CHAPTER V.

Fig. 35.—Illusion of Colour.

A convenient way of picturing the scale of purity is shown in Fig 35. The shaded oblong may be supposed to represent a painted strip of cardboardor paper. At the extreme right hand end the colour is supposed to be absolutely pure red; towards the left the red gradually becomes paler or more dilute, and at the middle of the diagram it has merged into perfect whiteness. The figures 0 to 100 from left to right denote the percentage of free red contained in the mixture at different parts of the scale; the luminosity is supposed to be uniform throughout.

Now the white light with which the red is diluted may be regarded as consisting of two parts, one of which is of exactly the same hue as the pure red itself, and the other an equivalent proportion of the complementary colour, which in the present case will be greenish-blue. The fact therefore really is that, as we pass along the scale from100 to 0, thetotalquantity of red in the mixture is not reduced to nothing, but only to one half, while at the same time greenish-blue is added in proportions increasing from nought at the extreme right to 50 per cent. of the whole at the middle of the card. The ordinates of the quadrilateral figure E D B F show the proportion of red, and those of the triangle E F B the proportion of greenish-blue, at different parts of the scale.

Regarding the portion of the strip which lies above the point marked 0, as representing the zero of colour—that is, whiteness or greyness, which is essentially the same as whiteness—let us continue the diagram in the negative direction, gradually reducing the quantity of red until it falls from 50 per cent. of thewhole at F to nothing at A, and at the same time increasing that of the greenish-blue from 50 per cent. at F to 100 per cent. at A. The resultant hue in the portion of the card between F and A will be greenish-blue, which begins to be perceptible as a very pale tint just to the left of F, and increases in purity as A is approached, at which point the colour will be entirely free from any admixture with white.

We have in the scale thus presented to our imagination a pair of colours, each occupying one-half of the scale, and gradually diminishing in purity towards the middle line; here only, just at the stage where one colour merges into the other, is there no colour at all, and this region represents the fixed physical zero or standard from which is reckoned thepurity of a colour corresponding to any other portion of the scale. The completed scale, it will be observed, though originally intended only for the case of red, turns out to be equally serviceable for greenish-blue: if we consider greenish-blue as positive, then the red, being on the other side of zero, must be regarded as negative. Any other possible pairs of complementary colours may be similarly treated.

This device enables us at once to understand the consequence of mentally displacing the zero, while physically the scale remains unchanged. When red is the prevailing colour in the field of vision, we are inclined to consider it unduly pale; in other words we imagine it to be nearer the zero of the scale than is actually the case, and so areled to shift our standard of whiteness from the middle slightly towards the red end of the scale. The new position assigned to white, being a little to the right of the point marked 0 inFig. 35, is one where, under customary circumstances, the colour would be called pale red. At the same time, an object which is normally white, and is exactly matched at the middle of the scale, would be a little to the left of the imaginary zero, and would consequently appear to be of a greenish-blue tint.

This apparent transformation of white or grey into a decided colour is most striking when the inducing colour is considerably diluted with white or is of feeble luminosity. A small fragment of neutral grey paper, placed upon a much larger piece of a bright red hue, generallyappears at the first glance[11]to be greenish-blue, but if the light is at all strong, only slightly so. If, however, a sheet of white tissue paper is laid over the whole, the greenish-blue tint immediately becomes startlingly distinct, and may even appear more decided than the red itself as seen through the tissue. The same piece of grey paper, when placed upon a green ground, appears rose-coloured, and upon a blue ground, yellow, the effect being always greatly increased by the diluent action of superposed tissue paper.

There seem to be several reasons, partly physical and partly psychological,why these contrast colours, as they are called, are more pronounced when the colour that calls them into existence either has a somewhat pale tint or is feebly illuminated. Probably the most important is of a purely physical character. The refracting media of the eye are much less perfectly transparent than a good glass lens is; they are sensibly turbid or opalescent, and in consequence of this defect some of the light which falls upon them is irregularly scattered over the retina. If we look at a bright red object with a small white patch upon it, the image of the patch as formed upon the retina is not, physically speaking, perfectly white, but slightly coloured by diffused red light; owing however to the psychological influence to which our attention has been directed, the faint redcoloration is not consciously perceived; the same mental displacement of the zero which, when the exciting colour was feeble, led us to regard white (or grey) as bluish-green, now causes what is actually pale red to appear white.

There is no need whatever to assume that the contrast colours with which we have been dealing are of physiological origin and due to an inductive action excited in portions of the retina adjacent to those upon which coloured light falls. On the contrary, it would be a matter for surprise if the case in question presented an exception to the comprehensive law which governs the fluctuation of the mental judgment.

Of the operation of this law I have quoted several very diverse instances, and the number might easily have beenincreased. Nor is it only in relation to optical phenomena that the law holds good; in its most general form, supplemented it may be in some instances by obvious corollaries, it is applicable to almost every case in which physical attributes of whatever kind are the subject of unassisted mental judgment.

CURIOSITIES OF VISION.

The function of the eye, regarded as an optical instrument, is limited to the formation of luminous images upon the retina. From a purely physical point of view it is a simple enough piece of apparatus, and, as was forcibly pointed out by Helmholtz, it is subject to a number of defects which can be demonstrated by the simplest tests, and which, if they occurred in a shop-bought instrument, would be considered intolerable.

What takes place in the retina itself under luminous excitation, and how thesensation of sight is produced, are questions which belong to the sciences of physiology and psychology; and in the physiological and psychological departments of the visual machinery we meet with an additional host of objectionable peculiarities from which any humanly-constructed apparatus is by the nature of the case free.

Yet in spite of all these drawbacks our eyes do us excellent service, and provided that they are free from actual malformation and have not suffered from injury or disease, we do not often find fault with them. This, however, is not because they are as good as they might be, but because with incessant practice we have acquired a very high degree of skill in their use. If anything is more remarkable than theease and certainty with which we have learnt to interpret ocular indications, when they are in some sort of conformity with external objects, it is the pertinacity with which we refuse to be misled when our eyes are doing their best to deceive us. In our earliest years we began to find out that we must not believe all we saw; experience gradually taught us that on certain points and under certain circumstances the indications of our organs of vision were uniformly meaningless or fallacious, and we soon discovered that it would save us trouble and add to the comfort of life if we cultivated a habit of completely ignoring all such visual sensations as were of no practical value. In this most of us have been remarkably successful; so much so, that if, frommotives of curiosity, or for the sake of scientific experiment, we wish to direct our attention to the sensations in question, and to see things as they actually appear, we can only do so with the greatest difficulty; sometimes, indeed, not at all, unless with the assistance of some specially contrived artifice.

In the present chapter it is proposed to discuss a few of the less familiar vagaries of the visual organs, and to show how they may be demonstrated. Some of the experiments may, it is to be feared, be found rather difficult; success will depend mainly upon the experimentalist’s ability to lay aside habit and prejudice, and give close attention to his visual sensations; but it is hardly to be expected that an unskilled person will at the first attemptobserve all the phenomena which will be referred to.

Among the most annoying of the eccentricities which characterise the sense of vision is that known as the persistence of impressions. The sensation of sight which is produced by an illuminated object does not cease at the moment when the exciting cause is removed or changed in position; it continues for a period which is generally said to be about a tenth of a second, but may sometimes be much more or less. It is for this reason that we cannot see the details of anything which is in rapid motion, but only an indistinct blur, resulting from the confusion of successive impressions. If a cardboard disk, which is painted in conspicuous black and white sectors is caused to rotate at a sufficiently highspeed, the divisions are completely lost sight of, and the whole surface appears to be of a uniformly grey hue. But if the rapidly rotating disk is illuminated by a properly timed series of electric flashes, it looks as if it were at rest, and in spite of the intermittent nature of the light, the black and white sectors can be seen quite continuously, though as a matter of fact the intervals of darkness are very much longer than those of illumination. Persistent impressions of this kind are often spoken of as positive after-images.

There is a very remarkable phenomenon accompanying the formation of positive after-images, especially those following brief illumination, which seems, until comparatively recent times, to have entirely escaped the notice of the most acuteobservers. It was first observed accidentally by Professor C. A. Young, when he was experimenting with a large electrical machine which had been newly acquired for his laboratory. He noticed that when a powerful Leyden jar discharge took place in a darkened room, any conspicuous object was seen twice at least, with an interval of a trifle less than a quarter of a second, the first time vividly, the second time faintly. Often it was seen a third time, and sometimes, but only with great difficulty, even a fourth time. He gave to this phenomenon the name of recurrent vision; it may perhaps be more appropriately denominated the Young effect.

By means of the powerful machine presented to the Royal Institution by Mr. Wimshurst, used in conjunction witha battery of Leyden jars, the Young effect has been successfully shown to a large assembly. But it is quite easy to demonstrate it on a small scale with any influence machine which will give a spark about an inch long. One of the terminals of the machine should be connected by a wire with the inner coating of a half-pint Leyden jar, the other with the outer coating, and the discharging balls should be set a quarter of an inch apart. The observer’s eyes must be shielded from the direct light of the spark by any convenient screen, such as a large book set on end. The best object for the experiment is a sheet of white paper, placed in an upright position a few inches away from the terminals of the machine and exposed to the full light of the discharge.

The room being darkened, let the machine be worked slowly, while the eyes are turned towards the white paper. This will be seen for a moment when the spark passes, and, after a dark interval of about one-fifth of a second, it will make another brief appearance. After a further short interval of darkness, a second recurrent image will often be seen. It may be remarked that the effect is most striking when the eyes are not directed exactly upon the white paper, but above or on one side of it; the proper distance of the paper from the spark-gap should be found by trial.

Under favourable conditions I have observed as many as six or seven reappearances of an object which was illuminated by a single discharge. These followed one another at the usualrate—about five in a second—and produced a twinkling or quivering effect, closely resembling that attending a flash of lightning which is not directly seen. There can indeed be little doubt that the proverbial quiver of the lightning-flash is in many cases merely an effect of recurrent vision, though sometimes, of course, as has been shown by photographs, the discharge is really multiple.

Some years ago I called attention to a very different method of exhibiting a recurrent image. The apparatus used for the purpose consists of a vacuum tube mounted in the usual way upon a horizontal axis capable of rotation. When the tube is illuminated by a rapid succession of discharges from an induction coil, and is made to rotate very slowly by clockwork (turning once inevery two or three seconds), a very curious phenomenon may be noticed. At a distance of a few degrees behind the tube and separated from it by an interval of perfect darkness, comes a ghost. This ghost is in form an exact reproduction of the tube; it is very clearly defined, and though its apparent luminosity is somewhat feeble, it can in most cases be seen without difficulty. The varied colours of the original are, however, absent, the whole of the phantom tube being of a uniform bluish or violet tint. If the rotation is suddenly stopped the ghost still moves steadily on until it reaches the luminous tube, with which it coalesces and so disappears. (SeeFig. 36, where the recurrent image is represented by dotted lines.)

Fig. 36.—Recurrent Vision demonstrated with a Vacuum Tube.

More recently a fresh series of experiments were undertaken in connection with the Young effect and certain allied matters, the results being embodied in a communication to the Royal Society (Proc. Roy. Soc., 1894, vol. 56, p. 132). Among other things an attempt was made to ascertain how far a recurrent image was affected by the colour of the excitinglight. With this object two methods of experimenting were employed. In the first, coloured light was obtained by passing white light through coloured glasses; in the second and more perfect series of experiments, the pure coloured light of the spectrum was used. Among other results it was found that,cæteris paribus, the recurrent image was much stronger with green light than with any other, and that when the excitation was produced by pure red light, however intense, there was no recurrent image at all.

Fig. 37.—Recurrent Vision with Rotating Disk.

For a repetition of my first experiment a mechanical lantern slide is required containing a metal disk about three inches in diameter which can be caused to rotate slowly and steadily about its centre. Near the edge of the disk is a small circular aperture. The slide is placed in a limelight lantern, and a bright image of the hole is focussed upon a distant screen, all other light being carefully shut off. When the disk is turned slowly, the spot of light upon the screen goes round and round, and it is generally possible to see at once that the bright primary spot appears to be followed at a short distance by a much feebler spot of a violet colour, which isthe recurrent image of the first. (SeeFig. 37.) It is essential to keep the direction of the eyes perfectly steady, which is not a very easy thing to do without practice.

If a green glass is placed before the lens, the ghost will be at its best, and should be seen quite clearly and easily, provided that no attempt is made to follow it with the eyes. With an orange glass the ghost becomes less distinctly visible, and its colour generally appears to be greenish-blue, instead of violet as before. When a red glass is substituted, the ghost completely disappears. If the speed of rotation is sufficiently high, the red spot is considerably elongated during its revolution, and its colour ceases to be uniform, the tail assuming a light bluish-pink tint. But however great the speed,no complete separation of the spot into red and pink portions can be effected, and no recurrent image is ever found.

The spectrum method of observation can only be carried out on a small scale, and is not suited for exhibition to an audience. It, however, affords the best means of ascertaining how far the apparent colour of the recurrent image depends upon that of the primary, a matter of some theoretical interest.

Fig. 38.—Recurrent Vision with Spectrum.

The arrangement adopted is shown in the annexed diagram (Fig. 38). L is a lantern containing an oxyhydrogen light or an electric arc lamp, S is an adjustable slit, M a projection lens, P a bisulphide of carbon prism, D a metal plate in the middle of which is a circular aperture 2 millimetres (1⁄12inch) in diameter. A bright spectrum, 6 or 7 centimetres in length (about 3 inches), is projected upon this metal plate, and a small selectedportion of it passes through the round hole; thence the coloured light goes through the lens N to the little mirror Q, which reflects it upon the white screen R. By properly adjusting the position of the lens N a sharp monochromatic image of the round hole in the plate D is focussed upon the screen R. To the back of the mirror Q is attached a horizontal arm which is not quite perpendicular to the mirror, its inclination being capable of adjustment. The arm is turned slowly by clock-work, thus causing the coloured spot on the screen to revolve in a circular orbit about 30 centimetres (1 foot) in diameter, its recurrent image following at a short distance behind it. When the mirror turns once in 1½ seconds, this image appears about 50° behind the colouredspot, the corresponding time-interval being about one-fifth of a second.

Using this apparatus, it was found that white light was followed by a violet recurrent image; after blue and green, when the image was brightest, its colour was also violet; after yellow and orange it appeared blue or greenish blue. On the other hand, when a complete spectrum was caused to revolve upon the screen, the whole of its recurrent image from end to end appeared violet; there was no suspicion of blue or greenish-blue at the less refrangible end. For this and other reasons given in the paper it was concluded that the true colour was in all cases really violet, the blue and greenish-blue apparently seen in conjunction with the much brighter yellow andorange of the primary being merely an illusory effect of contrast.

It seems likely, then, that the phenomenon which has been spoken of as recurrent vision, is due principally, if not entirely, to an action of the violet nerve-fibres.

Recurrent vision is, no doubt, generally most conspicuous after a very brief period of retinal illumination, such as was employed in the experiments which we have been discussing; this is evidently due to the fact that the effect is most easily perceived when the sensibility of the retina has not been impaired by fatigue. But by a little effort it may be detected even after very prolonged illumination, and a practised observer can hardly avoid noticing a short flash of bluish light which manifests itselfabout a quarter of a second after the lights in a room have been suddenly extinguished; the phenomenon forces itself upon my attention almost every night when I turn off the electric lights. It need hardly be pointed out that it represents only a transient phase of the well known positive after-image, and it had even been observed in a vague and uncertain sort of way long before the date of Professor Young’s experiment. Helmholtz, for example, mentions the case of a positive after-image which seemed to disappear and then to brighten up again, but he goes on to explain—erroneously, as it turns out—that the seeming disappearance was illusory.

M. Charpentier, of Nancy, whose work in physiological optics is well known, was the first to notice and record a remarkablephenomenon which, in some form or other, must present itself many times daily to every person who is not blind, but which until about seven years ago had been absolutely and universally ignored. The law which is associated with Charpentier’s name is this:—When darkness is succeeded by light, the stimulus which the retina at first receives, and which causes the sensation of luminosity, is followed by a brief period of insensibility, resulting in the sensation of momentary darkness. It appears that the dark period begins about one sixtieth of a second after the light has first been admitted to the eye, and lasts for about an equal time. The whole alternation from light to darkness and back again to light is performed so rapidly, that except under certain conditions, which, however,occur frequently enough, it cannot be detected.

Fig. 39.—Charpentier’s Dark Band.

The apparatus which Charpentier employed for demonstrating and measuring the duration of this effect is very simple. It consists of a blackened disk with a white sector, mounted upon an axis. When the disk is illuminated by sunlight and turned rather slowly, the direction of the gaze being fixed upon the centre, there appears upon the white sector,close behind its leading edge, a narrow but quite conspicuous dark band. (SeeFig. 39.) The portion of the retina which at any moment is apparently occupied by the dark band, is that upon which the light reflected by the leading edge of the white sector impinged one sixtieth of a second previously.

But no special apparatus is required to show the dark reaction. InFig. 40an attempt has been made to illustrate what any one may see if he simply moves his hand between his eyes and the sky or any strongly illuminated white surface. The hand appears to be followed by a dark outline separated from it by a bright interval. The same kind of thing happens, in a more or less marked degree, whenever a dark object moves across a bright background,or a bright object across a dark background.

Fig. 40.—Charpentier’s Effect shown with the Hand.

In order to see the effect distinctly by Charpentier’s original method, the illumination must be strong. If, howover, the arrangement is slightly varied, so that transmitted instead of reflected light is made use of, comparatively feeble illumination is sufficient. A very effective way is to turn a small metaldisk, having an open sector of about 60°, in front of a sheet of ground or opal glass behind which is a lamp. By an arrangement of this kind upon a larger scale, the effect may easily be rendered visible to an audience. The eyes should not be allowed to follow the disk in its rotation, but should be directed steadily upon the centre.

The acute and educated vision of Charpentier enabled him, even when working with his black and white disk, to detect the existence, under favourable conditions, of a second, and sometimes a third, band of greatly diminished intensity, though he remarks that the observation is a very difficult one. What is probably the same effect can, however, as pointed out in my paper of 1894, be shown quite easily in a different manner.If a disk with a narrow radial slit, about half a millimetre (1⁄50inch) wide, is caused to rotate at the rate of about one turn per second in front of a bright background, such as a sheet of ground glass with a lamp behind it, the moving slit assumes the appearance of a fan-shaped luminous patch, the brightness of which diminishes with the distance from the leading edge. And if the eyes are steadily fixed upon the centre of the disk, it will be noticed that this bright image is streaked with a number of dark radial bands, suggestive of the ribs or sticks of a fan. Near the circumference as many as four or five such dark streaks can be distinguished without difficulty; towards the centre they are less conspicuous, owing to the overlapping of the successive images of theslit. The effect is roughly indicated inFig. 41.

Fig. 41.—Multiple Dark Bands.

The dark reaction known as the Charpentier effect occurs at the beginning of a period of illumination. There is also a dark reaction of very short duration at the end of a period of illumination. It should be explained that, owing to what is called the proper light of the retina, ordinary darkness does not appear absolutely black: even in a darkroom on a dark night with the eyes carefully covered, there is always some sensation of luminosity which would be sufficient to show up a really black image if one could be produced. Now the darkness which is experienced after the extinction of a light is for a small fraction of a second more intense than common darkness.

The first mention of this dark reaction perhaps occurs in an article contributed toNaturein 1885, in which it was stated that when the current was cut off from an illuminated vacuum tube “the luminous image was almost instantly replaced by a corresponding image which seemed to be intensely black upon a less dark background,” and which was estimated to last from a-quarter to a-half second. “Abnormal darkness,” it wasadded, “follows as a reaction after luminosity.”

Fig. 42.—Temporary Insensitiveness of the Eye.

In the Royal Society paper before referred to the point is further discussed, and a method is described by which the stage of reaction may be easily exhibited and its duration approximately measured. If a translucent disk, made of stout drawing-paper and having an open sector, is caused to rotate slowly in front of a luminous background, a narrowradial dark band, like a streak of black paint, appears upon the paper very near the edge which follows the open sector. From the space covered by this band when the disk was rotating at a known speed, the duration of the dark reaction was calculated to be about one-fiftieth of a second; my original estimate was therefore an excessive one. The experiment is illustrated inFig. 42.

One more interesting point should be noticed in the train of visual phenomena which attend a period of illumination. The sensation of luminosity which is excited when light first strikes the eye is for about a sixtieth of a second much more intense than it subsequently becomes. This is shown by the fact, which is obvious enough when once attention has been directed to it, that the bright band, whichin the Charpentier disk intervenes between the dark band and the leading edge of the white sector, appears to be much more strongly illuminated than any other portion of the sector.

The complete order of visual phenomena observed when the retina is exposed to the action of light for a limited time may therefore be summed up as follows:—

(1) Immediately upon the impact of the light there is experienced a sensation of luminosity, the intensity of which increases for about one-sixtieth of a second: more rapidly towards the end of that period than at first.(2) Then ensues a sudden re-action, lasting also for about one-sixtieth of a second, in virtue of which the retina becomes partially insensible to renewed or continued luminous impressions.

(1) Immediately upon the impact of the light there is experienced a sensation of luminosity, the intensity of which increases for about one-sixtieth of a second: more rapidly towards the end of that period than at first.

(2) Then ensues a sudden re-action, lasting also for about one-sixtieth of a second, in virtue of which the retina becomes partially insensible to renewed or continued luminous impressions.

These two effects may be repeated in a diminished degree, as often as three or four times.

(3) The stage of fluctuation is succeeded by a sensation of steady luminosity, the intensity of which is, however, considerably below the mean of that experienced during the first one-sixtieth of a second.(4) After the external light has been shut off, a sensation of diminishing luminosity continues for a short time, and is succeeded by a brief interval of darkness.(5) Then follows a sudden and clearly-defined sensation of what may be called abnormal darkness—darker than common darkness—which lasts for about one-sixtieth of a second, and is followed by another interval of ordinary darkness.(6) Finally, in about a fifth of a second after the extinction of the external light, there occurs another transient impression of luminosity, generally violet coloured, after which the uniformity of the darkness remains undisturbed.

(3) The stage of fluctuation is succeeded by a sensation of steady luminosity, the intensity of which is, however, considerably below the mean of that experienced during the first one-sixtieth of a second.

(4) After the external light has been shut off, a sensation of diminishing luminosity continues for a short time, and is succeeded by a brief interval of darkness.

(5) Then follows a sudden and clearly-defined sensation of what may be called abnormal darkness—darker than common darkness—which lasts for about one-sixtieth of a second, and is followed by another interval of ordinary darkness.

(6) Finally, in about a fifth of a second after the extinction of the external light, there occurs another transient impression of luminosity, generally violet coloured, after which the uniformity of the darkness remains undisturbed.

Fig. 43, which is copied from my paper, gives a rough diagrammatic representation of the above described chain of sensations. No account is here taken of the comparatively feeble after-images which succeed the recurrent image, and may last for several seconds.

I propose now to say a few words about a curious phenomenon of vision which a short time ago excited considerable interest.

Fig. 43.—Visual Sensations attending a period of Illumination.

Fig. 44.—Benham’s Top.

In the year 1895 Mr. C. E. Benham brought out a pretty little toy which he called the Artificial Spectrum Top. It consists of a cardboard disk, one half of which is painted black, while on the other half are drawn four successive groups of curved black lines at different distances from the centre, as shown inFig. 44. When the disk rotates rather slowly, each group of black lines generally appears to assume a different colour, the nature of which dependsupon the speed of the rotation and the intensity and quality of the light. Under the best conditions the inner and outer groups of lines become bright red and dark blue; at the same time the intermediate groups also appear tinted, but the hues which they assume are rather uncertain and difficult to specify. By far the most striking of the colours exhibited by the top is the red, and next to that the blue; this latter is, however, sometimes described as bluish-green.

Some experiments carried out by myself in 1896 (Proc. Roy. Soc., vol. 60, p. 370) seem to indicate pretty clearly the cause of the remarkable bright red colour, and also that of the blue. The more feeble tints of the two intermediate groups of lines perhapsresult from similar causes in a modified form, but these have not yet been investigated.

In the red colour we have another striking example of an exceedingly common phenomenon which is habitually disregarded; indeed I can find no record of its ever having been noticed at all. The fact is that whenever a bright image is suddenly formed upon the retina after a period of comparative darkness, this image appears for a short time to be surrounded by a narrow coloured border, the colour, under ordinary conditions of illumination, being red. If the light is very strong, the transient border is greenish-blue, but this colour, as will be explained later, turned out to be merely an after-effect of red. Sometimes, when the object isin motion, both red and blue are seen together.

The observations were first made in the following manner. A blackened zinc plate, in which is a small round hole covered with a piece of thin writing-paper, is fixed over a larger opening in a wooden board; thus we are furnished with a sharply-defined translucent disk, which is surrounded by a perfectly opaque substance. An arrangement is provided for covering the translucent disk with a shutter, which can be opened very rapidly by releasing a strong spring. If this apparatus is held between the eyes and a lamp, and the translucent disk is suddenly disclosed by working the shutter, the disk appears for a short time to be surrounded by a narrow red border. The width of the border isperhaps a millimetre (1⁄25inch), and the appearance lasts for something like a tenth of a second. Most people are at first quite unable to recognise this effect, the difficulty being, not to see it, but to know that one sees it. Those who have been accustomed to visual observations generally perceive it without any difficulty when they know what to look for, and no doubt it would be very evident to a baby which had not advanced very far in the education of its eyes.

The observation is made rather less difficult by a further device. If the disk is divided into two parts by an opaque strip across the middle, it is clear that each half disk will have its red border, and if the strip is made sufficiently narrow, the red borders along its edges will meet or perhaps overlap, and thewhole strip will, for a moment after the shutter is opened, appear red. A disk was thus prepared by gumming across the paper a very narrow strip of tinfoil. The effect produced when such a disk is suddenly exposed is indicated inFig. 45, the red colour being represented by shading.

Fig. 45.—Demonstration of Red Borders.

A simpler apparatus is, however, quite sufficient for showing the phenomenon,[12]and with practice one can even acquire the power of seeing it without any artificial aid at all. I have many times noticed flashes of red upon the black letters of a book that I was reading, or upon the edges of the page: bright metallic, or polished objects often show it when they pass across the field of vision in consequence of a movement of the eyes, and it was an accidental observation of this kind which suggested the following easy way of exhibiting the effect experimentally.

An incandescent electric lamp was fixed behind a round hole in a sheet of metal which was attached to a board. The hole was covered with two or three thicknesses of writing paper, making a bright disk of nearly uniform luminosity. When this arrangement was moved ratherquickly either backwards and forwards or round and round in a small circle, the edge of the streak of light thus formed appeared to be bordered with red.

If this experiment is performed with a strong light behind the paper, the streak becomes bordered with greenish-blue instead of red. With an intermediate degree of illumination, both blue and red may be seen together.

Most of the effects that have so far been described were produced by transmitted light, but reflected light will show them equally well. If you place a printed book in front of you near a good lamp and interpose a dark screen before your eyes, then, when the screen is suddenly withdrawn, the printed letters will for a moment appear red, quicklychanging to black. Some practice is required before this observation can be made satisfactorily, but by a simple device it is possible to obliterate the image of the letters before the redness has had time to disappear; the colour then becomes quite easily perceptible.

Hold two screens together side by side, a black one and a white one, in such a manner that an open space is left between them. (SeeFig. 46.) In the first place let the black screen cover the printing; then quickly move the screens sideways so that the printed letters may be for a moment exposed to view through the gap, stopping the movement as soon as the page is covered by the white screen. During the brief glimpse that will be had of the black letters while the gap is passing over them, they will, ifthe illumination is suitable, appear to be bright red.

Fig. 46.—Black and White Screens.

Fig. 47.—Disk for Red Borders.

We may go a step further. Cut out a disk of white cardboard, divide it into two equal parts by a straight line through the centre, and paint one half black.[13]At the junction of the black and white portions cut out a gap, which may conveniently be of the form of a sector of 45°. (SeeFig. 47.) Stick a long pin through the centre and hold the arrangement by the pointed end of the pin a few inches above a printed page near a good light. Make the disk spin at the rate of about five or six turns a second by striking the edge with the finger. As before, the letters when seen through the gap will appear red, and persistence will render the repeatedimpressions almost continuous so long as the rotation is kept up; any one seeing the printing for the first time through the rotating disk would believe that it was done with red ink. Care must be taken that the disk does not cast a shadow upon the page, and that the intensity of the illumination is properly adjusted. I have devised several rather more elaborate contrivances for making the disks rotate at a uniform speed; one of these is shown inFig. 50.

In none of these experiments does an extended black surface ever appear red, but only black dots or lines. And the lines must not be too thick; if their thickness is much more than a millimetre (1⁄25inch), the lines, as seen by an observer from the usual distance for reading, do not become red throughout,but only along their edges. The red appearance does not in fact originate in the black lines themselves: these serve merely as a background for showing up the red border which fringes externally the white portions of the paper, and the width of this border does not exceed about one-fifth of a degree. But by employing a sufficiently large disk and selecting designs or letters composed of lines of suitable thickness, the colour effect has been shown to a large audience.

When the disk is turned in the opposite direction, so that the gap is preceded by white and followed by black, the lines of the design appear at first sight to become dark blue instead of red. Attentive observation, however, shows that the apparently blue tint is not formed uponthe lines themselves, as the red tint was, but upon the white ground just outside them. This introduces to our notice another border phenomenon, which seems to present itself when a dark patch is suddenly formed on a bright ground, for that is essentially what takes place when the disk is turned the reverse way. I made some attempts to obtain more direct evidence that such a dark patch appeared for a moment to have a blue border, and after some trouble succeeded in doing so.

A circular aperture was cut in a wooden board and covered with white paper; a lamp was placed behind the board, and thus a bright disk was obtained, as in the former experiment. An arrangement was prepared by means of which one half of this bright disk couldbe suddenly covered by a metal shutter, and it was found that when this was done a narrow blue band appeared on the bright ground just beyond and adjoining the edge of the shutter when it had come to rest. The blue band lasted for about a tenth of a second, and it seemed to disappear by retreating into the black edge of the shutter. The phenomenon is illustrated inFig. 48, where the shaded band indicates the blue border.


Back to IndexNext