ENGLAND IN THE EOCENE PERIOD.

Eocene is Sir Charles Lyell’s term for the lowest group of the Tertiary system in which the dawn of recent life appears; and any one who wishes to realise what was the aspect presented by this country during the Eocene period, need only go to Sheerness. If, leaving that place behind him, he walks down the Thames, keeping close to the edge of the water, he will find whole bushels of pyritised pieces of twigs and fruits. These fruits and twigs belong to plants nearly allied to the screw-pine and custard-apple, and to various species of palms and spice-trees which now flourish in the Eastern Archipelago. At the time they were washed down from some neighbouring land, not only crocodilian reptiles, but sharks and innumerable turtles, inhabited a sea or estuary which now forms part of the London district; and huge boa-constrictors glided amongst the trees which fringed the adjoining shores.

Countless as are the ages which intervened between the Eocene period and the time when the little jawbones of Stonesfield were washed down to the place where they were to await the day when science should bring them again to light, not one mammalian genus which now lives upon our plane has been discovered amongst Eocene strata. We have existing families, but nothing more.—Professor Owen.

Dr. Mantell, from the examination of the anterior part of the right side of the lower jaw of an Iguanodon discovered in a quarry in Tilgate Forest, Sussex, has detected an extraordinary deviation from all known types of reptilian organisation, and which could not have been predicated; namely, that this colossal reptile, which equalled in bulk the gigantic Edentata of South America, and like them was destined to obtain support from comminuted vegetable substances, was also furnished with a large prehensile tongue and fleshy lips, to serve as instruments for seizing and cropping the foliage and branches of trees; while the arrangement of the teeth as in the ruminants, and their internal structure, which resembles that of the molars of the sloth tribe in the vascularity of the dentine, indicate adaptations for the same purpose.

Among the physiological phenomena revealed by paleontology, there is not a more remarkable one than this modification of the type of organisation peculiar to the class of reptiles to meet the conditions required by the economy of a lizard placed under similar physical relations; and destined to effect the same general purpose in the scheme of nature as the colossalEdentata of former ages and the large herbivorous mammalia of our own times.

The Tilgate beds of the Wealden series, just mentioned, have yielded numerous fragments of the most remarkable reptilian fossils yet discovered, and whose wonderful forms denote them to have thronged the shallow seas and bays and lagoons of the period. In the grounds of the Crystal Palace at Sydenham the reader will find restorations of these animals sufficiently perfect to illustrate this reptilian epoch. They include theiguanodon, an herbivorous lizard exceeding in size the largest elephant, and accompanied by the equally gigantic and carnivorousmegalosaurus(great saurian), and by the two yet more curious reptiles, thepylæosaurus(forest, or weald, saurian) and the pterodactyl (frompteron, ‘wing,’ anddactylus, ‘a finger’), an enormous bat-like creature, now running upon the ground like a bird; its elevated body and long neck not covered with feathers, but with skin, naked, or resplendent with glittering scales; its head like that of a lizard or crocodile, and of a size almost preposterous compared with that of the body, with its long fore extremities stretched out, and connected by a membrane with the body and hind legs.

Suddenly this mailed creature rose in the air, and realised or even surpassed in strangenessthe flying dragon of fable: its fore-arms and its elongated wing-finger furnished with claws; hand and fingers extended, and the interspace filled up by a tough membrane; and its head and neck stretched out like that of the heron in its flight. When stationary, its wings were probably folded back like those of a bird; though perhaps, by the claws attached to its fingers, it might suspend itself from the branches of trees.

It was supposed till very lately that few if any Mammalia were to be found below the Tertiary rocks,i. e.those above the chalk; and this supposed fact was very comfortable to those who support the doctrine of “progressive development,” and hold, with the notoriousVestiges of Creation, that a fish by mere length of time became a reptile, a lemur an ape, and finally an ape a man. But here, as in a hundred other cases, facts, when duly investigated, are against their theory. A mammal jaw had been already discovered by Mr. Brodie on the shore at the back of Swanage Point, in Dorsetshire, when Mr. Beckles, F.G.S., traced the vein from which this jaw had been procured, and found it to be a stratum about five inchesthick, at the base of the Middle Purbeck beds; and after removing many thousand tons of rock, and laying bare an area of nearly 7000 square feet (the largest cutting ever made for purely scientific purposes), he found reptiles (tortoises and lizards) in hundreds; but the most important discovery was that of the jaws of at least fourteen different species of mammalia. Some of these were herbivorous, some carnivorous, connected with our modern shrews, moles, hedgehogs, &c.; but all of them perfectly developed and highly-organised quadrupeds. Ten years ago, no remains of quadrupeds were believed to exist in the Secondary strata. “Even in 1854,” says Sir Charles Lyell (in a supplement to the fifth edition of hisManual of Elementary Geology), “only six species of mammals from rocks older than the Tertiary were known in the whole world.” We now possess evidence of the existence of fourteen species, belonging to eight or nine genera, from the fresh-water strata of the Middle Purbeck Oolite. It would be rash now to fix a limit in past time to the existence of quadrupeds.—The Rev. C. Kingsley.

In the paleontological collection in the British Museum is preserved a considerable portion of a human skeleton imbedded in a slab of rock, brought from Guadaloupe, and often referred to in opposition to the statement that hithertono fossil human hones have been found. The presence of these bones, however, has been explained by the circumstance of a battle and the massacre of a tribe of Galtibis by the Caribs, which took place near the spot in which the bones were found about 130 years ago; for as the bodies of the slain were interred on the seashore, their skeletons may have been subsequently covered by sand-drift, which has since consolidated into limestone.

It will be seen by reference to thePhilosophical Transactions, that on the reading of the paper upon this discovery to the Royal Society, in 1814, Sir Joseph Banks, the president, considered the “fossil” to be of very modern formation, and that probably, from the contiguity of a volcano, the temperature of the water may have been raised at some time, and dissolving carbonate of lime readily, may have deposited about the skeleton in a comparatively short period hard and solid stone. Every person may be convinced of the rapidity of the formation and of the hardness of such stone by inspecting the inside of tea-kettles in which hard water is boiled.

Descriptions of petrifactions of human bodies appear to refer to the conversion of bodies into adipocere, and not into stone. All the supposed cases of petrifaction are probably of this nature. The change occurs only when the coffin becomes filled with water. The body, converted into adipocere, floats on the water. The supposed cases ofchanges of position in the grave, bursting open the coffin-lids, turning over, crossing of limbs, &c., formerly attributed to the coming to life of persons buried who were not dead, is now ascertained to be due to the same cause. The chemical change into adipocere, and the evolution of gases, produce these movements of dead bodies.—Mr. Trail Green.

Descriptions of petrifactions of human bodies appear to refer to the conversion of bodies into adipocere, and not into stone. All the supposed cases of petrifaction are probably of this nature. The change occurs only when the coffin becomes filled with water. The body, converted into adipocere, floats on the water. The supposed cases ofchanges of position in the grave, bursting open the coffin-lids, turning over, crossing of limbs, &c., formerly attributed to the coming to life of persons buried who were not dead, is now ascertained to be due to the same cause. The chemical change into adipocere, and the evolution of gases, produce these movements of dead bodies.—Mr. Trail Green.

Among the important results of Sir Roderick Murchison’s establishment of the Silurian system is the following:

That as the Lower Silurian group, often of vast dimensions, has never afforded the smallest vestige of a Fish, though it abounds in numerous species of themarineclasses,—corals,crinoidea,mollusca, andcrustacea; and as in Scandinavia and Russia, where it is based on rocks void of fossils, its lowest stratum containsfucoidsonly,—Sir R. Murchison has, after fifteen years of laborious research steadily directed to this point, arrived at the conclusion, that a very long period elapsed after life was breathed into the waters before the lowest order of vertebrata was created; the earliest fishes being those of the Upper Silurian rocks, which he was the first to discover, and which he described “as the most ancient beings of their class which have yet been brought to light.” Though the Lower Silurian rocks of various parts of the world have since been ransacked by multitudes of prying geologists, who have exhumed from them myriads of marine fossils, not a single ichthyolite has been found in any stratum of higher antiquity than the Upper Silurian group of Murchison.

That as the Lower Silurian group, often of vast dimensions, has never afforded the smallest vestige of a Fish, though it abounds in numerous species of themarineclasses,—corals,crinoidea,mollusca, andcrustacea; and as in Scandinavia and Russia, where it is based on rocks void of fossils, its lowest stratum containsfucoidsonly,—Sir R. Murchison has, after fifteen years of laborious research steadily directed to this point, arrived at the conclusion, that a very long period elapsed after life was breathed into the waters before the lowest order of vertebrata was created; the earliest fishes being those of the Upper Silurian rocks, which he was the first to discover, and which he described “as the most ancient beings of their class which have yet been brought to light.” Though the Lower Silurian rocks of various parts of the world have since been ransacked by multitudes of prying geologists, who have exhumed from them myriads of marine fossils, not a single ichthyolite has been found in any stratum of higher antiquity than the Upper Silurian group of Murchison.

The most remarkable of all fossil fishes yet discovered have been found in the Old Red Sandstone cliffs at Dorpat, where the remains are so gigantic (one bone measuringtwo feet nine inchesin length) that they were at first supposed to belong to saurians.

Sir Roderick’s examination of Russia has, in short, proved thatthe ichthyolites and mollusks which, in Western Europe, are separately peculiar to smaller detached basins, were here (in the British Isles) cohabitants of many parts of the same great sea.

Professor Owen has thus forcibly illustrated the Carnivorous Animals which preyed upon and restrained the undue multiplication of the vegetable feeders. First we have the bear family, which is now represented in this country only by the badger. We were once blest, however, with many bears. One species seems to have been identical with the existing brown bear of the European continent. Far larger and more formidable was the gigantic cave-bear (Ursus spelæus), which surpassed in size his grisly brother of North America. The skull of the cave-bear differs very much in shape from that of its small brown relative just alluded to; the forehead, in particular, is much higher,—to be accounted for by an arrangement of air-cells similar to those which we have already remarked in the elephant.The cave-bear has left its remains in vast abundance in Germany. In our own caves, the bones of hyænas are found in greater quantities. The marks which the teeth of the hyæna make upon the bones which it gnaws are quite unmistakable. Our English hyænas had the most undiscriminating appetite, preying upon every creature, their own species amongst others. Wolves, not distinguishable from those which now exist in France and Germany, seem to have kept company with the hyænas; and theFelis spelæa, a sort of lion, but larger than any which now exists, ruled over all weaker brutes. Here, says Professor Owen, we have the original British Lion. A species ofMachairodushas left its remains at Kent’s Hole, near Torquay. In England we had also the beaver, which still lingers on the Danube and the Rhone, and a larger species, which has been called Trogontherium (gnawing beast), and a gigantic mole.

Remains of this remarkable animal of the drift or gravel period of this country have been found at Brentford and elsewhere near London. Speaking of this animal, Professor Owen observes, that “it is commonly supposed that the Lion, the Tiger, and the Jaguar are animals peculiarly adapted to a tropical climate. The genus Felis (to which these animals belong) is, however, represented by specimens in high northern latitudes, and in all the intermediate countries to the equator.” The chief condition necessary for the presence of such animals is an abundance of the vegetable-feeding animals. It is thus that the Indian tiger has been known to follow the herds of antelope and deer in the lofty mountains of the Himalaya to the verge of perpetual snow, and far into Siberia. “It need not, therefore,” continues Professor Owen, “excite surprise that indications should have been discovered in the fossil relics of the ancient mammalian population of Europe of a large feline animal, the contemporary of the mammoth, of the tichorrhine rhinoceros, of the great gigantic cave-bear and hyæna, and the slayer of the oxen, deer, and equine quadrupeds that so abounded during the same epoch.” The dimensions of this extinct animal equal those of the largest African lion or Bengal tiger; and some bones have been found which seem to imply that it had even more powerful limbs and larger paws.

Dr. Buckland has shown that for long ages many species of carnivorous animals now extinct inhabited the caves of the British islands. In low tracts of Yorkshire, where tranquil lacustrine (lake-like) deposits have occurred, bones (even thoseof the lion) have been found so perfectly unbroken and unworn, in fine gravel (as at Market Weighton), that few persons would be disposed to deny that such feline and other animals once roamed over the British isles, as well as other European countries. Why, then, is it improbable that large elephants, with a peculiarly thick integument, a close coating of wool, and much long shaggy hair, should have been the occupants of wide tracts of Northern Europe and Asia? This coating, Dr. Fleming has well remarked, was probably as impenetrable to rain and cold as that of the monster ox of the polar circle. Such is the opinion of Sir Roderick Murchison, who thus accounts for the disappearance of the mammoths from Britain:

When we turn from the great Siberian continent, which, anterior to its elevation, was the chief abode of the mammoths, and look to the other parts of Europe, where their remains also occur, how remarkable is it that we find the number of these creatures to be justly proportionate to the magnitude of the ancient masses of land which the labours of geologists have defined! Take the British isles, for example, and let all their low, recently elevated districts be submerged; let, in short, England be viewed as the comparatively small island she was when the ancient estuary of the Thames, including the plains of Hyde Park, Chelsea, Hounslow, and Uxbridge, were under the water; when the Severn extended far into the heart of the kingdom, and large eastern tracts of the island were submerged,—and there will then remain but moderately-sized feeding-grounds for the great quadrupeds whose bones are found in the gravel of the adjacent rivers and estuaries.

When we turn from the great Siberian continent, which, anterior to its elevation, was the chief abode of the mammoths, and look to the other parts of Europe, where their remains also occur, how remarkable is it that we find the number of these creatures to be justly proportionate to the magnitude of the ancient masses of land which the labours of geologists have defined! Take the British isles, for example, and let all their low, recently elevated districts be submerged; let, in short, England be viewed as the comparatively small island she was when the ancient estuary of the Thames, including the plains of Hyde Park, Chelsea, Hounslow, and Uxbridge, were under the water; when the Severn extended far into the heart of the kingdom, and large eastern tracts of the island were submerged,—and there will then remain but moderately-sized feeding-grounds for the great quadrupeds whose bones are found in the gravel of the adjacent rivers and estuaries.

This limited area of subsistence could necessarily only keep up a small stock of such animals; and, just as we might expect, the remains of British mammoths occur in very small numbers indeed, when compared with those of the great charnel-houses of Siberia, into which their bones had been carried down through countless ages from the largest mass of surface which geological inquiries have yet shown to have beendry landduring that epoch.

The remains of the mammoth, says Professor Owen, have been found in all, or almost all, the counties of England. Off the coast of Norfolk they are met with in vast abundance. The fishermen who go to catch turbot between the mouth of the Thames and the Dutch coast constantly get their nets entangled in the tusks of the mammoth. A collection of tusks and other remains, obtained in this way, is to be seen at Ramsgate. In North America, this gigantic extinct elephant must have been very common; and a large portion of the ivory which supplies the markets of Europe is derived from the vast mammoth graveyards of Siberia.

The mammoth ranged at least as far north as 60°. There is no doubt that, at the present day, many specimens of the musk-ox are annually becoming imbedded in the mud and ice of the North-American rivers.

It is curious to observe, that the mammoth teeth which are met with in caves generally belonged to young mammoths, who probably resorted thither for shelter before increasing age and strength emboldened them to wander far afield.

The mammoth was not the only giant that inhabited England in the Pliocene or Upper Tertiary period. We had also here theRhinoceros tichorrhinus, or “strongly walled about the nose,” remains of which have been discovered in enormous quantities in the brickfields about London. Pallas describes an entire specimen of this creature, which was found near Yakutsk, the coldest town on the globe. Another rhinoceros,leptorrhinus(fine nose), dwelt with the elephant of Southern Europe. In Siberia has been discovered the Elaimotherium, forming a link between the rhinoceros and the horse.

In the days of the mammoth, we had also in England a Hippopotamus, rather larger than the species which now inhabits the Nile. Of our British hippopotamus some remains were dug up by the workmen in preparing the foundations of the New Junior United Service Club-house, in Regent-street.

The idea of an Elephant standing on the back of a Tortoise was often laughed at as an absurdity, until Captain Cautley and Dr. Falconer at length discovered in the hills of Asia the remains of a tortoise in a fossil state of such a size that an elephant could easily have performed the above feat.

Dr. C. F. Winslow has communicated to the Boston Society of Natural History the discovery of the fragment of a human cranium 180 feet below the surface of the Table Mountain, California. Now the mastodon’s bones being found in the same deposits, points very clearly to the probability of the appearance of the human race on the western portions of North America at least before the extinction of those huge creatures. Fragments of mastodon andElephas primigeniushave been taken ten and twenty feet below the surface in the above locality; where this discovery of human and mastodon remains gives strength to the possible truth of an old Indian tradition,—the contemporary existence of the mammoth and aboriginals in this region of the globe.

Much uncertainty has been felt about the habits of the Megatherium, or Great Beast. It has been asked whether it burrowedor climbed, or what it did; and difficulties have presented themselves on all sides of the question. Some have thought that it lived in trees as much larger than those which now exist as the Megatherium itself is larger than the common sloth.35This, however, is now known to be a mistake. It did not climb trees—it pulled them down; and in order to do this the hinder parts of its skeleton were made enormously strong, and its prehensile fore-legs formed so as to give it a tremendous power over any thing which it grasped. Dr. Buckland suggested that animals which got their living in this way had a very fair chance of having their heads broken. While Professor Owen was still pondering over this difficulty, the skull of a cognate animal, the Mylodon, came into his hands. Great was his delight when he found that the mylodon not only had his head broken, but broken in two different places, at two different times; and moreover so broken that the injury could only have been inflicted by some such agent as a fallen tree. The creature had recovered from the first blow, but had evidently died of the second. This tribe had, as it turns out, two skulls, an outer and an inner one—given them, as it would appear, expressly with a view to the very dangerous method in which they were intended to obtain their necessary food.

The dentition of the megatherium is curious. The elephant gets teeth as he wants them. Nature provided for the comfort of the megatherium in another way. It did not get new teeth, but the old ones went on for ever growing as long as the animal lived; so that as fast as one grinding surface became useless, another supplied its place.

The family of herbivorous Cetaceans are connected with the Pachydermata of the land by one of the most wonderful of all the extinct creatures with which geologists have made us acquainted. This is theDinotherium, or Terrible Beast. The remains of this animal were found in Miocene sands at Eppelsheim, about forty miles from Darmstadt. It must have been larger than the largest extinct or living elephant. The most remarkable peculiarity of its structure is the enormous tusks, curving downwards and terminating its lower jaw. It appears to have lived in the water, where the immense weight of these formidable appendages would not be so inconvenient as on land. What these tusks were used for is a mystery; but perhaps they acted as pickaxes in digging up trees and shrubs, or asharrows in raking the bottom of the water. Dr. Buckland used to suggest that they were perhaps employed as anchors, by means of which the monster might fasten itself to the bank of a stream and enjoy a comfortable nap. The extreme length of theDinotheriumwas about eighteen feet. Professor Kemp, in his restoration of the animal, has given it a trunk like that of the elephant, but not so long, and the general form of the tapir.—Professor Owen.

There are few creatures which we should less have expected to find represented in fossil history by a race of gigantic brethren than the armadillo. The creature is so small, not only in size but in all its works and ways, that we with difficulty associate it with the idea of magnitude. Yet Sir Woodbine Parish has discovered evidences of enormous animals of this family having once dwelt in South America. The huge loricated (plated over) creature whose relics were first sent has received the name of Glyptodon, from its sculptured teeth. Unlike the small armadillos, it was unable to roll itself up into a ball; though an enormous carnivore which lived in those days must have made it sometimes wish it had the power to do so. When attacked, it must have crouched down, and endeavoured to make its huge shell as good a defence as possible.—Professor Owen.

From the fossil-bone caverns in Wellington Valley, in 1830, were sent to Professor Owen several bones which belonged, as it turned out, to gigantic kangaroos, immensely larger than any existing species; to a kind of wombat, to formidable dasyures, and several other genera. It also appeared that the bones, which were those of herbivores, had evidently belonged to young animals, while those of the carnivores were full-sized; a fact which points to the relations between the two families having been any thing but agreeable to the herbivores.

TheThylacoleo(Pouch-Lion) was a gigantic marsupial carnivore, whose character and affinities Professor Owen has, with exquisite scientific tact, made out from very small indications. This monster, which had kangaroos with heads three feet long to feed on, must have been one of the most extraordinary animals of the antique world.

Paleontologists have pointed out the curious fact that theHyrax, called ‘coney’ in our authorised version of the Bible, is really only a diminutive and hornless rhinoceros. Remains have been found at Eppelsheim which indicate an animal more like a gigantic Hyrax than any of the existing rhinoceroses. To this the name ofAcerotherium(Hornless Beast) has been given.

Professor Owen describes theHipparion, or Three-hoofed Horse, as the first representative of a family so useful to mankind. This animal, in addition to its true hoof, appears to have had two additional elementary hoofs, analogous to those which we see in the ox. The object of these no doubt was to enable the Hipparion to extricate his foot with greater ease than he otherwise could when it sank through the swampy ground on which he lived.

A huge carnivorous creature has been found in Miocene strata in France, in which country it preyed upon the gazelle and antelope. It must have been as large as a grisly bear, but in general appearance and teeth more like a gigantic dog. Hence the name ofAmphicyon(Doubtful Dog) has been assigned to it. This animal must have derived part of its support from vegetables. Not so the coeval monster which has been calledMachairodus(Sabre-tooth). It must have been somewhat akin to the tiger, and is by far the most formidable animal which we have met with in our ascending progress through the extinct mammalia.—Professor Owen.

No unequivocal fossil remains of the sheep have yet been found in the bone-caves, the drift, or the more tranquil stratified newer Pliocene deposits, so associated with the fossil bones of oxen, wild-boars, wolves, foxes, otters, &c., as to indicate the coevality of the sheep with those species, or in such an altered state as to indicate them to have been of equal antiquity. Professor Owen had his attention particularly directed to this point in collecting evidence for a history of British Fossil Mammalia. No fossil core-horns of the sheep have yet been any where discovered; and so far as this negative evidence goes, we may infer that the sheep is not geologically more ancient than man; that it is not a native of Europe, but has been introduced by the tribes who carried hither the germs of civilisation in their migrations westward from Asia.

Among the earliest races we have those remarkable forms,the Trilobites, inhabiting the ancient ocean. These crustacea remotely resemble the common wood-louse, and like that animal they had the power of rolling themselves into a ball when attacked by an enemy. The eye of the trilobite is a most remarkable organ; and in that of one species,Phacops caudatus, not less than 250 lenses have been discovered. This remarkable optical instrument indicates that these creatures lived under similar conditions to those which surround the crustacea of the present day.—Hunt’s Poetry of Science.

In that strip of reddish colour which runs along the cliffs of Suffolk, and is called the Redcrag, immense quantities of cetacean remains have been found. Four different kinds of whales, little inferior in size to the whalebone whale, have left their bones in this vast charnel-house. In 1840, a singularly perplexing fossil was brought to Professor Owen from this Redcrag. No one could say what it was. He determined it to be the tooth of a cetacean, a unique specimen. Now the remains of cetaceans in the Suffolk crag have been discovered in such enormous quantities, that many thousands a-year are made by converting them into manure.

In the islands of New Zealand have been found the bones of large extinct wingless Birds, belonging to the Post Tertiary or Recent system, which have been deposited by the action of rivers. The bird is namedMoaby the natives, andDinornisby naturalists: some of the bones have been found in two caves in the North Island, and have been sold by the natives at an extraordinary price. The caves occur in limestone rocks, and the bones are found beneath earth and a soft deposit of carbonate of lime. The largest of the birds is stated to have stood thirteen or fourteen feet, or twice the height of the ostrich; and its egg large enough to fill the hat of a man as a cup. Several statements have appeared of these birds being still in existence, but there is every reason to believe the Moa to be altogether extinct.

An extensive collection of remains of these great wingless birds has been collected in New Zealand by Mr. Walter Mantell, and deposited in the British Museum. Among these bones Professor Owen has discovered a species which he regards as the most remarkable of the feathered class for its prodigious strength and massive proportions, and which he namesDinornis elephantopus, or elephant-footed, of which the Professor has been able to construct an entire lower limb: the length of the metatarsal bone is 9¼ inches, the breadth of the lower endbeing 5-1/3 inches. The extraordinary proportions of the metatarsus of this wingless bird will, however, be still better understood by comparison with the same bone in the ostrich, in which the metatarsus is 19 inches in length, the breadth of its lower end being only 2½ inches. From the materials accumulated by Mr. Mantell, the entire skeleton of theDinornis elephantopushas been reconstructed; and now forms a worthy companion of the Megatherium and Mastodon in the gallery of fossil remains in the British Museum. This species ofDinornisappears to have been restricted to the Middle Island of New Zealand.36

Another specimen of the remains of theDinornisis preserved in the Museum of the Royal College of Surgeons, in Lincoln’s-Inn Fields; and the means by which the college obtained this valuable acquisition is thus graphically narrated by Mr. Samuel Warren, F.R.S.:

In the year 1839, Professor Owen was sitting alone in his study, when a shabbily-dressed man made his appearance, announcing that he had got a great curiosity, which he had brought from New Zealand, and wished to dispose of to him. It had the appearance of an old marrow-bone, about six inches in length, and rather more than two inches in thickness,with both extremities broken off; and Professor Owen considered that, to whatever animal it might have belonged, the fragment must have lain in the earth for centuries. At first he considered this same marrow-bone to have belonged to an ox, at all events to a quadruped; for the wall or rim of the bone was six times as thick as the bone of any bird, even of the ostrich. He compared it with the bones in the skeleton of an ox, a horse, a camel, a tapir, and every quadruped apparently possessing a bone of that size and configuration; but it corresponded with none. On this he very narrowly examined the surface of the bony rim, and at length became satisfied that this fragment must have belonged toa bird!—to one at least as large as an ostrich, but of a totally different species; and consequently one never before heard of, as an ostrich was by far the biggest bird known.From the difference in thestrengthof the bone, the ostrich being unable to fly, so must have been unable this unknown bird; and so our anatomist came to the conclusion that this old shapeless bone indicated the former existence in New Zealand of some huge bird, at least as great as an ostrich, but of a far heavier and more sluggish kind. Professor Owen was confident of the validity of his conclusions, but would communicate that confidence to no one else; and notwithstanding attempts to dissuade him from committing his views to the public, he printed his deductions in theTransactions of the Zoological Society for 1839, where fortunately they remain on record as conclusive evidence of the fact of his having then made this guess, so to speak, in the dark. He caused the bone, however, to be engraved; and having sent a hundredcopies of the engraving to New Zealand, in the hope of their being distributed and leading to interesting results, he patiently waited for three years,—viz. till the year 1842,—when he received intelligence from Dr. Buckland, at Oxford, that a great box, just arrived from New Zealand, consigned to himself, was on its way, unopened, to Professor Owen, who found it filled with bones, palpably of a bird, one of which bones was three feet in length, and much more than double the size of any bone in the ostrich!And out of the contents of this box the Professor was positively enabled to articulate almost the entire skeleton of a huge wingless bird betweenTENandELEVENfeet in height, its bony structure in strict conformity with the fragment in question; and that skeleton may at any time be seen at the Museum of the College of Surgeons, towering over, and nearly twice the height of, the skeleton of an ostrich; and at its feet lying the old bone from which alone consummate anatomical science had deduced such an astounding reality,—the existence of an enormous extinct creature of the bird kind, in an island where previously no bird had been known to exist larger than a pheasant or a common fowl!—Lecture on the Moral and Intellectual Development of the present Age.37

In the year 1839, Professor Owen was sitting alone in his study, when a shabbily-dressed man made his appearance, announcing that he had got a great curiosity, which he had brought from New Zealand, and wished to dispose of to him. It had the appearance of an old marrow-bone, about six inches in length, and rather more than two inches in thickness,with both extremities broken off; and Professor Owen considered that, to whatever animal it might have belonged, the fragment must have lain in the earth for centuries. At first he considered this same marrow-bone to have belonged to an ox, at all events to a quadruped; for the wall or rim of the bone was six times as thick as the bone of any bird, even of the ostrich. He compared it with the bones in the skeleton of an ox, a horse, a camel, a tapir, and every quadruped apparently possessing a bone of that size and configuration; but it corresponded with none. On this he very narrowly examined the surface of the bony rim, and at length became satisfied that this fragment must have belonged toa bird!—to one at least as large as an ostrich, but of a totally different species; and consequently one never before heard of, as an ostrich was by far the biggest bird known.

From the difference in thestrengthof the bone, the ostrich being unable to fly, so must have been unable this unknown bird; and so our anatomist came to the conclusion that this old shapeless bone indicated the former existence in New Zealand of some huge bird, at least as great as an ostrich, but of a far heavier and more sluggish kind. Professor Owen was confident of the validity of his conclusions, but would communicate that confidence to no one else; and notwithstanding attempts to dissuade him from committing his views to the public, he printed his deductions in theTransactions of the Zoological Society for 1839, where fortunately they remain on record as conclusive evidence of the fact of his having then made this guess, so to speak, in the dark. He caused the bone, however, to be engraved; and having sent a hundredcopies of the engraving to New Zealand, in the hope of their being distributed and leading to interesting results, he patiently waited for three years,—viz. till the year 1842,—when he received intelligence from Dr. Buckland, at Oxford, that a great box, just arrived from New Zealand, consigned to himself, was on its way, unopened, to Professor Owen, who found it filled with bones, palpably of a bird, one of which bones was three feet in length, and much more than double the size of any bone in the ostrich!

And out of the contents of this box the Professor was positively enabled to articulate almost the entire skeleton of a huge wingless bird betweenTENandELEVENfeet in height, its bony structure in strict conformity with the fragment in question; and that skeleton may at any time be seen at the Museum of the College of Surgeons, towering over, and nearly twice the height of, the skeleton of an ostrich; and at its feet lying the old bone from which alone consummate anatomical science had deduced such an astounding reality,—the existence of an enormous extinct creature of the bird kind, in an island where previously no bird had been known to exist larger than a pheasant or a common fowl!—Lecture on the Moral and Intellectual Development of the present Age.37

In 1795, there was stated to have been discovered in the stone quarries adjoining Maestricht the remains of the giganticMosœsaurus(Saurian of the Meuse), an aquatic reptile about twenty-five feet long, holding an intermediate place between the Monitors and Iguanas. It appears to have had webbed feet, and a tail of such construction as to have served for a powerful oar, and enabled the animal to stem the waves of the ocean, of which Cuvier supposed it to have been an inhabitant. It is thus referred to by Dr. Mantell, in hisMedals of Creation: “A specimen, with the jaws and bones of the palate, now in the Museum at Paris, has long been celebrated; and is still the most precious relic of this extinct reptile hitherto discovered.” An admirable cast of this specimen is preserved in the British Museum, in a case near the bones of the Iguanodon. This is, however, useless, as Cuvier is proved to have been imposed upon in the matter.

M. Schlegel has reported to the French Academy of Sciences, that he has ascertained beyond all doubt that the famous fossil saurian of the quarries of Maestricht, described as a wonderful curiosity by Cuvier, is nothing more than an impudent fraud. Some bold impostor, it seems, in order to make money, placed a quantity of bones in the quarries in such a way as to give them the appearance of having been recently dug up, and then passed them off as specimens of antediluvian creation. Being successful in this, he went the length of arranging a number of bones so as to represent an entire skeleton; and had thus deceived thelearned Cuvier. In extenuation of Cuvier’s credulity, it is stated that the bones were so skilfully coloured as to make them look of immense antiquity, and he was not allowed to touch them lest they should crumble to pieces. But when M. Schlegel subjected them to rude handling, he found that they were comparatively modern, and that they were placed one by the other without that profound knowledge of anatomy which was to have been expected from the man bold enough to execute such an audacious fraud.

M. Schlegel has reported to the French Academy of Sciences, that he has ascertained beyond all doubt that the famous fossil saurian of the quarries of Maestricht, described as a wonderful curiosity by Cuvier, is nothing more than an impudent fraud. Some bold impostor, it seems, in order to make money, placed a quantity of bones in the quarries in such a way as to give them the appearance of having been recently dug up, and then passed them off as specimens of antediluvian creation. Being successful in this, he went the length of arranging a number of bones so as to represent an entire skeleton; and had thus deceived thelearned Cuvier. In extenuation of Cuvier’s credulity, it is stated that the bones were so skilfully coloured as to make them look of immense antiquity, and he was not allowed to touch them lest they should crumble to pieces. But when M. Schlegel subjected them to rude handling, he found that they were comparatively modern, and that they were placed one by the other without that profound knowledge of anatomy which was to have been expected from the man bold enough to execute such an audacious fraud.

The most remarkable vegetable relic which the Lower Old Red Sandstone has given us is a small fragment of a coniferous tree of the Araucarian family, which formed one of the chief ornaments of the late Hugh Miller’s museum, and to which he used to point as the oldest piece of wood upon earth. He found it in one of the ichthyolite beds of Cromarty, and thus refers to it in hisTestimony of the Rocks:

On what perished land of the early paleozoic ages did this venerably antique tree cast root and flourish, when the extinct genera Pterichthys and Coccoeteus were enjoying life by millions in the surrounding seas, long ere the flora or fauna of the coal measures had begun to be?The same nodule which enclosed this lignite contained part of another fossil, the well-marked scales ofDiplacanthus striatus, an ichthyolite restricted to the Lower Old Red Sandstone exclusively. If there be any value in paleontological evidence, this Cromarty lignite must have been deposited in a sea inhabited by the Coccoeteus and Diplacanthus. It is demonstrable that, while yet in a recent state, a Diplacanthus lay down and died beside it; and the evidence in the case is unequivocally this, that in the oldest portion of the oldest terrestrial flora yet known there occurs the fragment of a tree quite as high in the scale as the stately Norfolk-Island pine or the noble cedar of Lebanon.

On what perished land of the early paleozoic ages did this venerably antique tree cast root and flourish, when the extinct genera Pterichthys and Coccoeteus were enjoying life by millions in the surrounding seas, long ere the flora or fauna of the coal measures had begun to be?

The same nodule which enclosed this lignite contained part of another fossil, the well-marked scales ofDiplacanthus striatus, an ichthyolite restricted to the Lower Old Red Sandstone exclusively. If there be any value in paleontological evidence, this Cromarty lignite must have been deposited in a sea inhabited by the Coccoeteus and Diplacanthus. It is demonstrable that, while yet in a recent state, a Diplacanthus lay down and died beside it; and the evidence in the case is unequivocally this, that in the oldest portion of the oldest terrestrial flora yet known there occurs the fragment of a tree quite as high in the scale as the stately Norfolk-Island pine or the noble cedar of Lebanon.

Professor Agassiz, in a lecture upon the trees of America, states a remarkable fact in regard to the family of the rose,—which includes among its varieties not only many of the most beautiful flowers, but also the richest fruits, as the apple, pear, peach, plum, apricot, cherry, strawberry, raspberry, &c.,—namely, thatno fossil plants belonging to this family have ever been discovered by geologists! This M. Agassiz regards as conclusive evidence that the introduction of this family of plants upon the earth was coeval with, or subsequent to, the creation of man, to whose comfort and happiness they seem especially designed by a wise Providence to contribute.

In the Imperial Library at Paris is preserved a manuscript work by an Arabian writer, Mohammed Karurini, who flourished in the seventh century of the Hegira, or at the close of the thirteenth century of our era. Herein we find several curiousremarks on aerolites and earthquakes, and the successive changes of position which the land and sea have undergone. Of the latter class is the following beautiful passage from the narrative of Khidz, an allegorical personage:

I passed one day by a very ancient and wonderfully populous city, and asked one of its inhabitants how long it had been founded. “It is indeed a mighty city,” replied he; “we know not how long it has existed, and our ancestors were on this subject as ignorant as ourselves.” Five centuries afterwards, as I passed by the same place, I could not perceive the slightest vestige of the city. I demanded of a peasant who was gathering herbs upon its former site how long it had been destroyed. “In sooth, a strange question,” replied he; “the ground here has never been different from what you now behold it.” “Was there not of old,” said I, “a splendid city here?” “Never,” answered he, “so far as we have seen; and never did our fathers speak to us of any such.” On my return there five hundred years afterwards,I found the sea in the same place; and on its shores were a party of fishermen, of whom I inquired how long the land had been covered by the waters. “Is this a question,” say they, “for a man like you? This spot has always been what it is now.” I again returned five hundred years afterwards; the sea had disappeared: I inquired of a man who stood alone upon the spot how long this change had taken place, and he gave me the same answer as I had received before. Lastly, on coming back again after an equal lapse of time, I found there a flourishing city, more populous and more rich in beautiful buildings than the city I had seen the first time; and when I would fain have informed myself concerning its origin, the inhabitants answered me, “Its rise is lost in remote antiquity: we are ignorant how long it has existed, and our fathers were on this subject as ignorant as ourselves.”

I passed one day by a very ancient and wonderfully populous city, and asked one of its inhabitants how long it had been founded. “It is indeed a mighty city,” replied he; “we know not how long it has existed, and our ancestors were on this subject as ignorant as ourselves.” Five centuries afterwards, as I passed by the same place, I could not perceive the slightest vestige of the city. I demanded of a peasant who was gathering herbs upon its former site how long it had been destroyed. “In sooth, a strange question,” replied he; “the ground here has never been different from what you now behold it.” “Was there not of old,” said I, “a splendid city here?” “Never,” answered he, “so far as we have seen; and never did our fathers speak to us of any such.” On my return there five hundred years afterwards,I found the sea in the same place; and on its shores were a party of fishermen, of whom I inquired how long the land had been covered by the waters. “Is this a question,” say they, “for a man like you? This spot has always been what it is now.” I again returned five hundred years afterwards; the sea had disappeared: I inquired of a man who stood alone upon the spot how long this change had taken place, and he gave me the same answer as I had received before. Lastly, on coming back again after an equal lapse of time, I found there a flourishing city, more populous and more rich in beautiful buildings than the city I had seen the first time; and when I would fain have informed myself concerning its origin, the inhabitants answered me, “Its rise is lost in remote antiquity: we are ignorant how long it has existed, and our fathers were on this subject as ignorant as ourselves.”

This striking passage was quoted in theExaminer, in 1834. Surely in this fragment of antiquity we trace the “geological changes” of modern science.

Many ingenious calculations have been made to approximate the dates of certain geological events; but these, it must be confessed, are more amusing than instructive. For example, so many inches of silt are yearly laid down in the delta of the Mississippi—how many centuries will it have taken to accumulate a thickness of 30, 60, or 100 feet? Again, the ledges of Niagara are wasting at the rate of so many feet per century—how many years must the river have taken to cut its way back from Queenstown to the present Falls? Again, lavas and melted basalts cool, according to the size of the mass, at the rate of so many degrees in a given time—how many millions of years must have elapsed, supposing an original igneous condition of the earth, before its crust had attained a state of solidity? or further, before its surface had cooled down to the present mean temperature? For these and similar computations, the student will at once perceive we want the necessaryuniformity of factor; and until we can bring elements of calculation as exact as those of astronomy to bear on geological chronology, it will be better to regard our “eras” and “epochs” and “systems” as so many terms, indefinite in their duration, but sufficient for the magnitude of the operations embraced within their limits.—Advanced Textbook of Geology, by David Page, F.G.S.

M. Rozet, in 1841, called attention to the fact, that the causes which have produced irregularities in the structure of the globe have not yet ceased to act, as is proved by earthquakes, volcanic eruptions, slow and continuous movements of the crust of the earth in certain regions, &c. We may, therefore, yet see repeated the great catastrophes which the surface of the earth has undergone anteriorly to the historical period.

At the meeting of the British Association in 1855, Mr. Hopkins excited much controversy by his startling speculation—that 9000 years ago the site on which London now stands was in the torrid zone; and that, according to perpetual changes in progress, the whole of England would in time arrive within the Arctic circle.

Professor Hennessey, in 1857,found the entire mass of rock and hill on which the Armagh Observatory is erected to be slightly, but to an astronomer quite perceptibly, tilted or canted, at one season to the east, at another to the west. This he at first attributed to the varying power of the sun’s radiation to heat and expand the rock throughout the year; but he subsequently had reason to attribute it rather to the infiltration of water to the parts where the clay-slate and limestone rocks met, the varying quantity of the water exerting a powerful hydrostatic energy by which the position of the rock is slightly varied.

Now Armagh and its observatory stand at the junction of the mountain limestone with the clay-slate, having, as it were, one leg on the former and the other on the latter; and both rocks probably reach downwards 1000 or 2000 feet. When rain falls, the one will absorb more water than the other; both will gain an increase of conductive power; but the one which has absorbed most water will have the greatest increase, and being thus the better conductor, willdraw a greater portion of heat from the hot nucleus below to the surface—will become, in fact, temporarily hotter, and, as a consequence,expand more than the other. In a word,both rocks will expand at the wet season; but the best conductor, or most absorbent rock, will expand most, and seem to tilt the hill to one side; at the dry season it willsubside most, and the hill will seem to be tilted in the opposite direction.

The fact is curious, and not less so are the results deducible from it. First, hills are higher at one season than another; a fact we might have supposed, but never could have ascertained by measurement. Secondly, they are highest, not, as we should have supposed, at the hottest season, but at the wettest. Thirdly, it is from thedifferent ratesof expansion of different rocks that this has been discovered. Fourthly, it is by converse with theheavensthat it has been made known to us. A variation of probably half a second, or less, in the right ascension of three or four stars, observed at different seasons, no doubt revealed the fact to the sagacious astronomer of Armagh, and even enabled him to divine its cause.

Professor Hennessey observes in connection with this phenomenon, that a very small change of ellipticity would suffice to lay bare or submerge extensive tracts of the globe. If, for example, the mean ellipticity of the ocean increased from 1/300 to 1/299, the level of the sea would be raised at the equator by about 228 feet, while under the parallel of 52° it would be depressed by 196 feet. Shallow seas and banks in the latitudes of the British isles, and between them and the pole, would thus be converted into dry land, while low-lying plains and islands near the equator would be submerged. If similar phenomena occurred during early periods of geological history, they would manifestly influence the distribution of land and water during these periods; and with such a direction of the forces as that referred to, they would tend to increase the proportion of land in the polar and temperate regions of the earth, as compared with the equatorial regions during successive geological epochs. Such maps as those published by Sir Charles Lyell on the distribution of land and water in Europe during the Tertiary period, and those of M. Elie de Beaumont, contained in Beaudant’sGeology, would, if sufficiently extended, assist in verifying or disproving these views.

Professor Hennessey observes in connection with this phenomenon, that a very small change of ellipticity would suffice to lay bare or submerge extensive tracts of the globe. If, for example, the mean ellipticity of the ocean increased from 1/300 to 1/299, the level of the sea would be raised at the equator by about 228 feet, while under the parallel of 52° it would be depressed by 196 feet. Shallow seas and banks in the latitudes of the British isles, and between them and the pole, would thus be converted into dry land, while low-lying plains and islands near the equator would be submerged. If similar phenomena occurred during early periods of geological history, they would manifestly influence the distribution of land and water during these periods; and with such a direction of the forces as that referred to, they would tend to increase the proportion of land in the polar and temperate regions of the earth, as compared with the equatorial regions during successive geological epochs. Such maps as those published by Sir Charles Lyell on the distribution of land and water in Europe during the Tertiary period, and those of M. Elie de Beaumont, contained in Beaudant’sGeology, would, if sufficiently extended, assist in verifying or disproving these views.

Continents (says M. Agassiz) are only a patchwork formed by the emergence and subsidence of land. These processes are still going on in various parts of the globe. Where the shores of the continent are abrupt and high, the effect produced may be slight, as in Norway and Sweden, where a gradual elevation is going on without much alteration in their outlines. But if the continent of North America were to be depressed 1000 feet, nothing would remain of it except a few islands, and any elevation would add vast tracts to its shores.

The west of Asia, comprising Palestine and the country about Ararat and the Caspian Sea, is below the level of the ocean, and a rent in the mountain-chains by which it is surrounded would transform it into a vast gulf.


Back to IndexNext