, at first, aided mind to run down its own incline; it gave the impulsion. But, the impulsion once received, mind continues its course. The idea that it forms ofpurespace is only theschemaof the limit at which this movement would end. Once in possession of the form of space, mind uses it like a net with meshes that can be made and unmade at will, which, thrown over matter, divides it as the needs of our action demand. Thus, the space of our geometry and the spatiality of things are mutually engendered by the reciprocal action and reaction of two terms which are essentially the same, but which move each in the direction inverse of the other. Neither is space so foreign to our nature as we imagine, nor is matter as completely extended in space as our senses and intellect represent it.

We have treated of the first point elsewhere. As to the second, we will limit ourselves to pointing out that perfect spatiality would consist in a perfect externality of parts in their relation to one another, that is to say, in a complete reciprocal independence. Now, there is no material point that does not act on every other material point. When we observe that a thing really is there where itacts, we shall be led to say (as Faraday[79]was) that all the atoms interpenetrate and that each of them fills the world. On such a hypothesis, the atom or, more generally, the material point, becomes simply a view of the mind, a view which we come to take when we continue far enough the work (wholly relative to our faculty of acting) by which we subdivide matter into bodies. Yet it is undeniable that matter lends itself to this subdivision, and that, in supposing it breakable into parts external to one another, we are constructing a science sufficiently representative of the real. It is undeniable that if there be no entirely isolated system, yet science finds means of cutting up the universe into systems relatively independent of each other, and commits no appreciable error in doing so. What else can this mean but that matterextendsitself in space without being absolutelyextendedtherein, and that in regarding matter as decomposable into isolated systems, in attributing to it quite distinct elements which change in relation to each other without changing in themselves (which are "displaced," shall we say, without being "altered"), in short, in conferring on matter the properties of pure space, we are transporting ourselves to the terminal point of the movement of which matter simply indicates the direction?


Back to IndexNext