IV.

IT has been known, from time immemorial, that the sweet liquids which may be obtained by expressing the juices of the fruits and stems of various plants, or by steeping malted barley in hot water, or by mixing honey with water—are liable to undergo a series of very singular changes, if freely exposed to the air and left to themselves, in warm weather. However clear and pellucid the liquid may have been when first prepared, however carefully it may have been freed, by straining and filtration, from even the finest visible impurities, it will not remain clear. After a time it will become cloudy and turbid; little bubbles will be seen rising to the surface, and their abundance will increase until the liquid hisses as if it were simmering on the fire. By degrees, some of the solid particles which produce the turbidity of the liquid collect at its surface into a scum, which is blown up by the emerging air-bubbles into a thick, foamy froth. Another moiety sinks to the bottom, and accumulates as a muddy sediment, or "lees."

When this action has continued, with more or less violence, for a certain time, it gradually moderates. The evolution of bubbles slackens, and finally comes to an end; scum and lees alike settle at the bottom, and the fluid is once more clear and transparent. But it has acquired properties of which no trace existed in the original liquid. Instead of being a mere sweet fluid, mainly composed of sugar and water, the sugar has more or less completely disappeared, and it has acquired that peculiar smell and taste which we call "spirituous." Instead of being devoid of any obvious effect upon the animal economy, it has become possessed of a very wonderful influence on the nervous system; so that in small doses it exhilarates, while in larger it stupefies, and may even destroy life.

Moreover, if the original fluid is put into a still, and heated for a while, the first and last product of its distillation is simple water; while, when the altered fluid is subjected to the same process, the matter which is first condensed in the receiver is found to be a clear, volatile substance, which is lighter than water, has a pungent taste and smell, possesses the intoxicating powers of the fluid in an eminent degree, and takes fire the moment it is brought in contact with a flame. The alchemists called this volatile liquid, which they obtained from wine, "spirits of wine," just as they called hydrochloric acid "spirits of salt," and as we, to this day, call refined turpentine "spirits of turpentine." As the "spiritus," or breath, of a man was thought to be the most refined and subtle part of him, the intelligent essence of man was also conceived as a sort of breath, or spirit; and, by analogy, the most refined essence of anything was called its "spirit." And thus it has come about that we use the same word for the soul of man and for a glass of gin.

At the present day, however, we even more commonly use another name for this peculiar liquid—namely, "alcohol," and its origin is not less singular. The Dutch physician, Van Helmont, lived in the latter part of the sixteenth and the beginning of the seventeenth century—in the transition period between alchemy and chemistry—and was rather more alchemist than chemist. Appended to his "Opera Omnia," published in 1707, there is a very needful "Clavis ad obscuriorum sensum referandum," in which the following passage occurs:—

"ALCOHOL.—Chymicis est liquor aut pulvis summè subtilisatus, vocabulo Orientalibus quoque, cum primis Habessinis, familiari, quibuscoholspeciatim pulverem impalpabilem ex antimonio pro oculis tin-gendis denotat … Hodie autem, ob analogiam, quivis pulvis teuerior, ut pulvis oculorum cancri summe subtilisatusalcoholaudit, hand aliter ac spiritus rectificatissimialcolisatidicuntur."

Similarly, Robert Boyle speaks of a fine powder as "alcohol;" and, so late as the middle of the last century, the English lexicographer, Nathan Bailey, defines "alcohol" as "the pure substance of anything separated from the more gross, a very fine and impalpable powder, or a very pure, well-rectified spirit." But, by the time of the publication of Lavoisier's "Traité Élémentaire de Chimie," in 1789, the term "alcohol," "alkohol," or "alkool" (for it is spelt in all three ways), which Van Helmont had applied primarily to a fine powder, and only secondarily to spirits of wine, had lost its primary meaning altogether; and, from the end of the last century until now, it has, I believe, been used exclusively as the denotation of spirits of wine, and bodies chemically allied to that substance.

The process which gives rise to alcohol in a saccharine fluid is known to us as "fermentation;" a term based upon the apparent boiling up or "effervescence" of the fermenting liquid, and of Latin origin.

Our Teutonic cousins call the same process "gähren," "gäsen," "göschen," and "gischen;" but, oddly enough, we do not seem to have retained their verb or their substantive denoting the action itself, though we do use names identical with, or plainly derived from, theirs for the scum and lees. These are called, in Low German, "gäscht" and "gischt;" in Anglo-Saxon, "gest," "gist," and "yst," whence our "yeast." Again, in Low German and in Anglo-Saxon, there is another name for yeast, having the form "barm," or "beorm;" and, in the Midland Counties, "barm" is the name by which yeast is still best known. In High German, there is a third name for yeast, "hefe," which is not represented in English, so far as I know.

All these words are said by philologers to be derived from roots expressive of the intestine motion of a fermenting substance. Thus "hefe" is derived from "heben," to raise; "barm" from "beren" or "bären," to bear up; "yeast," "yst," and "gist," have all to do with seething and foam, with "yeasty waves," and "gusty" breezes.

The same reference to the swelling up of the fermenting substance is seen in the Gallo-Latin terms "levure" and "leaven."

It is highly creditable to the ingenuity of our ancestors that the peculiar property of fermented liquids, in virtue of which they "make glad the heart of man," seems to have been known in the remotest periods of which we have any record. All savages take to alcoholic fluids as if they were to the manner born. Our Vedic forefathers intoxicated themselves with the juice of the "soma;" Noah, by a not unnatural reaction against a superfluity of water, appears to have taken the earliest practicable opportunity of qualifying that which he was obliged to drink; and the ghosts of the ancient Egyptians were solaced by pictures of banquets in which the winecup passes round, graven on the walls of their tombs. A knowledge of the process of fermentation, therefore, was in all probability possessed by the prehistoric populations of the globe; and it must have become a matter of great interest even to primaeval wine-bibbers to study the methods by which fermented liquids could be surely manufactured. No doubt, therefore, it was soon discovered that the most certain, as well as the most expeditious, way of making a sweet juice ferment was to add to it a little of the scum, or lees, of another fermenting juice. And it can hardly be questioned that this singular excitation of fermentation in one fluid, by a sort of infection, or inoculation, of a little ferment taken from some other fluid, together with the strange swelling, foaming, and hissing of the fermented substance, must have always attracted attention from the more thoughtful. Nevertheless, the commencement of the scientific analysis of the phenomena dates from a period not earlier than the first half of the seventeenth century.

At this time, Van Helmont made a first step, by pointing out that the peculiar hissing and bubbling of a fermented liquid is due, not to the evolution of common air (which he, as the inventor of the term "gas," calls "gas ventosum"), but to that of a peculiar kind of air such as is occasionally met with in caves, mines, and wells, and which he calls "gas sylvestre."

But a century elapsed before the nature of this "gas sylvestre," or, as it was afterwards called, "fixed air," was clearly determined, and it was found to be identical with that deadly "choke-damp" by which the lives of those who descend into old wells, or mines, or brewers' vats, are sometimes suddenly ended; and with the poisonous aëriform fluid which is produced by the combustion of charcoal, and now goes by the name of carbonic acid gas.

During the same time it gradually became clear that the presence of sugar was essential to the production of alcohol and the evolution of carbonic acid gas, which are the two great and conspicuous products of fermentation. And finally, in 1787, the Italian chemist, Fabroni, made the capital discovery that the yeast ferment, the presence of which is necessary to fermentation, is what he termed a "vegeto-animal" substance—or is a body which gives off ammoniacal salts when it is burned, and is, in other ways, similar to the gluten of plants and the albumen and casein of animals.

These discoveries prepared the way for the illustrious Frenchman, Lavoisier, who first approached the problem of fermentation with a complete conception of the nature of the work to be done. The words in which he expresses this conception, in the treatise on elementary chemistry to which reference has already been made, mark the year 1789 as the commencement of a revolution of not less moment in the world of science than that which simultaneously burst over the political world, and soon engulfed Lavoisier himself in one of its mad eddies.

"We may lay it down as an incontestable axiom that, in all the operations of art and nature, nothing is created; an equal quantity of matter exists both before and after the experiment: the quality and quantity of the elements remain precisely the same, and nothing takes place beyond changes and modifications in the combinations of these elements. Upon this principle, the whole art of performing chemical experiments depends; we must always suppose an exact equality between the elements of the body examined and those of the products of its analysis.

"Hence, since from must of grapes we procure alcohol and carbonic acid, I have an undoubted right to suppose that must consists of carbonic acid and alcohol. From these premisses we have two modes of ascertaining what passes during vinous fermentation: either by determining the nature of, and the elements which compose, the fermentable substances; or by accurately examining the products resulting from fermentation; and it is evident that the knowledge of either of these must lead to accurate conclusions concerning the nature and composition of the other. From these considerations it became necessary accurately to determine the constituent elements of the fermentable substances; and for this purpose I did not make use of the compound juices of fruits, the rigorous analysis of which is perhaps impossible, but made choice of sugar, which is easily analysed, and the nature of which I have already explained. This substance is a true vegetable oxyd, with two bases, composed of hydrogen and carbon, brought to the state of an oxyd by means of a certain proportion of oxygen; and these three elements are combined in such a way that a very slight force is sufficient to destroy the equilibrium of their connection."

After giving the details of his analysis of sugar and of the products of fermentation, Lavoisier continues:—

"The effect of the vinous fermentation upon sugar is thus reduced to the mere separation of its elements into two portions; one part is oxygenated at the expense of the other, so as to form carbonic acid; while the other part, being disoxygenated in favour of the latter, is converted into the combustible substance called alkohol; therefore, if it were possible to re-unite alkohol and carbonic acid together, we ought to form sugar."[1]

[Footnote 1: "Elements of Chemistry." By M. Lavoisier. Translated byRobert Kerr. Second Edition, 1793 (pp. 186—196).]

Thus Lavoisier thought he had demonstrated that the carbonic acid and the alcohol which are produced by the process of fermentation, are equal in weight to the sugar which disappears; but the application of the more refined methods of modern chemistry to the investigation of the products of fermentation by Pasteur, in 1860, proved that this is not exactly true, and that there is a deficit of from 5 to 7 per cent. of the sugar which is not covered by the alcohol and carbonic acid evolved. The greater part of this deficit is accounted for by the discovery of two substances, glycerine and succinic acid, of the existence of which Lavoisier was unaware, in the fermented liquid. But about 1-1/2 per cent. still remains to be made good. According to Pasteur, it has been appropriated by the yeast, but the fact that such appropriation takes place cannot be said to be actually proved.

However this may be, there can be no doubt that the constituent elements of fully 98 per cent. of the sugar which has vanished during fermentation have simply undergone rearrangement; like the soldiers of a brigade, who at the word of command divide themselves into the independent regiments to which they belong. The brigade is sugar, the regiments are carbonic acid, succinic acid, alcohol, and glycerine.

From the time of Fabroni, onwards, it has been admitted that the agent by which this surprising rearrangement of the particles of the sugar is effected is the yeast. But the first thoroughly conclusive evidence of the necessity of yeast for the fermentation of sugar was furnished by Appert, whose method of preserving perishable articles of food excited so much attention in France at the beginning of this century. Gay-Lussac, in his "Mémoire sur la Fermentation,"[1] alludes to Appert's method of preserving beer-wort unfermented for an indefinite time, by simply boiling the wort and closing the vessel in which the boiling fluid is contained, in such a way as thoroughly to exclude air; and he shows that, if a little yeast be introduced into such wort, after it has cooled, the wort at once begins to ferment, even though every precaution be taken to exclude air. And this statement has since received full confirmation from Pasteur.

[Footnote 1: "Annales de Chimie," 1810.]

On the other hand, Schwann, Schroeder and Dusch, and Pasteur, have amply proved that air may be allowed to have free access to beer-wort, without exciting fermentation, if only efficient precautions are taken to prevent the entry of particles of yeast along with the air.

Thus, the truth that the fermentation of a simple solution of sugar in water depends upon the presence of yeast, rests upon an unassailable foundation; and the inquiry into the exact nature of the substance which possesses such a wonderful chemical influence becomes profoundly interesting.

The first step towards the solution of this problem was made two centuries ago by the patient and painstaking Dutch naturalist, Leeuwenhoek, who in the year 1680 wrote thus:—

"Saepissimo examinavi fermentum cerevisiae, semperque hoc ex globulis per materiam pellucidam fluitantibus, quam cerevisiam esse censui, constare observavi: vidi etiam evidentissime, unumquemque hujus fermenti globulum denuo ex sex distinctis globullis constare, accurate eidem quantitate et formae, cui globulis sanguinis nostri, respondentibus.

"Verum talis mini de horum origine et formatione conceptus formabam; globulis nempe ex quibus farina Tritici, Hordei, Avenae, Fagotritici, se constat aquae calore dissolvi et aquae commisceri; hac, vero aqua, quam cerevisiam vocare licet, refrigescente, multos ex minimis particulis in cerevisia coadunari, et hoc pacto efficere particulam sive globulum, quae sexta pars est globuli faecis, et iterum sex ex hisce globulis conjungi."[1]

[Footnote 1: Leeuwenhoek, "Arcana Naturae Detecta." Ed. Nov., 1721.]

Thus Leeuwenhoek discovered that yeast consists of globules floating in a fluid; but he thought that they were merely the starchy particles of the grain from which the wort was made, re-arranged. He discovered the fact that yeast had a definite structure, but not the meaning of the fact. A century and a half elapsed, and the investigation of yeast was recommenced almost simultaneously by Cagniard de la Tour in France, and by Schwann and Kützing in Germany. The French observer was the first to publish his results; and the subject received at his hands and at those of his colleague, the botanist Turpin, full and satisfactory investigation.

The main conclusions at which they arrived are these. The globular, or oval, corpuscles which float so thickly in the yeast as to make it muddy, though the largest are not more than one two-thousandth of an inch in diameter, and the smallest may measure less than one seven-thousandth of an inch, are living organisms. They multiply with great rapidity, by giving off minute buds, which soon attain the size of their parent, and then either become detached or remain united, forming the compound globules of which Leeuwenhoek speaks, though the constancy of their arrangement in sixes existed only in the worthy Dutchman's imagination.

It was very soon made out that these yeast organisms, to which Turpin gave the name ofTorula cerevisiae, were more nearly allied to the lower Fungi than to anything else. Indeed Turpin, and subsequently Berkeley and Hoffmann, believed that they had traced the development of theTorulainto the well-known and very common mould—thePenicillium glaucum. Other observers have not succeeded in verifying these statements; and my own observations lead me to believe, that while the connection betweenTorulaand the moulds is a very close one, it is of a different nature from that which has been supposed. I have never been able to trace the development ofTorulainto a true mould; but it is quite easy to prove that species of true mould, such asPenicillium, when sown in an appropriate nidus, such as a solution of tartrate of ammonia and yeast-ash, in water, with or without sugar, give rise toTorulae, similar in all respects toT. cerevisiae, except that they are, on the average, smaller. Moreover, Bail has observed the development of aTorulalarger thanT. cerevisiae, from aMucor, a mould allied toPenicillium.

It follows, therefore, that theTorulae, or organisms of yeast, are veritable plants; and conclusive experiments have proved that the power which causes the rearrangement of the molecules of the sugar is intimately connected with the life and growth of the plant. In fact, whatever arrests the vital activity of the plant also prevents it from exciting fermentation.

Such being the facts with regard to the nature of yeast, and the changes which it effects in sugar, how are they to be accounted for? Before modern chemistry had come into existence, Stahl, stumbling, with the stride of genius, upon the conception which lies at the bottom of all modern views of the process, put forward the notion that the ferment, being in a state of internal motion, communicated that motion to the sugar, and thus caused its resolution into new substances. And Lavoisier, as we have seen, adopts substantially the same view, (But Fabroni, full of the then novel conception of acids and bases and double decompositions, propounded the hypothesis that sugar is an oxide with two bases, and the ferment a carbonate with two bases; that the carbon of the ferment unites with the oxygen of the sugar, and gives rise to carbonic acid; while the sugar, uniting with the nitrogen of the ferment, produces a new substance analogous to opium. This is decomposed by distillation, and gives rise to alcohol.) Next, in 1803, Thénard propounded a hypothesis which partakes somewhat of the nature of both Stahl's and Fabroni's views. "I do not believe with Lavoisier," he says, "that all the carbonic acid formed proceeds from the sugar. How, in that case, could we conceive the action of the ferment on it? I think that the first portions of the acid are due to a combination of the carbon of the ferment with the oxygen of the sugar, and that it is by carrying off a portion of oxygen from the last that the ferment causes the fermentation to commence—the equilibrium between the principles of the sugar being disturbed, they combine afresh to form carbonic acid and alcohol."

The three views here before us may be familiarly exemplified by supposing the sugar to be a card-house. According to Stahl, the ferment is somebody who knocks the table, and shakes the card-house down; according to Fabroni, the ferment takes out some cards, but puts others in their places; according to Thénard, the ferment simply takes a card out of the bottom story, the result of which is that all the others fall.

As chemistry advanced, facts came to light which put a new face upon Stahl's hypothesis, and gave it a safer foundation than it previously possessed. The general nature of these phenomena may be thus stated:—A body, A, without giving to, or taking from, another body, B, any material particles, causes B to decompose into other substances, C, D, E, the sum of the weights of which is equal to the weight of B, which decomposes.

Thus, bitter almonds contain two substances, amygdalin and synaptase, which can be extracted, in a separate state, from the bitter almonds. The amygdalin thus obtained, if dissolved in water, undergoes no change; but if a little synaptase be added to the solution, the amygdalin splits up into bitter almond oil, prussic acid, and a kind of sugar.

A short time after Cagniard de la Tour discovered the yeast plant, Liebig, struck with the similarity between this and other such processes and the fermentation of sugar, put forward the hypothesis that yeast contains a substance which acts upon sugar, as synaptase acts upon amygdalin. And as the synaptase is certainly neither organized nor alive, but a mere chemical substance, Liebig treated Cagniard de la Tour's discovery with no small contempt, and, from that time to the present, has steadily repudiated the notion that the decomposition of the sugar is, in any sense, the result of the vital activity of theTorula. But, though the notion that theTorulais a creature which eats sugar and excretes carbonic acid and alcohol, which is not unjustly ridiculed in the most surprising paper that ever made its appearance in a grave scientific journal[1], may be untenable, the fact that theTorulaeare alive, and that yeast does not excite fermentation unless it contains livingTorulae, stands fast. Moreover, of late years, the essential participation of living organisms in fermentation other than the alcoholic, has been clearly made out by Pasteur and other chemists.

[Footnote 1: "Das enträthselte Geheimniss der geistigen Gährung (Vorläufige briefliche Mittheilung)" is the title of an anonymous contribution, to Wöhler and Liebig's "Annalen der Pharmacie" for 1839, in which a somewhat Rabelaisian imaginary description of the organization of the "yeast animals" and of the manner in which their functions are performed, is given with a circumstantiality worthy of the author of Gulliver's Travels. As a specimen of the writer's humour, his account of what happens when fermentation comes to an end may suffice. "Sobald nämlich die Thiere keinen Zucker mehr vorfinden, so fressen sie sich gegenseitig selbst auf, was durch eine eigene Manipulation geschicht; alles wird verdaut bis auf die Eier, welche unverändert durch den Darmkanal hineingehen; man hat zuletzt wieder gährungsfähige Hefe, nämlich den Saamen der Thiere, der übrig bleibt."]

However, it may be asked, is there any necessary opposition between the so-called "vital" and the strictly physico-chemical views of fermentation? It is quite possible that the livingTorulamay excite fermentation in sugar, because it constantly produces, as an essential part of its vital manifestations, some substance which acts upon the sugar, just as the synaptase acts upon the amygdalin. Or it may be, that, without the formation of any such special substance, the physical condition of the living tissue of the yeast plant is sufficient to effect that small disturbance of the equilibrium of the particles of the sugar, which Lavoisier thought sufficient to effect its decomposition.

Platinum in a very fine state of division—known as platinum black, ornoir de platine—has the very singular property of causing alcohol to change into acetic acid with great rapidity. The vinegar plant, which is closely allied to the yeast plant, has a similar effect upon dilute alcohol, causing it to absorb the oxygen of the air, and become converted into vinegar; and Liebig's eminent opponent, Pasteur, who has done so much for the theory and the practice of vinegar-making, himself suggests that in this case—

"La cause du phénomène physique qui accompagne la vie de la plante réside dans un état physique propre, analogue à celui du noir de platine. Mais il est essentiel de remarquer que cet état physique de la plante est étroitement lié avec la vie de cette plante."[1]

[Footnote 1: "Etudes sur les Mycodermes," Comptes-Rendus, liv., 1862.]

Now, if the vinegar plant gives rise to the oxidation of alcohol, on account of its merely physical constitution, it is at any rate possible that the physical constitution of the yeast plant may exert a decomposing influence on sugar.

But, without presuming to discuss a question which leads us into the very arcana of chemistry, the present state of speculation upon themodus operandiof the yeast plant in producing fermentation is represented, on the one hand, by the Stahlian doctrine, supported by Liebig, according to which the atoms of the sugar are shaken into new combinations, either directly by theTorulae, or indirectly, by some substance formed by them; and, on the other hand, by the Thénardian doctrine, supported by Pasteur, according to which the yeast plant assimilates part of the sugar, and, in so doing, disturbs the rest, and determines its resolution into the products of fermentation. Perhaps the two views are not so much opposed as they seem at first sight to be.

But the interest which attaches to the influence of the yeast plants upon the medium in which they live and grow does not arise solely from its bearing upon the theory of fermentation. So long ago as 1838, Turpin compared theTorulaeto the ultimate elements of the tissues of animals and plants—"Les organes élémentaires de leurs tissus, comparables aux petits végétaux des levures ordinaires, sont aussi les décompositeurs des substances qui les environnent."

Almost at the same time, and, probably, equally guided by his study of yeast, Schwann was engaged in those remarkable investigations into the form and development of the ultimate structural elements of the tissues of animals, which led him to recognize their fundamental identity with the ultimate structural elements of vegetable organisms.

The yeast plant is a mere sac, or "cell," containing a semi-fluid matter, and Schwann's microscopic analysis resolved all living organisms, in the long run, into an aggregation of such sacs or cells, variously modified; and tended to show, that all, whatever their ultimate complication, begin their existence in the condition of such simple cells.

In his famous "Mikroskopische Untersuchungen," Schwann speaks ofTorulaas a "cell;" and, in a remarkable note to the passage in which he refers to the yeast plant, Schwann says:—

"I have been unable to avoid mentioning fermentation, because it is the most fully and exactly known operation of cells, and represents, in the simplest fashion, the process which is repeated by every cell of the living body."

In other words, Schwann conceives that every cell of the living body exerts an influence on the matter which surrounds and permeates it, analogous to that which aTorulaexerts on the saccharine solution by which it is bathed. A wonderfully suggestive thought, opening up views of the nature of the chemical processes of the living body, which have hardly yet received all the development of which they are capable.

Kant defined the special peculiarity of the living body to be that the parts exist for the sake of the whole and the whole for the sake of the parts. But when Turpin and Schwann resolved the living body into an aggregation of quasi-independent cells, each, like aTorula, leading its own life and having its own laws of growth and development, the aggregation being dominated and kept working towards a definite end only by a certain harmony among these units, or by the superaddition of a controlling apparatus, such as a nervous system, this conception ceased to be tenable. The cell lives for its own sake, as well as for the sake of the whole organism; and the cells, which float in the blood, live at its expense, and profoundly modify it, are almost as much independent organisms as theTorulaewhich float in beer-wort.

Schwann burdened his enunciation of the "cell theory" with two false suppositions; the one, that the structures he called "nucleus" and "cell-wall" are essential to a cell; the other, that cells are usually formed independently of other cells; but, in 1839, it was a vast and clear gain to arrive at the conception, that the vital functions of all the higher animals and plants are the resultant of the forces inherent in the innumerable minute cells of which they are composed, and that each of them is, itself, an equivalent of one of the lowest and simplest of independent living beings—theTorula.

From purely morphological investigations, Turpin and Schwann, as we have seen, arrived at the notion of the fundamental unity of structure of living beings. And, before long, the researches of chemists gradually led up to the conception of the fundamental unity of their composition.

So far back as 1803, Thénard pointed out, in most distinct terms, the important fact that yeast contains a nitrogenous "animal" substance; and that such a substance is contained in all ferments. Before him, Fabroni and Fourcroy speak of the "vegeto-animal" matter of yeast. In 1844 Mulder endeavoured to demonstrate that a peculiar substance, which he called "protein," was essentially characteristic of living matter. In 1846, Payen writes:—

"Enfin, une loi sans exception me semble apparaître dans les faits nombreux que j'ai observés et conduire à envisager sous un nouveau jour la vie végétale; si je ne m'abuse, tout ce que dans les tissus végétaux la vue directe où amplifiée nous permet de discerner sous la forme de cellules et de vaisseaux, ne représente autre chose que les enveloppes protectrices, les réservoirs et les conduits, à l'aide desquels les corps animés qui les secrètent et les façonnent, se logent, puisent et charriant leurs aliments, déposent et isolent les matières excrétées."

And again:—

"A fin de complêter aujourd'hui l'énoncé du fait général, je rappellerai que les corps, doué des fonctions accomplies dans les tissus des plantes, sont formés des éléments qui constituent, en proportion peu variable, les organismes animaux; qu'ainsi l'on est conduit à reconnaître une immense unité de composition élémentaire dans tous les corps vivants de la nature."[1]

[Footnote 1: "Mém. sur les Développements des Végétaux," &c.—"Mém.Présentées." ix. 1846.]

In the year (1846) in which these remarkable passages were published, the eminent German botanist, Von Mohl, invented the word "protoplasm," as a name for one portion of those nitrogenous contents of the cells of living plants, the close chemical resemblance of which to the essential constituents of living animals is so strongly indicated by Payen. And through the twenty-five years that have passed, since the matter of life was first called protoplasm, a host of investigators, among whom Cohn, Max Schulze, and Kühne must be named as leaders, have accumulated evidence, morphological, physiological, and chemical, in favour of that "immense unité de composition élémentaire dans tous les corps vivants de la nature," into which Payen had, so early, a clear insight.

As far back as 1850, Cohn wrote, apparently without any knowledge of what Payen had said before him:—

"The protoplasm of the botanist, and the contractile substance and sarcode of the zoologist, must be, if not identical, yet in a high degree analogous substances. Hence, from this point of view, the difference between animals and plants consists in this; that, in the latter, the contractile substance, as a primordial utricle, is enclosed within an inert cellulose membrane, which permits it only to exhibit an internal motion, expressed by the phenomena of rotation and circulation, while, in the former, it is not so enclosed. The protoplasm in the form of the primordial utricle is, as it were, the animal element in the plant, but which is imprisoned, and only becomes free in the animal;or, to strip off the metaphor which obscures simple thought, the energy of organic vitality which is manifested in movement is especially exhibited by a nitrogenous contractile substance, which in plants is limited and fettered by an inert membrane, in animals not so."[1]

[Footnote 1: Cohn, "Ueber Protococcus pluvialis," in the "Nova Acta" for 1850.]

In 1868, thinking that an untechnical statement of the views current among the leaders of biological science might be interesting to the general public, I gave a lecture embodying them in Edinburgh. Those who have not made the mistake of attempting to approach biology, either by the highà prioriroad of mere philosophical speculation, or by the mere lowà posteriorilane offered by the tube of a microscope, but have taken the trouble to become acquainted with well-ascertained facts and with their history, will not need to be told that in what I had to say "as regards protoplasm" in my lecture "On the Physical Basis of Life," there was nothing new; and, as I hope, nothing that the present state of knowledge does not justify us in believing to be true. Under these circumstances, my surprise may be imagined, when I found, that the mere statement of facts and of views, long familiar to me as part of the common scientific property of continental workers, raised a sort of storm in this country, not only by exciting the wrath of unscientific persons whose pet prejudices they seemed to touch, but by giving rise to quite superfluous explosions on the part of some who should have been better informed.

Dr. Stirling, for example, made my essay the subject of a special critical lecture[1], which I have read with much interest, though, I confess, the meaning of much of it remains as dark to me as does the "Secret of Hegel" after Dr. Stirling's elaborate revelation of it. Dr. Stirling's method of dealing with the subject is peculiar. "Protoplasm" is a question of history, so far as it is a name; of fact, so far as it is a thing. Dr. Stirling has not taken the trouble to refer to the original authorities for his history, which is consequently a travesty; and still less has he concerned himself with looking at the facts, but contents himself with taking them also at secondhand. A most amusing example of this fashion of dealing with scientific statements is furnished by Dr. Stirling's remarks upon my account of the protoplasm of the nettle hair. That account was drawn up from careful and often-repeated observation of the facts. Dr. Stirling thinks he is offering a valid criticism, when he says that my valued friend Professor Stricker gives a somewhat different statement about protoplasm. But why in the world did not this distinguished Hegelian look at a nettle hair for himself, before venturing to speak about the matter at all? Why trouble himself about what either Stricker or I say, when any tyro can see the facts for himself, if he is provided with those not rare articles, a nettle and a microscope? But I suppose this would have been "Aufklärung"—a recurrence to the base common-sense philosophy of the eighteenth century, which liked to see before it believed, and to understand before it criticised. Dr. Stirling winds up his paper with the following paragraph:—

[Footnote 1: Subsequently published under the title of "As regardsProtoplasm."]

"In short, the whole position of Mr. Huxley, (1) that all organisms consist alike of the same life-matter, (2) which life-matter is, for its part, due only to chemistry, must be pronounced untenable—nor less untenable (3) the materialism he would found on it."

The paragraph contains three distinct assertions concerning my views, and just the same number of utter misrepresentations of them. That which I have numbered (1) turns on the ambiguity of the word "same," for a discussion of which I would refer Dr. Stirling to a great hero of "Aufklärung", Archbishop Whately; statement number (2) is, in my judgment, absurd, and certainly I have never said anything resembling it; while, as to number (3), one great object of my essay was to show that what is called "materialism," has no sound philosophical basis!

As we have seen, the study of yeast has led investigators face to face with problems of immense interest in pure chemistry, and in animal and vegetable morphology. Its physiology is not less rich in subjects for inquiry. Take, for example, the singular fact that yeast will increase indefinitely when grown in the dark, in water containing only tartrate of ammonia, a small percentage of mineral salts, and sugar. Out of these materials theTorulaewill manufacture nitrogenous protoplasm, cellulose, and fatty matters, in any quantity, although they are wholly deprived of those rays of the sun, the influence of which is essential to the growth of ordinary plants. There has been a great deal of speculation lately, as to how the living organisms buried beneath two or three thousand fathoms of water, and therefore in all probability almost deprived of light, live.

If any of them possess the same powers as yeast (and the same capacity for living without light is exhibited by some other fungi) there would seem to be no difficulty about the matter.

Of the pathological bearings of the study of yeast, and other such organisms, I have spoken elsewhere. It is certain that, in some animals, devastating epidemics are caused by fungi of low order—similar to those of whichTorulais a sort of offshoot. It is certain that such diseases are propagated by contagion and infection, in just the same way as ordinary contagious and infectious diseases are propagated. Of course, it does not follow from this, that all contagious and infectious diseases are caused by organisms of as definite and independent a character as theTorula; but, I think, it does follow that it is prudent and wise to satisfy oneself in each particular case, that the "germ theory" cannot and will not explain the facts, before having recourse to hypotheses which have no equal support from analogy.

The lumps of coal in a coal-scuttle very often have a roughly cubical form. If one of them be picked out and examined with a little care, it will be found that its six sides are not exactly alike. Two opposite sides are comparatively smooth and shining, while the other four are much rougher, and are marked by lines which run parallel with the smooth sides. The coal readily splits along these lines, and the split surfaces thus formed are parallel with the smooth faces. In other words, there is a sort of rough and incomplete stratification in the lump of coal, as if it were a book, the leaves of which had stuck together very closely.

Sometimes the faces along which the coal splits are not smooth, but exhibit a thin layer of dull, charred-looking substance, which is known as "mineral charcoal."

Occasionally one of the faces of a lump of coal will present impressions, which are obviously those of the stem, or leaves, of a plant; but though hard mineral masses of pyrites, and even fine mud, may occur here and there, neither sand nor pebbles are met with.

When the coal burns, the chief ultimate products of its combustion are carbonic acid, water, and ammoniacal products, which escape up the chimney; and a greater or less amount of residual earthy salts, which take the form of ash. These products are, to a great extent, such as would result from the burning of so much wood.

These properties of coal may be made out without any very refined appliances, but the microscope reveals something more. Black and opaque as ordinary coal is, slices of it become transparent if they are cemented in Canada balsam, and rubbed down very thin, in the ordinary way of making thin sections of non-transparent bodies. But as the thin slices, made in this way, are very apt to crack and break into fragments, it is better to employ marine glue as the cementing material. By the use of this substance, slices of considerable size and of extreme thinness and transparency may be obtained.[1]

[Footnote 1: My assistant in the Museum of Practical Geology, Mr. Newton, invented this excellent method of obtaining thin slices of coal.]

Now let us suppose two such slices to be prepared from our lump of coal—one parallel with the bedding, the other perpendicular to it; and let us call the one the horizontal, and the other the vertical, section. The horizontal section will present more or less rounded yellow patches and streaks, scattered irregularly through the dark brown, or blackish, ground substance; while the vertical section will exhibit more elongated bars and granules of the same yellow materials, disposed in lines which correspond, roughly, with the general direction of the bedding of the coal.

This is the microscopic structure of an ordinary piece of coal. But if a great series of coals, from different localities and seams, or even from different parts of the same seam, be examined, this structure will be found to vary in two directions. In the anthracitic, or stone-coals, which burn like coke, the yellow matter diminishes, and the ground substance becomes more predominant, and blacker, and more opaque, until it becomes impossible to grind a section thin enough to be translucent; while, on the other hand, in such as the "Better-Bed" coal of the neighbourhood of Bradford, which burns with much flame, the coal is of a far lighter colour, and transparent sections are very easily obtained. In the browner parts of this coal, sharp eyes will readily detect multitudes of curious little coin-shaped bodies, of a yellowish brown colour, embedded in the dark brown ground substance. On the average, these little brown bodies may have a diameter of about one-twentieth of an inch. They lie with their flat surfaces nearly parallel with the two smooth faces of the block in which they are contained; and, on one side of each, there may be discerned a figure, consisting of three straight linear marks, which radiate from the centre of the disk, but do not quite reach its circumference. In the horizontal section these disks are often converted into more or less complete rings; while in the vertical sections they appear like thick hoops, the sides of which have been pressed together. The disks are, therefore, flattened bags; and favourable sections show that the three-rayed marking is the expression of three clefts, which penetrate one wall of the bag.

The sides of the bags are sometimes closely approximated; but, when the bags are less flattened, their cavities are, usually, filled with numerous, irregularly rounded, hollow bodies, having the same kind of wall as the large ones, but not more than one seven-hundredth of an inch in diameter.

In favourable specimens, again, almost the whole ground substance appears to be made up of similar bodies—more or less carbonized or blackened—and, in these, there can be no doubt that, with the exception of patches of mineral charcoal, here and there, the whole mass of the coal is made up of an accumulation of the larger and of the smaller sacs.

But, in one and the same slice, every transition can be observed from this structure to that which has been described as characteristic of ordinary coal. The latter appears to rise out of the former, by the breaking-up and increasing carbonization of the larger and the smaller sacs. And, in the anthracitic coals, this process appears to have gone to such a length, as to destroy the original structure altogether, and to replace it by a completely carbonized substance.

Thus coal may be said, speaking broadly, to be composed of two constituents: firstly, mineral charcoal; and, secondly, coal proper. The nature of the mineral charcoal has long since been determined. Its structure shows it to consist of the remains of the stems and leaves of plants, reduced to little more than their carbon. Again, some of the coal is made up of the crushed and flattened bark, or outer coat, of the stems of plants, the inner wood of which has completely decayed away. But what I may term the "saccular matter" of the coal, which, either in its primary or in its degraded form, constitutes by far the greater part of all the bituminous coals I have examined, is certainly not mineral charcoal; nor is its structure that of any stem or leaf. Hence its real nature is, at first, by no means apparent, and has been the subject of much discussion.

The first person who threw any light upon the problem, as far as I have been able to discover, was the well-known geologist, Professor Morris. It is now thirty-four years since he carefully described and figured the coin-shaped bodies, or larger sacs, as I have called them, in a note appended to the famous paper "On the Coal-brookdale Coal-Field," published at that time, by the present President of the Geological Society, Mr. Prestwich. With much sagacity, Professor Morris divined the real nature of these bodies, and boldly affirmed them to be the spore-cases of a plant allied to the living club-mosses.

But discovery sometimes makes a long halt; and it is only a few years since Mr. Carruthers determined the plant (or rather one of the plants) which produces these spore-cases, by finding the discoidal sacs still adherent to the leaves of the fossilized cone which produced them. He gave the name ofFlemingites gracilisto the plant of which the cones form a part. The branches and stem of this plant are not yet certainly known, but there is no sort of doubt that it was closely allied to theLepidodendron, the remains of which abound in the coal formation. TheLepidodendrawere shrubs and trees which put one more in mind of anAraucariathan of any other familiar plant; and the ends of the fruiting branches were terminated by cones, or catkins, somewhat like the bodies so named in a fir, or a willow. These conical fruits, however, did not produce seeds; but the leaves of which they were composed bore upon their surfaces sacs full of spores or sporangia, such as those one sees on the under surface of a bracken leaf. Now, it is these sporangia of the Lepidodendroid plantFlemingiteswhich were identified by Mr. Carruthers with the free sporangia described by Professor Morris, which are the same as the large sacs of which I have spoken. And, more than this, there is no doubt that the small sacs are the spores, which were originally contained in the sporangia.

The living club-mosses are, for the most part, insignificant and creeping herbs, which, superficially, very closely resemble true mosses, and none of them reach more than two or three feet in height. But, in their essential structure, they very closely resemble the earliest Lepidodendroid trees of the coal: their stems and leaves are similar; so are their cones; and no less like are the sporangia and spores; while even in their size, the spores of theLepidodendronand those of the existingLycopodium, or club-moss, very closely approach one another.

Thus, the singular conclusion is forced upon us, that the greater and the smaller sacs of the "Better-Bed" and other coals, in which the primitive structure is well preserved, are simply the sporangia and spores of certain plants, many of which were closely allied to the existing club-mosses. And if, as I believe, it can be demonstrated that ordinary coal is nothing but "saccular" coal which has undergone a certain amount of that alteration which, if continued, would convert it into anthracite; then, the conclusion is obvious, that the great mass of the coal we burn is the result of the accumulation of the spores and spore-cases of plants, other parts of which have furnished the carbonized stems and the mineral charcoal, or have left their impressions on the surfaces of the layer.

Of the multitudinous speculations which, at various times, have been entertained respecting the origin and mode of formation of coal, several appear to be negatived, and put out of court, by the structural facts the significance of which I have endeavoured to explain. These facts, for example, do not permit us to suppose that coal is an accumulation of peaty matter, as some have held.

Again, the late Professor Quekett was one of the first observers who gave a correct description of what I have termed the "saccular" structure of coal; and, rightly perceiving that this structure was something quite different from that of any known plant, he imagined that it proceeded from some extinct vegetable organism which was peculiarly abundant amongst the coal-forming plants. But this explanation is at once shown to be untenable when the smaller and the larger sacs are proved to be spores or sporangia.

Some, once more, have imagined that coal was of submarine origin; and though the notion is amply and easily refuted by other considerations, it may be worth while to remark, that it is impossible to comprehend how a mass of light and resinous spores should have reached the bottom of the sea, or should have stopped in that position if they had got there.

At the same time, it is proper to remark that I do not presume to suggest that all coal must needs have the same structure; or that there may not be coals in which the proportions of wood and spores, or spore-cases, are very different from those which I have examined. All I repeat is, that none of the coals which have come under my notice have enabled me to observe such a difference. But, according to Principal Dawson, who has so sedulously examined the fossil remains of plants in North America, it is otherwise with the vast accumulations of coal in that country.

"The true coal," says Dr. Dawson, "consists principally of the flattened bark of Sigillarioid and other trees, intermixed with leaves of Ferns andCordaites, and other herbaceousdébris, and with fragments of decayed wood, constituting 'mineral charcoal,' all these materials having manifestly alike grown and accumulated where we find them."[1]

[Footnote 1: "Acadian Geology," 2nd edition, p. 138.]

When I had the pleasure of seeing Principal Dawson in London last summer, I showed him my sections of coal, and begged him to re-examine some of the American coals on his return to Canada, with an eye to the presence of spores and sporangia, such as I was able to show him in our English and Scotch coals. He has been good enough to do so; and in a letter dated September 26th, 1870, he informs me that—

"Indications of spore-cases are rare, except in certain coarse shaly coals and portions of coals, and in the roofs of the seams. The most marked case I have yet met with is the shaly coal referred to as containingSporangitesin my paper on the conditions of accumulation of coal (Journal of the Geological Society, vol. xxii. pp. 115, 139, and 165). The purer coals certainly consist principally of cubical tissues with some true woody matter, and the spore-cases, &c., are chiefly in the coarse and shaly layers. This is my old doctrine in my two papers in theJournal of the Geological Society, and I see nothing to modify it. Your observations, however, make it probable that the frequentclear spotsin the cannels are spore-cases."

Dr. Dawson's results are the more remarkable, as the numerous specimens of British coal, from various localities, which I have examined, tell one tale as to the predominance of the spore and sporangium element in their composition; and as it is exactly in the finest and purest coals, such as the "Better-Bed" coal of Lowmoor, that the spores and sporangia obviously constitute almost the entire mass of the deposit.

Coal, such as that which has been described, is always found in sheets, or "seams," varying from a fraction of an inch to many feet in thickness, enclosed in the substance of the earth at very various depths, between beds of rock of different kinds. As a rule, every seam of coal rests upon a thicker, or thinner, bed of clay, which is known as "under-clay." These alternations of beds of coal, clay, and rock may be repeated many times, and are known as the "coal-measures;" and in some regions, as in South Wales and in Nova Scotia, the coal-measures attain a thickness of twelve or fourteen thousand feet, and enclose eighty or a hundred seams of coal, each with its under-clay, and separated from those above and below by beds of sandstone and shale.

The position of the beds which constitute the coal-measures is infinitely diverse. Sometimes they are tilted up vertically, sometimes they are horizontal, sometimes curved into great basins; sometimes they come to the surface, sometimes they are covered up by thousands of feet of rock. But, whatever their present position, there is abundant and conclusive evidence that every under-clay was once a surface soil. Not only do carbonized root-fibres frequently abound in these under-clays; but the stools of trees, the trunks of which are broken off and confounded with the bed of coal, have been repeatedly found passing into radiating roots, still embedded in the under-clay. On many parts of the coast of England, what are commonly known as "submarine forests" are to be seen at low water. They consist, for the most part, of short stools of oak, beech, and fir trees, still fixed by their long roots in the bed of blue clay in which they originally grew. If one of these submarine forest beds should be gradually depressed and covered up by new deposits, it would present just the same characters as an under-clay of the coal, if theSigillariaandLepidodendronof the ancient world were substituted for the oak, or the beech, of our own times.

In a tropical forest, at the present day, the trunks of fallen trees, and the stools of such trees as may have been broken by the violence of storms, remain entire for but a short time. Contrary to what might be expected, the dense wood of the tree decays, and suffers from the ravages of insects, more swiftly than the bark. And the traveller, setting his foot on a prostrate trunk, finds that it is a mere shell, which breaks under his weight, and lands his foot amidst the insects, or the reptiles, which have sought food or refuge within.

The trees of the coal forests present parallel conditions. When the fallen trunks which have entered into the composition of the bed of coal are identifiable, they are mere double shells of bark, flattened together in consequence of the destruction of the woody core; and Sir Charles Lyell and Principal Dawson discovered, in the hollow stools of coal trees of Nova Scotia, the remains of snails, millipedes, and salamander-like creatures, embedded in a deposit of a different character from that which surrounded the exterior of the trees. Thus, in endeavouring to comprehend the formation of a seam of coal, we must try to picture to ourselves a thick forest, formed for the most part of trees like gigantic club-mosses, mares-tails, and tree ferns, with here and there some that had more resemblance to our existing yews and fir-trees. We must suppose that, as the seasons rolled by, the plants grew and developed their spores and seeds; that they shed these in enormous quantities, which accumulated on the ground beneath; and that, every now and then, they added a dead frond or leaf; or, at longer intervals, a rotten branch, or a dead trunk, to the mass.

A certain proportion of the spores and seeds no doubt fulfilled their obvious function, and, carried by the wind to unoccupied regions, extended the limits of the forest; many might be washed away by rain into streams, and be lost; but a large portion must have remained, to accumulate like beech-mast, or acorns, beneath the trees of a modern forest.

But, in this case, it may be asked, why does not our English coal consist of stems and leaves to a much greater extent than it does? What is the reason of the predominance of the spores and spore-cases in it?

A ready answer to this question is afforded by the study of a living full-grown club-moss. Shake it upon a piece of paper, and it emits a cloud of fine dust, which falls over the paper, and is the well-known Lycopodium powder. Now this powder used to be, and I believe still is, employed for two objects, which seem at first sight to have no particular connection with one another. It is, or was, employed in making lightning, and in making pills. The coats of the spores contain so much resinous matter, that a pinch of Lycopodium powder, thrown through the flame of a candle, burns with an instantaneous flash, which has long done duty for lightning on the stage. And the same character makes it a capital coating for pills; for the resinous powder prevents the drug from being wetted by the saliva, and thus bars the nauseous flavour from the sensitive papillae of the tongue.

But this resinous matter, which lies in the walls of the spores and sporangia, is a substance not easily altered by air and water, and hence tends to preserve these bodies, just as the bituminized cerecloth preserves an Egyptian mummy; while, on the other hand, the merely woody stem and leaves tend to rot, as fast as the wood of the mummy's coffin has rotted. Thus the mixed heap of spores, leaves, and stems in the coal-forest would be persistently searched by the long-continued action of air and rain; the leaves and stems would gradually be reduced to little but their carbon, or, in other words, to the condition of mineral charcoal in which we find them; while the spores and sporangia remained as a comparatively unaltered and compact residuum.

There is, indeed, tolerably clear evidence that the coal must, under some circumstances, have been converted into a substance hard enough to be rolled into pebbles, while it yet lay at the surface of the earth; for in some seams of coal, the courses of rivulets, which must have been living water, while the stratum in which their remains are found was still at the surface, have been observed to contain rolled pebbles of the very coal through which the stream has cut its way.

The structural facts are such as to leave no alternative but to adopt the view of the origin of such coal as I have described, which has just been stated; but, happily, the process is not without analogy at the present day. I possess a specimen of what is called "white coal" from Australia. It is an inflammable material, burning with a bright flame, and having much the consistence and appearance of oat-cake, which, I am informed, covers a considerable area. It consists, almost entirely, of a compacted mass of spores and spore-cases. But the fine particles of blown sand which are scattered through it, show that it must have accumulated, subaërially, upon the surface of a soil covered by a forest of cryptogamous plants, probably tree-ferns.

As regards this important point of the subaërial region of coal, I am glad to find myself in entire accordance with Principal Dawson, who bases his conclusions upon other, but no less forcible, considerations. In a passage, which is the continuation of that already cited, he writes:—

"(3) The microscopical structure and chemical composition of the beds of cannel coal and earthy bitumen, and of the more highly bituminous and carbonaeceous shale, show them to have been of the nature of the fine vegetable mud which accumulates in the ponds and shallow lakes of modern swamps. When such fine vegetable sediment is mixed, as is often the case, with clay, it becomes similar to the bituminous limestone and calcareo-bituminous shales of the coal-measures. (4) A few of the under-clays, which support beds of coal, are of the nature of the vegetable mud above referred to; but the greater part are argillo-arenaceous in composition, with little vegetable matter, and bleached by the drainage from them of water containing the products of vegetable decay. They are, in short, loamy or clay soils, and must have been sufficiently above water to admit of drainage. The absence of sulphurets, and the occurrence of carbonate of iron in connection with them, prove that, when they existed as soils, rain-water, and not sea-water, percolated them. (5) The coal and the fossil forests present many evidences of subaërial conditions. Most of the erect and prostrate trees had become hollow shells of bark before they were finally embedded, and their wood had broken into cubical pieces of mineral charcoal. Land-snails and galley-wormsXylobiuscrept into them, and they became dens, or traps, for reptiles. Large quantities of mineral charcoal occur on the surface of all the large beds of coal. None of these appearances could have been produced by subaqueous action. (6) Though the roots of theSigillariabear more resemblance to the rhizomes of certain aquatic plants; yet, structurally, they are absolutely identical with the roots of Cycads, which the stems also resemble. Further, theSigillariaegrew on the same soils which supported Conifers,Lepidodendra, Cordaites, and Ferns—plants which could not have grown in water. Again, with the exception perhaps of somePinnulariaeandAsterophyllites, there is a remarkable absence from the coal measures of any form of properly aquatic vegetation. (7) The occurrence of marine, or brackish-water animals, in the roofs of coal-beds, or even in the coal itself, affords no evidence of subaqueous accumulation, since the same thing occurs in the case of modern submarine forests. For these and other reasons, some of which are more fully stated in the papers already referred to, while I admit that the areas of coal accumulation were frequently submerged, I must maintain that the true coal is a subaërial accumulation by vegetable growth on soils, wet and swampy it is true, but not submerged."

I am almost disposed to doubt whether it is necessary to make the concession of "wet and swampy;" otherwise, there is nothing that I know of to be said against this excellent conspectus of the reasons for believing in the subaërial origin of coal.

But the coal accumulated upon the area covered by one of the great forests of the carboniferous epoch would, in course of time, have been wasted away by the small, but constant, wear and tear of rain and streams, had the land which supported it remained at the same level, or been gradually raised to a greater elevation. And, no doubt, as much coal as now exists has been destroyed, after its formation, in this way. What are now known as coal districts owe their importance to the fact that they were areas of slow depression, during a greater or less portion of the carboniferous epoch; and that, in virtue of this circumstance, Mother Earth was enabled to cover up her vegetable treasures, and preserve them from destruction.

Wherever a coal-field now exists, there must formerly have been free access for a great river, or for a shallow sea, bearing sediment in the shape of sand and mud. When the coal-forest area became slowly depressed, the waters must have spread over it, and have deposited their burden upon the surface of the bed of coal, in the form of layers, which are now converted into shale, or sandstone. Then followed a period of rest, in which the superincumbent shallow waters became completely filled up, and finally replaced, by fine mud, which settled down into a new under-clay, and furnished the soil for a fresh forest growth. This flourished, and heaped up its spores and wood into coal, until the stage of slow depression recommenced. And, in some localities, as I have mentioned, the process was repeated until the first of the alternating beds had sunk to near three miles below its original level at the surface of the earth.

In reflecting on the statement, thus briefly made, of the main facts connected with the origin of the coal formed during the carboniferous epoch, two or three considerations suggest themselves.

In the first place, the great phantom of geological time rises before the student of this, as of all other, fragments of the history of our earth—springing irrepressibly out of the facts, like the Djin from the jar which the fisherman so incautiously opened; and like the Djin again, being vaporous, shifting, and indefinable, but unmistakably gigantic. However modest the bases of one's calculation may be, the minimum of time assignable to the coal period remains something stupendous.

Principal Dawson is the last person likely to be guilty of exaggeration in this matter, and it will be well to consider what he has to say about it:—

"The rate of accumulation of coal was very slow. The climate of the period, in the northern temperate zone, was of such a character that the true conifers show rings of growth, not larger, nor much less distinct, than those of many of their modern congeners. TheSigillariaeandCalamiteswere not, as often supposed, composed wholly, or even principally, of lax and soft tissues, or necessarily short-lived. The former had, it is true, a very thick inner bark; but their dense woody axis, their thick and nearly imperishable outer bark, and their scanty and rigid foliage, would indicate no very rapid growth or decay. In the case of theSigillariae, the variations in the leaf-scars in different parts of the trunk, the intercalation of new ridges at the surface representing that of new woody wedges in the axis, the transverse marks left by the stages of upward growth, all indicate that several years must have been required for the growth of stems of moderate size. The enormous roots of these trees, and the condition of the coal-swamps, must have exempted them from the danger of being overthrown by violence. They probably fell in successive generations from natural decay; and making every allowance for other materials, we may safely assert that every foot of thickness of pure bituminous coal implies the quiet growth and fall of at least fifty generations ofSigillariae, and therefore an undisturbed condition of forest growth enduring through many centuries. Further, there is evidence that an immense amount of loose parenchymatous tissue, and even of wood, perished by decay, and we do not know to what extent even the most durable tissues may have disappeared in this way; so that, in many coal-seams, we may have only a very small part of the vegetable matter produced."

Undoubtedly the force of these reflections is not diminished when the bituminous coal, as in Britain, consists of accumulated spores and spore-cases, rather than of stems. But, suppose we adopt Principal Dawson's assumption, that one foot of coal represents fifty generations of coal plants; and, further, make the moderate supposition that each generation of coal plants took ten years to come to maturity—then, each foot-thickness of coal represents five hundred years. The superimposed beds of coal in one coal-field may amount to a thickness of fifty or sixty feet, and therefore the coal alone, in that field, represents 500 x 50 = 25,000 years. But the actual coal is but an insignificant portion of the total deposit, which, as has been seen, may amount to between two and three miles of vertical thickness. Suppose it be 12,000 feet—which is 240 times the thickness of the actual coal—is there any reason why we should believe it may not have taken 240 times as long to form? I know of none. But, in this case, the time which the coal-field represents would be 25,000 x 240 =6,000,000 years. As affording a definite chronology, of course such calculations as these are of no value; but they have much use in fixing one's attention upon a possible minimum. A man may be puzzled if he is asked how long Rome took a-building; but he is proverbially safe if he affirms it not to have been built in a day; and our geological calculations are all, at present, pretty much on that footing.

A second consideration which the study of the coal brings prominently before the mind of anyone who is familiar with palaeontology is, that the coal Flora, viewed in relation to the enormous period of time which it lasted, and to the still vaster period which has elapsed since it flourished, underwent little change while it endured, and in its peculiar characters, differs strangely little from that which at present exists.

The same species of plants are to be met with throughout the whole thickness of a coal-field, and the youngest are not sensibly different from the oldest. But more than this. Notwithstanding that the carboniferous period is separated from us by more than the whole time represented by the secondary and tertiary formations, the great types of vegetation were as distinct then as now. The structure of the modern club-moss furnishes a complete explanation of the fossil remains of theLepidodendra, and the fronds of some of the ancient ferns are hard to distinguish from existing ones. At the same time, it must be remembered, that there is nowhere in the world, at present, anyforestwhich bears more than a rough analogy with a coal-forest. The types may remain, but the details of their form, their relative proportions, their associates, are all altered. And the tree-fern forest of Tasmania, or New Zealand, gives one only a faint and remote image of the vegetation of the ancient world.

Once more, an invariably-recurring lesson of geological history, at whatever point its study is taken up: the lesson of the almost infinite slowness of the modification of living forms. The lines of the pedigrees of living things break off almost before they begin to converge.

Finally, yet another curious consideration. Let us suppose that one of the stupid, salamander-like Labyrinthodonts, which pottered, with much belly and little leg, like Falstaff in his old age, among the coal-forests, could have had thinking power enough in his small brain to reflect upon the showers of spores which kept on falling through years and centuries, while perhaps not one in ten million fulfilled its apparent purpose, and reproduced the organism which gave it birth: surely he might have been excused for moralizing upon the thoughtless and wanton extravagance which Nature displayed in her operations.

But we have the advantage over our shovel-headed predecessor—or possibly ancestor—and can perceive that a certain vein of thrift runs through this apparent prodigality. Nature is never in a hurry, and seems to have had always before her eyes the adage, "Keep a thing long enough, and you will find a use for it." She has kept her beds of coal many millions of years without being able to find much use for them; she has sent them down beneath the sea, and the sea-beasts could make nothing of them; she has raised them up into dry land, and laid the black veins bare, and still, for ages and ages, there was no living thing on the face of the earth that could see any sort of value in them; and it was only the other day, so to speak, that she turned a new creature out of her workshop, who by degrees acquired sufficient wits to make a fire, and then to discover that the black rock would burn.

I suppose that nineteen hundred years ago, when Julius Caesar was good enough to deal with Britain as we have dealt with New Zealand, the primaeval Briton, blue with cold and woad, may have known that the strange black stone, of which he found lumps here and there in his wanderings, would burn, and so help to warm his body and cook his food. Saxon, Dane, and Norman swarmed into the land. The English people grew into a powerful nation, and Nature still waited for a full return of the capital she had invested in the ancient club-mosses. The eighteenth century arrived, and with it James Watt. The brain of that man was the spore out of which was developed the steam-engine, and all the prodigious trees and branches of modern industry which have grown out of this. But coal is as much an essential condition of this growth and development as carbonic acid is for that of a club-moss. Wanting coal, we could not have smelted the iron needed to make our engines, nor have worked our engines when we had got them. But take away the engines, and the great towns of Yorkshire and Lancashire vanish like a dream. Manufactures give place to agriculture and pasture, and not ten men can live where now ten thousand are amply supported.


Back to IndexNext