INFLUENCE OF LIGHT UPON PLANTS.

* * * * *

Page 285.

We are far from doubting that an additional advantage may be thus gained; and we have observed with several plants, for instance,Desmodium gyrans, that while the blade of the leaf sinks vertically down at night, the petiole rises, so that the blade has to move through a greater angle in order to assume its vertical position than would otherwise have been necessary; but with the result that all the leaves on the same plant are crowded together, as if for mutual protection.

We doubted at first whether radiation would affect inany important manner objects so thin as are many cotyledons and leaves, and more especially affect differently their upper and lower surfaces; for, although the temperature of their upper surfaces would undoubtedly fall when freely exposed to a clear sky, yet we thought that they would so quickly acquire by conduction the temperature of the surrounding air, that it could hardly make any sensible difference to them whether they stood horizontally, and radiated into the open sky, or vertically, and radiated chiefly in a lateral direction toward neighboring plants and other objects. We endeavored, therefore, to ascertain something on this head, by preventing the leaves of several plants from going to sleep, and by exposing to a clear sky, when the temperature was beneath the freezing-point, these as well as the other leaves on the same plants, which had already assumed their nocturnal vertical position. Our experiments show that leaves thus compelled to remain horizontal at night suffered much more injury from frost than those which were allowed to assume their normal vertical position. It may, however, be said that conclusions drawn from such observations are not applicable to sleeping plants, the inhabitants of countries where frosts do not occur. But in every country, and at all seasons, leaves must be exposed to nocturnal chills through radiation, which might be in some degree injurious to them, and which they would escape by assuming a vertical position.

* * * * *

The Power of Movement in Plants,page 403.

Any one who had never observed continuously a sleeping plant would naturally suppose that the leaves moved only in the evening when going to sleep, and in the morning when awaking; but he would be quite mistaken, for we have found no exception to the rule that leaves which sleep continue tomove during the whole twenty-four hours; they move, however, more quickly when going to sleep and when awaking than at other times.

The Power of Movement in Plants,page 565.

The extreme sensitiveness of certain seedlings to light is highly remarkable. The cotyledons ofPhalarisbecame curved toward a distant lamp, which emitted so little light that a pencil held vertically close to the plants did not cast any shadow which the eye could perceive on a white card. These cotyledons, therefore, were affected by a difference in the amount of light on their two sides, which the eye could not distinguish. The degree of their curvature within a given time toward a lateral light did not correspond at all strictly with the amount of light which they received; the light not being at any time in excess. They continued for nearly half an hour to bend toward a lateral light, after it had been extinguished. They bend with remarkable precision toward it, and this depends on the illumination of one whole side, or on the obscuration of the whole opposite side. The difference in the amount of light which plants at any time receive in comparison with what they have shortly before received seems in all cases to be the chief exciting cause of those movements which are influenced by light. Thus seedlings brought out of darkness bend toward a dim lateral light, sooner than others which had previously been exposed to daylight. We have seen several analogous cases with the nyctitropic movements of leaves. A striking instance was observed in the case of the periodic movements of the cotyledons of a cassia: in the morning a pot was placed in an obscure part of a room, and all the cotyledons rose up closed; another pot had stood in the sunlight,and the cotyledons of course remained expanded; both pots were now placed close together in the middle of the room, and the cotyledons which had been exposed to the sun immediately began to close, while the others opened; so that the cotyledons in the two pots moved in exactly opposite directions while exposed to the same degree of light.

We found that if seedlings, kept in a dark place, were laterally illuminated by a small wax-taper for only two or three minutes at intervals of about three quarters of an hour, they all became bowed to the point where the taper had been held. We felt much surprised at this fact, and, until we had read Wiesner’s observations, we attributed it to the after-effects of the light; but he has shown that the same degree of curvature in a plant may be induced in the course of an hour by several interrupted illuminations lasting altogether for twenty minutes as by a continuous illumination of sixty minutes. We believe that this case, as well as our own, may be explained by the excitement from light being due not so much to its actual amount, as to the difference in amount from that previously received; and in our case there were repeated alternations from complete darkness to light. In this and in several of the above-specified respects, light seems to act on the tissues of plants almost in the same manner as it does on the nervous system of animals.

Page 567.

Gravitation excites plants to bend away from the center of the earth, or toward it, or to place themselves in a transverse position with respect to it. Although it is impossible to modify in any direct manner the attraction of gravity, yet its influence could be moderated indirectly, in the several ways described inthe tenth chapter; and under such circumstances the same kind of evidence as that given in the chapter on heliotropism showed in the plainest manner that apogeotropic and geotropic, and probably diageotropic movements, are all modified forms of circumnutation.

Different parts of the same plant and different species are affected by gravitation in widely different degrees and manners. Some plants and organs exhibit hardly a trace of its action. Young seedlings, which, as we know, circumnutate rapidly, are eminently sensitive; and we have seen the hypocotyl ofBetabending upward through 109° in three hours and eight minutes. The after-effects of apogeotropism last for above half an hour; and horizontally-laid hypocotyls are sometimes thus carried temporarily beyond an upright position. The benefits derived from geotropism, apogeotropism, and diageotropism, are generally so manifest that they need not be specified. With the flower-peduncles ofOxalis, epinasty causes them to bend down, so that the ripening pods may be protected by the calyx from the rain. Afterward they are carried upward by apogeotropism in combination with hyponasty, and are thus enabled to scatter their seeds over a wider space. The capsules and flower-heads of some plants are bowed downward through geotropism, and they then bury themselves in the earth for the protection and slow maturation of the seeds. This burying process is much facilitated by the rocking movement due to circumnutation.

In the case of the radicles of several, probably of all seedling plants, sensitiveness to gravitation is confined to the tip, which transmits an influence to the adjoining upper part, causing it to bend toward the center of the earth. That there is transmission of this kind was proved in an interesting manner when horizontally extendedradicles of the bean were exposed to the attraction of gravity for an hour or an hour and a half, and their tips were then amputated. Within this time no trace of curvature was exhibited, and the radicles were now placed pointing vertically downward; but an influence had already been transmitted from the tip to the adjoining part, for it soon became bent to one side, in the same manner as would have occurred had the radicle remained horizontal and been still acted on by geotropism. Radicles thus treated continued to grow out horizontally for two or three days, until a new tip was reformed; and this was then acted on by geotropism, and the radicle became curved perpendicularly downward.

Insectivorous Plants,page 85.

As we have seen that nitrogenous fluids act very differently on the leaves ofDroserafrom non-nitrogenous fluids, and as the leaves remain clasped for a much longer time over various organic bodies than over inorganic bodies, such as bits of glass, cinder, wood, etc., it becomes an interesting inquiry whether they can only absorb matter already in solution, or render it soluble; that is, have the power of digestion. We shall immediately see that they certainly have this power, and that they act on albuminous compounds in exactly the same manner as does the gastric juice of mammals; the digested matter being afterward absorbed. This fact, which will be clearly proved, is a wonderful one in the physiology of plants.

* * * * *

Page 86.

It may be well to premise, for the sake of any reader who knows nothing about the digestion of albuminous compounds by animals, that this is effected by means of a ferment, pepsin, together withweak hydrochloric acid, though almost any acid will serve. Yet neither pepsin nor an acid by itself has any such power. We have seen that when the glands of the disk are excited by the contact of any object, especially of one containing nitrogenous matter, the outer tentacles and often the blade become inflected; the leaf being thus converted into a temporary cup or stomach. At the same time the discal glands secrete more copiously, and the secretion becomes acid. Moreover, they transmit some influence to the glands of the exterior tentacles, causing them to pour forth a more copious secretion, which also becomes acid or more acid than it was before.

As this result is an important one, I will give the evidence. The secretion of many glands on thirty leaves, which had not been in any way excited, was tested with litmus-paper; and the secretion of twenty-two of these leaves did not in the least affect the color, whereas that of eight caused an exceedingly feeble and sometimes doubtful tinge of red. Two other old leaves, however, which appeared to have been inflected several times, acted much more decidedly on the paper. Particles of clean glass were then placed on five of the leaves, cubes of albumen on six, and bits of raw meat on three, on none of which was the secretion at this time in the least acid. After an interval of twenty-four hours, when almost all the tentacles on these fourteen leaves had become more or less inflected, I again tested the secretion, selecting glands which had not as yet reached the center or touched any object, and it was now plainly acid. The degree of acidity of the secretion varied somewhat on the glands of the same leaf. On some leaves a few tentacles did not, from some unknown cause, become inflected, as often happens; and in five instances their secretion was found not to be in the least acid; while the secretion ofthe adjoining and inflected tentacles on the same leaf was decidedly acid. With leaves excited by particles of glass placed on the central glands, the secretion which collects on the disk beneath them was much more strongly acid than that poured forth from the exterior tentacles, which were as yet only moderately inflected. When bits of albumen (and this is naturally alkaline) or bits of meat were placed on the disk, the secretion collected beneath them was likewise strongly acid. As raw meat moistened with water is slightly acid, I compared its action on litmus-paper before it was placed on the leaves, and afterward when bathed in the secretion; and there could not be the least doubt that the latter was very much more acid. I have indeed tried hundreds of times the state of the secretion on the disks of leaves which were inflected over various objects, and never failed to find it acid. We may, therefore, conclude that the secretion from unexcited leaves, though extremely viscid, is not acid or only slightly so, but that it becomes acid, or much more strongly so, after the tentacles have begun to bend over any inorganic or organic object; and still more strongly acid after the tentacles have remained for some time closely clasped over any object.

I may here remind the reader that the secretion appears to be to a certain extent antiseptic, as it checks the appearance of mold and infusoria, thus preventing for a time the discoloration and decay of such substances as the white of an egg, cheese, etc. It therefore acts like the gastric juice of the higher animals, which is known to arrest putrefaction by destroying the microzymes.

* * * * *

Page 98.

Cubes of about one twentieth of an inch (1·27 millimetre) of moderately roasted meat were placed on five leaves, which became in twelve hoursclosely inflected. After forty-eight hours I gently opened one leaf, and the meat now consisted of a minute central sphere, partially digested, and surrounded by a thick envelope of transparent viscid fluid. The whole, without being much disturbed, was removed and placed under the microscope. In the central part the transverse striæ on the muscular fibers were quite distinct; and it was interesting to observe how gradually they disappeared, when the same fiber was traced into the surrounding fluid. They disappeared by the striæ being replaced by transverse lines formed of excessively minute dark points, which toward the exterior could be seen only under a very high power; and ultimately these points were lost.

* * * * *

Page 134.

Finally, the experiments recorded in this chapter show us that there is a remarkable accordance in the power of digestion between the gastric juice of animals, with its pepsin and hydrochloric acid, and the secretion ofDroserawith its ferment and acid belonging to the acetic series. We can, therefore, hardly doubt that the ferment in both cases is closely similar.

Insectivorous Plants,page 452.

Ordinary plants of the higher classes procure the requisite inorganic elements from the soil by means of their roots, and absorb carbonic acid from the atmosphere by means of their leaves and stems. But we have seen in a previous part of this work that there is a class of plants which digest and afterward absorb animal matter, namely, all theDroseraceæ,Pinguicula, and, as discovered by Dr. Hooker,Nepenthes, and to this class other species will almost certainly soon beadded. These plants can dissolve matter out of certain vegetable substances, such as pollen, seeds, and bits of leaves. No doubt their glands likewise absorb the salts of ammonia brought to them by the rain. It has also been shown that some other plants can absorb ammonia by their glandular hairs; and these will profit by that brought to them by the rain. There is a second class of plants which, as we have just seen, can not digest, but absorb, the products of the decay of the animals which they capture, namely,Utriculariaand its close allies; and, from the excellent observations of Dr. Mellichamp and Dr. Canby, there can scarcely be a doubt thatSarraceniaandDarlingtoniamay be added to this class, though the fact can hardly be considered as yet fully proved. There is a third class of plants which feed, as is now generally admitted, on the products of the decay of vegetable matter, such as the bird’s-nest orchid (Neottia), etc. Lastly, there is the well-known fourth class of parasites (such as the mistletoe), which are nourished by the juices of living plants. Most, however, of the plants belonging to these four classes obtain part of their carbon, like ordinary species, from the atmosphere. Such are the diversified means, as far as at present known, by which higher plants gain their subsistence.

The genus described is Genlisea ornata.

Insectivorous Plants,page 446.

The utricle is formed by a slight enlargement of the narrow blade of the leaf. A hollow neck, no less than fifteen times as long as the utricle itself, forms a passage from the transverse slit-like orifice into the cavity of the utricle. A utricle which measured 1/36 of an inch (·795 millimetre) in its longerdiameter had a neck 15/36 (10·583 millimetres) in length, and 1/100 of an inch (·254 millimetre) in breadth. On each side of the orifice there is a long spiral arm, or tube; the structure of which will be best understood by the following illustration: Take a narrow ribbon and wind it spirally round a thin cylinder, so that the edges come into contact along its whole length; then pinch up the two edges so as to form a little crest, which will, of course, wind spirally round the cylinder, like a thread round a screw. If the cylinder is now removed, we shall have a tube like one of the spiral arms. The two projecting edges are not actually united, and a needle can be pushed in easily between them. They are indeed in many places a little separated, forming narrow entrances into the tube; but this may be the result of the drying of the specimens. The lamina of which the tube is formed seems to be a lateral prolongation of the lip of the orifice; and the spiral line between the two projecting edges is continuous with the corner of the orifice. If a fine bristle is pushed down one of the arms, it passes into the top of the hollow neck. Whether the arms are open or closed at their extremities could not be determined, as all the specimens were broken; nor does it appear that Dr. Warming ascertained this point.

So much for the external structure. Internally the lower part of the utricle is covered with spherical papillæ, formed of four cells (sometimes eight, according to Dr. Warming), which evidently answer to the quadrifid processes within the bladders ofUtricularia. These papillæ extend a little way up the dorsal and ventral surfaces of the utricle; and a few, according to Warming may be found in the upper part. This upper region is covered by many transverse rows, one above the other, of short, closely approximate hairs, pointing downward.These hairs have broad bases, and their tips are formed by a separate cell. They are absent in the lower part of the utricle where the papillæ abound. The neck is likewise lined throughout its whole length with transverse rows of long, thin, transparent hairs, having broad bulbous bases, with similarly constructed sharp points. They arise from little projecting ridges, formed of rectangular epidermic cells. The hairs vary a little in length, but their points generally extend down to the row next below; so that, if the neck is split open and laid flat, the inner surface resembles a paper of pins—the hairs representing the pins, and the little transverse ridges representing the folds of paper through which the pins are thrust. These rows of hairs are indicated in the previous figure by numerous transverse lines crossing the neck. The inside of the neck is also studded with papillæ; those in the lower part are spherical and formed of four cells, as in the lower part of the utricle; those in the upper part are formed of two cells, which are much elongated downward beneath their points of attachment. These two-celled papillæ apparently correspond with the bifid process in the upper part of the bladders ofUtricularia. The narrow transverse orifice is situated between the bases of the two spiral arms. No valve could be detected here, nor was any such structure seen by Dr. Warming. The lips of the orifice are armed with many short, thick, sharply pointed, somewhat incurved hairs or teeth.

The two projecting edges of the spirally-wound lamina, forming the arms, are provided with short incurved hairs or teeth, exactly like those on the lips. These project inward at right angles to the spiral line of junction between the two edges. The inner surface of the lamina supports two-celled, elongated papillæ, resembling thosein the upper part of the neck, but differing slightly from them, according to Warming, in their footstalks being formed by prolongations of large epidermic cells; whereas the papillæ within the neck rest on small cells sunk amid the larger ones. These spiral arms form a conspicuous difference between the present genus andUtricularia.

Lastly, there is a bundle of spiral vessels which, running up the lower part of the linear leaf, divides close beneath the utricle. One branch extends up the dorsal and the other up the ventral side of both the utricle and neck. Of these two branches, one enters one spiral arm, and the other branch the other arm.

The utricles contained muchdébris, or dirty matter, which seemed organic, though no distinct organisms could be recognized. It is, indeed, scarcely possible that any object could enter the small orifice and pass down the long, narrow neck, except a living creature. Within the necks, however, of some specimens, a worm, with retracted horny jaws, the abdomen of some articulate animal, and specks of dirt, probably the remnants of other minute creatures, were found. Many of the papillæ within both the utricles and necks were discolored, as if they had absorbed matter.

From this description it is sufficiently obvious how genlisea secures its prey. Small animals entering the narrow orifice—but what induces them to enter is not known any more than in the case ofUtricularia—would find their egress rendered difficult by the sharp incurved hairs on the lips, and, as soon as they passed some way down the neck, it would be scarcely possible for them to return, owing to the many transverse rows of long, straight, downward-pointing hairs, together with the ridges from which these project. Such creatures would, therefore,perish either within the neck or utricle; and the quadrifid and bifid papillæ would absorb matter from their decayed remains. The transverse rows of hairs are so numerous that they seem superfluous merely for the sake of preventing the escape of prey, and, as they are thin and delicate, they probably serve as additional absorbents, in the same manner as the flexible bristles on the infolded margins of the leaves of aldrovanda. The spiral arms, no doubt, act as accessory traps. Until fresh leaves are examined, it can not be told whether the line of junction of the spirally-wound lamina is a little open along its whole course or only in parts, but a small creature which forced its way into the tube at any point would be prevented from escaping by the incurved hairs, and would find an open path down the tube into the neck, and so into the utricle. If the creature perished within the spiral arms, its decaying remains would be absorbed and utilized by the bifid papillæ. We thus see that animals are captured by genlisea, not by means of an elastic valve, as with the foregoing species, but by a contrivance resembling an eel-trap, though more complex.


Back to IndexNext