III.Die Bewegungserscheinungen am Protoplasma der Pflanzenzellen verglichen mit denen an den Pseudopodien der Rhizopoden.

III.Die Bewegungserscheinungen am Protoplasma der Pflanzenzellen verglichen mit denen an den Pseudopodien der Rhizopoden.

Wir haben oben bereits ausführlich auf die Bedeutung aufmerksam gemacht, welche die Thatsache für uns hat, dass die Bewegungserscheinungen des Protoplasma der Pflanzenzellen denen, welche wir an den Pseudopodien der Rhizopoden beobachten, bis zum Verwechseln ähnlich sehen. Ich habe die Gelegenheit, welche mir der Besitz der äusserst lebenskräftigen Polythalamien von der englischen Küste bot, benutzt, die Bewegungen des Protoplasma der Pflanzenzellen nach erneuten Untersuchungen noch einmal so genau als möglich mit den Bewegungen der Pseudopodien zu vergleichen.

Die Pflanzen und Pflanzentheile, welche ich beobachtete, sind die Staubfadenhaare mehrerer SpeciesTradescantia, die Blumenblätterhaare vonViola, die Blätterhaare vonCucurbitaund vonUrtica, die Blattparenchymzellen und die Wurzelhaare vonHydrocharis, und die Blätter vonVallisneria spiralis. Es ist bekannt, dass die Bewegungserscheinungen, welche der Inhalt der Zellen dieser Pflanzen darbietet, grosse Verschiedenheiten zeigen. Man unterschied danach früher eine Rotationsströmung (Chara, Vallisneria) und eine Circulation des Zellsaftes (Tradescantia u. A.). Doch da man erkannte, dass beide Arten von Bewegung an derselben Substanz, nämlich dem Protoplasma der Zellen, ablaufen, während der wässerig flüssige Zelleninhalt keinen Theil an derselben hat, wurde es zweifelhaft, ob eine scharfe Unterscheidung der beiden Bewegungsformen möglich sei[34]. Die Auffindung aller möglichen Uebergängezwischen beiden Bewegungsarten hat dann jeden Zweifel an der Zusammengehörigkeit beider Erscheinungen beseitigt[35].

Die einfachere Form der Bewegung ist da, wo das Protoplasma nur als gleichmässige Bekleidung der inneren Oberfläche der Cellulosewand vorkommt, wie bei Chara, Nitella, Vallisneria u. A. Bilden sich in diesem wandständigen Protoplasma Unterschiede in der Dicke der Art aus, dass einzelne Theile wie Riffe oder Leisten in die Höhlung der Zelle vorspringen, so entsteht das Verhältniss wie in den Brennhaaren von Urtica. Dieses geht wieder ganz allmählich in die Bildung über, wie sie sehr entwickelt bei Tradescantia, Viola vorkommt, wo zahlreiche Protoplasmafäden, welche mit ihren Enden in dem wandständigen Protoplasma wurzeln, die Zellenhöhle frei durchziehen und oft ein complicirtes Netzwerk bilden, wie es nachSchacht’sBeobachtungen wohl am schönsten in der Aussackung des Embryosackes von Pedicularis sylvatica gefunden wird, wo das Protoplasmanetzwerk höchst wahrscheinlich später in ein Cellulosefadennetz übergeht[36].

Das Object, welches den directesten Vergleich mit den Pseudopodien der Polythalamien zulässt, sind die frei durch die Zellenhöhle streichenden Protoplasmafäden in denTradescantia-,Viola-,Cucurbita- undHydrocharis-Blattzellen. Wie ich früher fürTradescantiaausführlich beschrieb[37], »gehen von der den Kern umhüllenden Protoplasmaschicht mehrere dickere und dünnere Fäden aus, nach verschiedenen Richtungen die Zelle durchsetzend, auch öfter der Zellenwand dicht anliegend. Sie bestehen deutlich aus einer Grundsubstanz und eingebetteten, stark lichtbrechenden Körnchen. Letztere laufen im Innern oderwie auf der Oberflächeder Fäden hin, entweder nur nacheinerRichtung oder, wie nicht selten gesehen werden kann, nach entgegengesetzten Richtungen zugleich an einem und demselben Faden. An den breitesten ist die doppelte Strömungsrichtung fast constant, sie kommt aber auch an den feinsten, kaum noch erkennbaren Fäden vor. Begegnen sich Körnchen, so gehen sie meist ungestört aneinander vorbei, oder es kommt vor, dass die einen die anderen mit zurücknehmen — ein Beweis, dass nicht zwei getrennte Fäden die Ursache derdoppelten Stromesrichtung waren. An demselben Faden überholen einzelne in schnellem Laufe andere langsamere, und können dann, wie ich einmal sah, zurücklaufend gemeinschaftlich umkehren. Die Fäden theilen sich öfter gabelig, und ein Körnchen an die Theilungsstelle gelangt, stockt ehe es sich dem einen oder anderen Wege anvertraut. Die Gestalt und Richtung der Fäden ist aber fortwährendem Wechsel unterworfen. Die gablige Theilung z. B. rückt von der Basis des Fadens am Zellenkern dem anderen an der inneren Oberfläche der Zellenwand sich befindenden Ende entgegen. Oder es bildet sich aus der gabligen Theilung eine Brücke zu einem nebenanliegenden Faden, indem der eine Theilast mit diesem verschmilzt. Die Brücke läuft dann abwärts oder aufwärts zwischen beiden Fäden hin, verkürzt sich, indem letztere sich einander nähern, endlich verschmelzen sie vollständig miteinander zu einem einzigen, so dass jetzt ein breiter Strom fliesst, wo vorher einzelne Fäden waren.

An der inneren Oberfläche der Zellenwand befindet sich eine zusammenhängende dünne Protoplasmaschicht. So erscheint es nach der Anwendung von Reagentien, welche dieselbe, (den Primordialschlauch) einschrumpfen machen. Durch Zuckerlösung konnte ich hier dasselbe hervorrufen, wasA. Braunbei den Characeen gelang. Der Zelleninhalt zog sich scharf begränzt von der Zellhaut zurück, dabei dauerten die Strömungserscheinungen im Innern noch eine Zeit lang fort. Hiebei kann man sich auch überzeugen, dass die in der Rindenschicht des Protoplasma vorkommenden Strömchen und Körnchenschwankungen (denn solche sind hier stellenweise oft allein vorhanden) nicht die äusserste Schicht des Protoplasma (HautschichtPringsheim) betreffen, sondern nur eine innere Lage an der Rindenschicht (KörnerschichtPringsheim).«

WieE. Haeckelauf Grund eigener Untersuchungen auf das Nachdrücklichste bestätigt[38], passt diese Beschreibung so vollständig auf die Bewegungen der Pseudopodien der Rhizopoden, dass sie direct auf letztere übertragen werden kann. Zu ihrer Vervollständigung will ich nur noch hinzufügen, dass man an den freien Plasmafäden öfter ausser der Bewegung der kleinen Körnchen auch ein Fortrücken grösserer, spindelförmiger Massen oder seitlicher Auftreibungen bemerkt, welche mit derselben oder etwas geringerer Geschwindigkeitwie die Körnchen fortrücken, gerade so wie es bei den Pseudopodien der Polythalamien vorkommt; ferner dassHaeckelbeobachtete, wie seitlich aus einem Faden ein neuer hervortritt, um sich bei reichlichem Zufluss schnell zu verlängern, zu verästeln, mit anderen zu verbinden, oder bei geringem Zufluss alsbald wieder zu verschwinden. Etwas dem Entsprechendes sah auchHeidenhainbei Hydrocharis und Vallisneria[39]. Auch bedarf der Eingang obiger Beschreibung insofern einer Berichtigung, als durchaus nicht immer das den Kern der Zelle umhüllende Protoplasma der alleinige Ausgangspunkt der Fäden ist, diese vielmehr auch an jeder anderen Stelle des Protoplasma wurzeln können.

Weitere Verwandtschaft der beiden in Rede stehenden Arten von Fäden ergiebt sich aus dem Verhalten zu Reagentien und zum elektrischen Strome. Destillirtes Wasser bringt den Plasmafaden der Pflanzenzelle zum Zerfliessen unter denselben Erscheinungen der Vacuolenbildung, wie oben von den Pseudopodien der Polythalamien beschrieben worden. An der unverletzten Zelle der Tradescantiafäden tritt diese Einwirkung erst nach 12–24 Stunden ein, beim Anschneiden der Zelle ist sie sofort da. Verdünnte Säuren bringen die Fäden unter Sistirung der Körnchenbewegung zum Erstarren, so dass sie oft noch lange in derselben Lage wie zuletzt im Leben verharren und keine andere Veränderung eingehen als etwas blasser werden. Bei kräftigerer Einwirkung tritt eine theilweise Auflösung und Schrumpfung ein. Aehnlich ist die langsame Einwirkung verdünnter Kalilauge. Die Fäden werden durchsichtiger und es hört jede Bewegung in ihnen auf, bis die lösende Einwirkung der Lauge die Protoplasmamassen zerstört. Wie empfindlich das Protoplasma gegen die Einwirkung gewisser Agentien ist, beweist folgender interessante Versuch. Die Staubfadenhaare der Tradescantia virginica enthalten im noch nicht vollkommen entwickelten Zustande, wenn man sie aus einer Blüthenknospe nimmt, in dem feinkörnigen Protoplasma viele kleine Stärkekörner, welche beim Aufblühen vollständig geschwunden sind. Dieselben färben sich mit Iod violettblau. Bringt man zu solchen Staubfadenhaaren, deren Protoplasma in lebhafter Bewegung ist, ein wenig Iod in Iodkaliumlösung, so hört die Bewegung des Protoplasma auch bei grosser Verdünnung der Lösungsehr schnellauf,viel früher, als die Stärkekörner eine Andeutungder blauen Farbe zeigenoder das Protoplasma und die Zellenwand eine Farbenänderung annehmen. Es steht diese Thatsache in auffallendem Gegensatze zu der obigen, dass Staubfadenhaare, welche gewohnt sind nur mitLuftin Berührung zu sein, bis 24 Stunden in Wasser liegen können, ohne dass letzteres durch die Zellenwand hindurch die Integrität des Protoplasma stört, was sich, wenn es endlich eintritt, durch veränderte Anordnung des Protoplasma und Aufhören der Bewegung zu erkennen giebt.

Unger[40]berichtet, dass eine schwache Zucker- oder Gummilösung, und noch mehr Milch den Strom der Vallisneria spiralis sehr beschleunige. Ich habe bei wiederholten Versuchen nichts von dieser Beschleunigung wahrnehmen können, vorausgesetzt natürlich, dass die Lösungen keine höhere Temperatur als das Präparat vor dem Zusatze derselben hatten. Auch die deletären Wirkungen des Kalkwassers kann ich nicht bestätigen, denn an in Kalkwasser gelegten Schnitten von Vallisneria beobachtete ich noch nach 24 Stunden ebenso schnelle Bewegungen, wie wenn destillirtes Wasser angewandt worden war.

Was ich oben von der Einwirkung der Inductionsströme auf die Körnchenbewegung der Pseudopodien der Polythalamien gesagt habe, gilt auch für die Protoplasmafäden der Tradescantia. Ich habe in vielen Versuchen mit dem Schlittenapparat keinerlei anderen Einfluss der Elektricität auf die Körnchenbewegung wahrnehmen können, als dass, nachdem schwache Ströme ohne allen Einfluss blieben, stärkere sie verlangsamen und ziemlich schnell aufhören machen. Dabei bleiben wieder die Fäden entweder noch lange in ihrer natürlichen Lage, oder gehen schnell unter, indem sie sich in eine Molekularbewegung zeigende Masse zusammenziehen und auflösen. Es ist, soweit sich nach der Stellung der Inductionsrollen beurtheilen lässt, ziemlich genau dieselbe Stromstärke, bei welcher die Körnchenbewegung in den Pseudopodien und in den Pflanzenzellen aufhört. Sehr gewöhnlich beobachtet man bei solchen Versuchen, auch wenn die Elektroden mit sehr breiten Enden in dem Wassertropfen auslaufen (breiten Staniolstreifen oder Spiegelglasbelegung), dass nicht alle Theile des Präparates gleichmässig von der Einwirkung der elektrischen Schläge getroffen werden. Dabei fiel mir auf, dass die in der Längsrichtung durchströmten Haarzellen viel schneller absterben als diejenigen, deren Längsaxe rechtwinklig gegen die Verbindungslinieder beiden Elektroden liegt.Jürgensen, welcher sehr genaue Experimente über die Einwirkung des elektrischen Stromes auf die Bewegung des Protoplasma in den Blattzellen von Vallisneria spiralis anstellte[41], beobachtete etwas Analoges.

Hat die Körnchenbewegung unter dem Einfluss stärkerer Inductionsschläge aufgehört, so sah ich dieselbe nicht wieder in Gang kommen, was auch mitJürgensen’sErfahrungen an Vallisneria übereinstimmt, welche sich auf genaue Messungen am Mikrometer gründen.Heidenhain, welcher wie ich an Tradescantien arbeitete, giebt an, dass auch nach dem Aufhören der Bewegung, in Folge der Einwirkung von Inductionsströmen, dieselbe wieder in vollen Gang kommen könne, wenn die Ströme nicht zu stark und ihre Einwirkungsdauer nicht zu lange gewesen[42].

Der Einfluss, welchen der elektrische Strom auf dieKörnchenbewegungausübt, beschränkt sich auf eine Verlangsamung, welche der beginnenden Zersetzung vorausgeht. Von diesem Einfluss ist zu unterscheiden, dass auchVeränderungen in der Anordnung der Protoplasmamassen, Gestaltveränderungen der Fäden und dergl. in Folge der Einwirkung des elektrischen Stromes auftreten können. Der erste, welcher dergleichen beobachtete, istBrücke[43], er schreibt von dem Protoplasma der Brennhaare von Urtica: »Um die Wirkung der electrischen Ströme in ihren einzelnen Stadien zu verfolgen, thut man am besten, den Kreis anfangs nur für eine oder einige Secunden zu schliessen, so dass das Haar eine kurze Reihe von Schlägen erhält. Die erste Veränderung, die man dann wahrnimmt, besteht in der Regel in dem Erscheinen einer grösseren oder geringeren Menge von Fäden, welche vom Zellenleibe aus in die Intracellularflüssigkeit hineinragen. Ich habe sie nicht immer, aber doch bei weitem in der Mehrzahl der Fälle gesehen, und da sie von wechselnder Dicke, oft äusserst dünn sind, so mögen sie sich doch wohl das eine oder das andere Mal der Beobachtung entzogen haben. Manchmal sieht man sie wie Raketen aus dem Zellenleibe hervorschiessen,sobald man den Kreis des Magnetelectromotors schliesst. Sie haben oft eine beträchtliche Länge; ich habe deren solche beobachtet, die im gestreckten Zustande bis zur Axe in das Innere des Haares hineinragten. An ihrem Ende tragen sie eine grössere oder kleinere Anschwellung, und man sieht sie in einer fortwährenden, bald schwächeren, bald stärkeren zitternden oder schlängelnden Bewegung begriffen. Bisweilen sieht man neben den Fäden auch stärkere kolben- oder keulenartige Gebilde hervortreten.«

Ich habe die beschriebene Erscheinung bei einer gewissen Stärke des Stromes wiederholt eintreten sehen. Man thut am besten an einem Theil des wandständigen Protoplasma die Grenze gegen die Intracellularflüssigkeit genau einzustellen, und dann den Strom, wieBrückeräth, nur kurze Zeit einwirken zu lassen. Derselbe muss aber schon recht kräftig sein, wenn man eine Wirkung beobachten will. Die vorher glatte Grenzlinie des Protoplasma wird höckerig, zapfen- und fadenförmige Vorsprünge kommen an derselben zum Vorschein, von denen die feineren die vonBrückeangegebenen Bewegungen ausführen, und endlich, wenn kein neuer deletärer Strom durch das Protoplasma geleitet wird, wieder langsam in das Protoplasma zurückgezogen werden, von welchem sie ausgingen. EinplötzlichesAuftreten dieser fadenförmigen Fortsätze habe ich nicht gesehen. Die zu diesen Versuchen nöthige Stärke des Stromes muss ziemlich nahe derjenigen liegen, welche das Protoplasma tödtet, doch ist unsere Erscheinung durchaus kein Zeichen des bereits eingetretenen Todes, denn die Körnchenbewegung erhält sich und dauert nachher ungestört fort.

Bei Tradescantia konnte ich ähnliche Bewegungen nicht hervorrufen, die Anordnung des Protoplasma in den Zellen ist hier auch für das Zustandekommen solcher Erscheinungen weniger günstig. Die freien Fäden sind zu dünn, um viele neue Fortsätze treiben zu können, und die Menge des wandständigen Protoplasma ist sehr gering. Dagegen beobachtete ich hier etwas, dessen auchHeidenhain[44]Erwähnung thut, und was für eine Vergleichung der Protoplasmafäden der Pflanzenzellen mit den Pseudopodien der Rhizopoden von Wichtigkeit ist — die Fäden werden unter dem Einfluss eines stärkeren elektrischen Stromes deutlichvarikös. Die Erscheinung sieht aus, als wenn sich eine flüssigere Masse auf der Oberflächedes Fadens in einzelnen Tropfen ansammle, gerade so wie ich es von den Pseudopodien von Actinophrys und den Polythalamien beschrieben habe.

Wir werden sehen, dass ganz ähnliche Erscheinungen, wie durch Anwendung stärkerer elektrischer Schläge, an den Protoplasmafäden verschiedener Pflanzenzellen auch durch Anwendunghöherer Temperaturgradeerzielt werden können. Die erste Folge einer allmählichen Erwärmung ist eine oft sehr bedeutendeBeschleunigung der Körnchenbewegung.Dutrochet[45]bestimmte bei Chara den Einfluss höherer Temperaturgrade auf die sogenannte Rotation genauer, und fand, dass eine Erwärmung der in schmelzendem Schnee abgekühlten Pflanze, in welcher die Bewegung sehr langsam von Statten ging, auf 18° C. diese letztere ausserordentlich beschleunigte. Erwärmung von 27–40° brachte zuerst eine Verlangsamung der Bewegung hervor, nach längerem Verweilen in dem warmen Wasser wurde die Bewegung jedoch immer sehr schnell. Wasser von 45° C. tödtete die Pflanze sofort. FürVallisneriaist es seit längerer Zeit bekannt, dass eine Erwärmung des Wassers beschleunigend auf die Bewegung wirkt.Jürgensen[46]gab für diese Pflanze die äusserste Grenze, bei welcher sich die Bewegung noch erhält, auf 36–40° an, d. h. bei 36° beobachtete er noch kräftige Bewegung, bei 40° keine mehr. Die Beobachtung des erregenden Einflusses der Erwärmung bei Vallisneria ist sehr leicht und sicher. Wendet man frisch angefertigte Schnitte an, in welchen gewöhnlich die Bewegung nur äusserst langsam vor sich geht, so sieht man sie bei der Erwärmung sofort in den meisten Zellen auf das lebhafteste in Gang kommen. Nicht so auffallend sind die Veränderungen, welche bei Urtica und Tradescantia eintreten. Bei diesen Pflanzen maass ich die Schnelligkeit der Körnchenbewegung bei gewöhnlicher Zimmertemperatur, erwärmte dann den Objectträger ohne ihn zu verrücken durch Einschiebung einer über der Lampe erhitzten Cylinderblendung von unten in den Objecttisch auf 30–40° C., und maass an derselben Zelle wie vorhin die Schnelligkeit der Bewegung von Neuem. So erhielt ich für Urtica bei gewöhnlicher Temperatur für die Secunde 0,004–0,005 Millimeter, bei Erwärmung bis cc. 35° 0,009 Mm. Bei Tradescantiavirginica maass ich die Bewegung bei gewöhnlicher Temperatur 0,004–0,005 Mm. in der Secunde, erwärmt 0,008, einzelne Körnchen 0,010 Mm.

Noch schneller sind die Bewegungen bei Vallisneria spiralis, bei der ich nach mässiger Erwärmung die Chlorophyllkügelchen in einer Secunde einen Raum von 0,015 Mm. zurücklegen sah.

Meine bei gewöhnlicher Zimmertemperatur angestellten Messungen stimmen ziemlich genau überein mit den vonH. v. Mohl[47]gemachten Angaben, welcher bei Tradescantia1⁄500‴ d. i. = 0,0045 Mm., bei Urtica1⁄750‴ d. i. = 0,003 Mm. für die Secunde angiebt. Die Erwärmung kann also hier die Bewegungbis auf mehr als das Doppeltebeschleunigen. Das höchste Maass, welches ich erreichte, war bei Vallisneria, nämlich 0,015 Mm. in der Secunde.

Es musste von Wichtigkeit sein, die Schnelligkeit, welche die Körnchenbewegung an den Pseudopodien derPolythalamienerreicht, im Vergleich zu obigen Messungen zu bestimmen. Die Milioliden, welche mir zu Gebote standen, ergaben eine Schnelligkeit von 0,007–0,015 Mm. in der Secunde und zwar bei gewöhnlicher Temperatur.Erwärmung brachte kaum eine Beschleunigung der Bewegung hervor, das höchste, was ich an einzelnen Körnchen beobachtete, war 0,02 Mm., was aber auch wohl in einzelnen Fällen bei gewöhnlicher Temperatur vorkommen dürfte. Wir hätten hiernach also zu constatiren, dass dieGeschwindigkeit der Körnchenbewegung an den Pseudopodien der Milioliden übereinstimmt mit der höchsten an dem Protoplasma der Pflanzenzellen beobachteten. Bei letzteren wurde diese Geschwindigkeit nur durch Erwärmung über die gewöhnliche Zimmertemperatur erzielt, bei den Milioliden bestand sie unter den normalen Verhältnissen und ward durch Temperaturerhöhung nicht wesentlich beschleunigt[48].

Zu genauer Bestimmung derjenigen höheren Temperaturgrade, bei welchen sich Veränderungen tief greifender Art im Protoplasma einstellen, bediente ich mich nach einer Anzahl Vorversuche wieoben des Wasserbades, in welches die mikroskopischen Präparate mit an den Ecken aufgekittetem Deckgläschen oder die ganzen Pflanzentheile eingetaucht wurden. Zwei bis drei Minuten können gewiss als hinlänglich lange Zeit gelten, um den sehr dünnen Präparaten die Temperatur des umgebenden Wassers vollständig mitzutheilen. Die Pflanzen, mit denen ich operirte, waren Tradescantia virginica, Urtica urens und Vallisneria spiralis. Für alle drei stellte sich gleichmässig heraus, dass die Temperatur, welcheabsolut tödtlichwirkt, erst bei 47–48° C. anfängt. Bei 46° habe ich immer nocheinigeZellen unverändert gefunden, bei 45°vieleund bei 44°, wie wenigstens bei Vallisneria und Tradescantia schien,alle. Die Urticahaare sind vielleicht ein wenig empfindlicher, wenigstens erschien die Bewegung hier schon bei 44° oft fast vollkommen sistirt, ohne dass aber der Tod der Zelle eingetreten war. Die Bewegungverlangsamtsich in allen Fällen von 38–40° an, kehrt aber, wenn die Temperatur nicht über 43° stieg, bei der Abkühlung meist bald zu der ursprünglichen Schnelligkeit zurück.

Bei schneller Erwärmung auf 40° und darüber sah ich bei Urtica oft dieselben merkwürdigen Veränderungen des Protoplasma eintreten, wie sieBrückedurch starke Schläge des Magnetelektromotors erzeugte. Der glatte Contour, welchen das wandständige Protoplasma gegen die Intracellularflüssigkeit besitzt, verändert sich durch Hervortreibung von kugligen, keulenförmigen und fadenartigen Fortsätzen, deren feinste oft eine schlängelnde oder wie tastende Bewegung zeigen. Bei der Abkühlung verschwinden sie allmählich wieder, doch pflegt die Bewegung der Körnchen nicht immer zu der ursprünglichen Schnelligkeit zurückzukehren. Wird die Erwärmung plötzlich auf 45° und darüber getrieben, so treten oft die bereits oben erwähnten Varikositäten an den freien Protoplasmafäden auf, wie sich besonders deutlich bei Tradescantia beobachten lässt. In anderen Fällen erstarren die Fäden in der Lage, die sie einnahmen und verharren noch lange in derselben, bis sie der allmählich um sich greifenden Auflösung des Plasma anheimfallen.

Es folgt aus diesen Versuchen 1) dass die Wärme ein mächtiges Reizmittel für die Protoplasmabewegungen ist und 2) dass das Protoplasma der Pflanzenzellen bei ungefähr 45° C. abstirbt. Die Bewegung erlischt, worauf eine Veränderung in dem Aussehen der Masse eintritt, welche genau derjenigen gleicht, wie sie die contractile Substanz der Pseudopodien und des Körpers der Rhizopodenunterdem Einfluss eines etwas niedrigeren, 43° C. betragenden Temperaturgradeseingeht.

Heidenhainmuss die Beobachtungen vonDutrochetundJürgensenüber den Einfluss der Temperatur auf die Bewegungen des Protoplasma übersehen haben, sonst hätte er nicht schreiben können (l. c. p. 65): »Ich habe bisher noch keine Reize für die im Innern der Zellen vor sich gehenden Bewegungen entdecken können d. h. keine derartigen Einwirkungen, welche das ruhende Protoplasma in Bewegung zu versetzen oder das langsam bewegte zur Beschleunigung anzutreiben vermöchten.« Ein solches und sehr ausgezeichnetes Reizmittel ist also die Wärme.

Ich kann von den Temperaturbeobachtungen nicht scheiden, ohne an die Beziehungen derselben zu dem Vorkommen lebender thierischer und pflanzlicher Organismenin heissen Quellenzu erinnern, und die überraschenden Differenzen anzugeben, welche sich bei der Vergleichung herausstellen. Nach meinen Beobachtungen stirbt das Protoplasma der untersuchten Pflanzenzellen unter Gerinnungserscheinungen bei 47–48° C. unfehlbar ab. Thierisches Leben erhält sich in Wasser von 45° nur noch sehr spärlich, einzelne Brachionus und Cypris-Arten überdauerten diesen Temperaturgrad, Anguillulinen, Turbellarien, Naiden sterben schon bei 44½° meist ab, Rhizopoden ertragen einzeln 42–43°, Vorticellen sterben bei 41–42° C. Die Wärmestarre der Muskeln von Wirbelthieren tritt nachKühne’sangeführten Untersuchungen bei 40–50°, verschieden nach dem Grade der Starre und nach der Thierclasse, auf. Wir sind berechtigt hiernach vorauszusetzen, dass thierisches und pflanzliches Leben über ca. 45° C. sich dauernd nicht erhalten werde. Diese Voraussetzung bestätigt sich angesichts kürzlich vonEhrenbergmitgetheilter Beobachtungen nicht.Ehrenberg[49]fand auf Ischia in heissen Quellen Filze von grünen und braunen organischen Massen, welche aus lebenden Eunotien und grünen Oscillarien bestanden. Beim Ausdrücken derselben kamen 4 Arten Räderthiere, Infusorien der Gattungen Nassula, Enchelys und Amphileptus zum Vorschein. Das Thermometerin diese heissen Filze eingesenkt, zeigte 65–68° R., d. i. 81–85° C.! Bezüglich anderer heisser Quellen stehen mir keine mit wünschenswerther Genauigkeit angestellte Beobachtungen über die Temperatur derwirklichlebendeOrganismen enthaltenden Stellen zu Gebote. Mit der grössten Spannung müssen wir der Lösung der hier schwebenden Frage entgegensehen.

Wenn wir die Körnchenbewegung der Pseudopodien der Rhizopoden als Ausfluss derContractilitätihrer Substanz betrachten, wogegen solange nichts zu erinnern sein wird, als nicht ein anderer Grund für diese Bewegung nachgewiesen ist, so können wir folgerichtig auch nicht anstehen, als Ursache der Körnchenbewegung am Protoplasma der PflanzenzellenContractilitätanzusehen. Wenn je, so haben wir hier einen Grund, aus gleicher Wirkung auf die gleiche Ursache zu schliessen. Wenn es sich aber um noch andere Beweise für die Contractilität des Protoplasma handelt, so verweise ich zunächst zurück auf die AngabenBrücke’sbezüglich des Verhaltens der Brennhaare von Urtica gegenüber den Schlägen des Magnetelektromotors, welche ich bestätigen konnte, und auf meine Angaben über den Einfluss höherer Temperaturgrade. Ferner verdienen hier BeachtungenHeidenhain’s(l. c. p. 56) Erwähnung über schnelle, zuckende Contractionen an den Protoplasmafäden von Hydrocharisblattzellen. Es treten nachHeidenhainan den die Intracellularflüssigkeit durchsetzenden Plasmafäden, welche oft in einem centralen Plasmaklümpchen zusammenstossen, ruckweise Bewegungen auf, welche damit zu enden pflegen, dass einer der Fäden die Oberhand über die anderen gewinnt und sich verkürzend das Plasmaklümpchen zu sich und zu dem wandständigen Protoplasma hinzieht, in welchem er wurzelt. Weiter verweise ich auch auf die oben angeführten BeobachtungenE. Haeckel’sbei Tradescantia[50], nach welchen ein Hervortreten und Zurückziehen neuer Fäden aus den vorhandenen ganz in der Art vorkommt, wie bei den Pseudopodien der Rhizopoden, eine Erscheinung, welche nur Theilerscheinung aller der complicirten und stets wechselnden Veränderungen in der Anordnung der Protoplasmamassen ist, welche die Bewegungen letzterer, namentlich bei Tradescantia, so vollkommen derjenigen gleich erscheinen lassen, welche die Pseudopodien der Polythalamien darbieten.

Die vorstehenden Untersuchungen haben, denke ich, zur Genüge bewiesen, wie viel Recht ich hatte, die Protoplasmabewegungenin den Pflanzenzellen mit den Bewegungen der Pseudopodien der Polythalamien zusammenzustellen und aus der Gleichheit der Erscheinung auf eine tiefe innere Verwandtschaft der hier in Vergleich stehenden Substanzen zu schliessen. Ich überlasse es nunReichert, welcher, ohne Gründe anzuführen, gegen den Vergleich protestirt, nicht einmal den Beweis geliefert hat, dass er die Körnchenbewegung in den Protoplasmafäden der Pflanzenzellen jemals mit Aufmerksamkeit beobachtete, die von ihm gefundenenUnterschiedezwischen beiden Substanzen scharf ins Licht zu stellen, damit wir dasfürund daswiderabzuwägen vermögen.

Ich habe wiederholt der ArbeitBrücke’süber die Protoplasmabewegungen in den Haaren der Brennnessel gedacht. Wir können von dem Gegenstande nicht scheiden, ohne einer Ansicht Erwähnung zu thun, welcheBrückeüber dasWesen der Körnchenbewegungim Protoplasma dieser Zellen aufgestellt hat. Wenn auch zunächst nur für Urtica Gültigkeit beanspruchend, muss dieselbe doch bei der nachgewiesenen Uebereinstimmung der Grunderscheinung in allen hier besprochenen Beispielen einer Verallgemeinerung fähig und für uns also von höchstem Interesse sein.

Die Schwierigkeit, die Körnchenbewegung mit den Bewegungen anderer contractiler Substanzen in Einklang zu bringen, ist nach dem Voranstehenden offenbar sehr gross. Die Körnchenbewegung ist mit einer unzweifelhaften Ortsbewegung nicht nur der Körnchen, sondern auch deren unmittelbarer Umgebung verbunden, denn nur so erklärt es sich, wie die Substanz der Pseudopodien an Stellen gelangt, wo sie vorher nicht war, wie die complicirten Veränderungen in der Anordnung der Protoplasmamassen zu Stande kommen. Das hatBrückedenn auch für die Bewegungen in den Haaren der Nessel sofort anerkannt.

Brückeunterscheidet aber zweierlei Bewegungen an dem Protoplasma der Nesselhaare[51]: 1) »eine langsame, ziehende oder kriechende, von welcher die Veränderungen in der Anordnung der Protoplasmamassen abhängen« und 2) eine »schnellere, fliessende, welche man an der Bewegung der zahlreichen Körnchen wahrnimmt«. Beide sollen wesentlich verschieden sein. Während erstere direct aus Contractionsbewegungen des Protoplasma abzuleiten sei, soll letztereihren Sitz in einer vom contractilen Plasma umschlossenen körnerreichen Flüssigkeit haben. Nicht das Protoplasma selbst befände sich in einer solchen Bewegung, wie die Körnchen anzeigen, sondern einevon dem Protoplasma verschiedene, in dessen Inneren enthaltene, körnerreiche Flüssigkeit werde von einer contractilen Rinde fortbewegt, etwa, wie sichHeidenhain[52]später im Anschluss an und zur Erläuterung derBrücke’schen Ansicht ausdrückte, wie der Darminhalt bei den peristaltischen Bewegungen, welche wellenförmig über die Oberfläche der contractilen Darmwand ablaufen.

Brückedrückt sich weiter über die Bewegungen des Protoplasma in den Haaren von Urtica wie folgt aus: »Es wird gewöhnlich so dargestellt, als ob sich die ganze Protoplasmamasse in einer fliessenden Bewegung befände, und die Körnchen nur passiv mitgeschleppt würden; ich muss dies aber mit Rücksicht auf mein Object entschieden in Abrede stellen.« Und weiter: »Dass dies in der That nicht der Fall, behaupte ich aus folgenden Gründen: Erstens sieht man, und zwar oft in ganz schmalen Bahnen (den sogenannten Strömchen) Kügelchen in entgegengesetzter Richtung fliessen und sich vibrirend umeinander herumbewegen, wie es ganz unmöglich wäre, wenn man es hier, wie es gewöhnlich angegeben wird, mit dem Fliessen einer zähen Flüssigkeit zu thun hätte; zweitens kann man die Bewegungen des Protoplasmas ganz deutlich von denen der Körnchen unterscheiden. Es ist zu dem Zwecke am besten, den Basaltheil der Zelle in geringer Entfernung von der Zellengruppe, in die derselbe eingepflanzt ist, bei starker Vergrösserung (Hartnacksyst. à immersion No. 10, Ocul. 3) so einzustellen, dass die Mittelebene im deutlichen Sehen ist und somit der Durchschnitt der Protoplasmamasse zur Anschauung kommt. Man kann dann bei anhaltender Beobachtung oft ganz deutlich sehen, wie dieselbe wulstartige Hervorragungen gegen das Innere treibt, die eine Zeit lang stehen, ihre Gestalt verändern und endlich wieder verschwinden. Unabhängig geht daneben die Bewegung der Körnchen fort. Das sogenannte Protoplasma erscheint hiernach als der contractile Zellenleib, der an der Basis eine, vermöge seiner leisten- und wulstartigen Vorsprünge, unregelmässige Höhle einschliesst und von einer Flüssigkeit durchströmt wird, welche zahlreiche kleineKörnchen enthält. Diese Flüssigkeit mit dem Blute des Thierleibes zu vergleichen, liegt nahe genug; eine solche Analogie aber ist werthlos, so lange wir nicht mehr als jetzt über den Bau und den Haushalt des Zellenleibes wissen«.Brückewiederholt später[53]diese Annahme zweier in Consistenz verschiedener Bestandtheile des Protoplasma in den Brennhaaren von Urtica: »Wenn man bei starker Vergrösserung das Mikroskop so einstellt, dass die Mittelebene des Haares sich im deutlichen Sehen befindet, so unterscheidet man am leichtesten die eigenen Bewegungen des Zellenleibes von denen der körnerreichen Flüssigkeit, welche in ihm strömt. Man sieht dann seinen optischen Längsschnitt, und einerseits die Körnchen, die sich in ihm fortbewegen, andrerseits die Wülste, die er gegen die Intracellularflüssigkeit austreibt, man sieht, wie sie wachsen, wie sie ihren Ort verändern und wie sie wieder vergehen.

»Man wird sich durch das Fortrücken des Wulstes nicht täuschen lassen, zu glauben, dass das sogenannte Protoplasma fliesse; denn man weiss, dass eine Contractionswelle der Länge nach über eine ganze Muskelfaser abläuft und schliesslich alle Theile derselben doch wieder am alten Orte sind. Selbst wenn ein singulär gebildeter Theil des Zellenleibes durch das ganze Sehfeld fortrückt, darf man sich dadurch nicht verführen lassen, in den alten Irrthum zurückzufallen. Ich habe solche Theile verfolgt und gefunden, dass sie endlich stille stehen und dann langsam wieder gegen ihren früheren Ort hin zurückkehren. Die Bewegung war kein Fliessen, sie war eine Folge der Contractilität.

»Ich kann nicht sagen, ob diese Contractionen die einzige Ursache der Bewegung der körnerreichen Flüssigkeit im Zellenleibe sind, aber dass sie auf dieselbe einen wesentlichen Einfluss üben müssen, versteht sich wohl von selbst.«

Hiernach ist also unzweifelhaftBrücke’sMeinung die, das contractile Protoplasma sei es nicht, in welchem die Körnchen sich befinden, dieses bilde vielmehr nur eine Rinde um eine die Körnchen enthaltendeFlüssigkeit. Durch wellenartig fortschreitende Contractionen der Rinde werde die Flüssigkeit im Innern bewegt und so entstehe die Körnchenströmung. Daneben bestehe dann noch als besondere Art der Bewegung die »langsame, ziehende oder kriechende«,auf welcher die Veränderungen in der Anordnung der Protoplasmamassen beruhen.

Fragen wir uns zunächst, auf welche Gründe hinBrückedie Differenzirung im Protoplasma annimmt, nach welcher die körnchenhaltige Flüssigkeit zum Protoplasma sich wie das Blut zum Thierleibe verhalte, so wird es uns bei der Kürze dessen, was der genannte Forscher über die Protoplasmabewegungen in Pflanzenzellen sagt, schwer, einen triftigen Grund für die von ihm vorgetragene Ansicht zu finden. Offenbar war es die verhältnissmässig schnelle Bewegung der Körnchen, welche ihn zur Annahme einer besonderen, neben der organisirten Materie noch vorhandenenFlüssigkeitveranlasste.Brückescheint Anstand genommen zu haben, eine contractile Substanz von solchem Aggregatzustande zu denken, dass in ihr das Phänomen der Körnchenbewegung zu Stande kommen könne. Daher musste das Bewegende ausserhalb der die Körnchenbewegung zeigenden Substanz gelegt werden.

Mit diesem Gedankengange würde ich mich nicht einverstanden erklären können, da wir Contractilität zweifellos an Substanzen geknüpft sehen, die in ihrer Consistenz von der des Protoplasma schwerlich irgend erheblich abweichen.Brücke’sArbeiten über die quergestreifte Muskelfaser haben die ausserordentliche Beweglichkeit der contractilen Substanz dargethan, undKühne[54]hat namentlich durch seine Beobachtung einer lebenden Nematode in einer lebenden Muskelfaser, welche in der contractilen Substanz sich so ungehindert bewegte, wie in einer Flüssigkeit, den Beweis geliefert, dass der Aggregatzustand der Muskelsubstanz im Leben von dem einer Flüssigkeit nicht weit abweichen kann. Warum soll also das Zustandekommen der Körnchenbewegung von einer neben der contractilen Substanz vorhandenen Flüssigkeit abhängen?

Es kann keinem Zweifel unterliegen, dass auf die vonBrückestatuirte Weise etwas der Körnchenbewegung Aehnliches zu Stande kommen müsse, aber ich halte es für sehr zweifelhaft, dass alle Formen, in welchen die Körnchenbewegung in die Erscheinung tritt, sich durch dieBrücke’sche Annahme erklären lassen. Ich hebe noch einmal hervor, dass, obgleichBrückenur von dem Protoplasma der Nesselhaare spricht, ich meine Gegengründe aus den Beobachtungeneiner ganzen Reihe von Pflanzen und zahlreicher Rhizopoden entnehme, bei welchen allen die Körnchenbewegung so sehr mit der bei Urtica zu beobachtenden übereinstimmt, dass ich das für letztere Gültige ohne Weiteres auf die anderen Beispiele zu übertragen für nothwendig halten würde. Gegen dieBrücke’sche Annahme spricht aber 1) dass die Körnchen sehr häufig und sogar gewöhnlich sich nur in der oberflächlichsten Schichte des Protoplasma bewegen, und dass die Axe des Protoplasmafadens öfter nachweisbar fester, dichter ist als die Oberfläche. Eine hyaline Rinde als Bedeckung ganz oberflächlich hinlaufender Körnchen ist nicht wahrzunehmen. Wollte man dieselbe dennoch als vorhanden annehmen, so würde sie, da die Körnchen mit dem grössten Theile ihrer Oberfläche deutlich wie aus der Grundsubstanz frei hervorragen, doch nur verschwindend dünn sein. Stellt nun aber, wie aus derBrücke’schen Annahme folgt, diese Rinde das allein Contractile dar, so würden wir zu dem Schluss gedrängt werden, dass nur ein verschwindend kleiner Theil des Protoplasma contractil sei, der weitaus grösste eine nicht organisirte, körnchenhaltige Flüssigkeit darstelle. 2) Bei der Aufnahme fremder Körper, welche sich der Körnchenbewegung anschliessen, hätte man anzunehmen, dass auch diese in die im Innern des Plasma circulirende Flüssigkeit gelangen, und eine vollständige Rinde von contractiler Substanz erhalten, ehe sie sich in Bewegung setzen können. Die Beobachtungen an grösseren Carminkörnerklumpen und Stärkemehlkörnern, sofern sie sich, einmal in Berührung mit dem Faden gelangt, fast augenblicklich in Bewegung setzen, sprechen gegen diese Annahme. 3) Der vonBrückefür Urtica aufgestellte Unterschied einer »langsamen, kriechenden« und einer »schnelleren fliessenden« Bewegung im Protoplasma ist nicht durchzuführen. Es ist zwar richtig, wasBrückesagt, dass man die Bewegungen grösserer Protoplasmamassen von der Körnchenbewegung unterscheiden könne, undJoh. Müllerführte etwas Aehnliches zuerst von den Pseudopodien der Radiolarien an. Aber es ist auch leicht zu beobachten, dass die »ziehende oder kriechende« Bewegung grösserer Protoplasmamassen mit sehr verschiedener Schnelligkeit abläuft und bei geringer Grösse der Protoplasmamassen mit der Körnchenbewegung an Schnelligkeit übereinstimmt, und es ist weiter vonBrückenicht bewiesen, dass die Körnchenbewegung nicht auch zur allmählichen Gestaltveränderung der Protoplasmafäden beitrage. Mir scheint das letztere unverkennbar. Denn die Bewegung grösserer Massenist z. B. bei Tradescantia viel zu selten, als dass dadurch die stets neuen Veränderungen in der Configuration des Fadennetzes sich erklären liessen. Nimmt man dagegen die Körnchenbewegung ebenfalls als Ausdruck einer Massen-Bewegung des Protoplasma, so ist Alles einfach. Dann unterscheiden sich die beiden vonBrückebezeichneten Arten der Bewegungnur in der Menge des Bewegten und in der Schnelligkeit, der Art dass, je kleiner die fortzuschaffende Masse ist, desto grösser die Geschwindigkeit. Wo man, wie bei den Pseudopodien der Polythalamien fremde Körper von sehr verschiedener Grösse der Körnchenbewegung sich anschliessen sieht, ist es ganz constant, dass die kleinsten (z. B. Carmin-) Körnchen mit viel grösserer Geschwindigkeit fortgeführt werden als grössere. Auch für die im Protoplasma der Pflanzenzellen enthaltenen Körnchen lässt sich das Gleiche beobachten, z. B. sehr deutlich bei den Zellen solcher Staubfadenhaare von Tradescantia virginica und discolor, welche man aus dem Aufbrechen nahen Knospen entnahm. In solchen enthält das Protoplasma, wie bereits oben angeführt wurde, neben den gewöhnlichen kleinen Körnchen etwas grössere, welche sich durch Iod blau färben, also wohl Stärkekörner sind. Hier ist die Schnelligkeit der Bewegung umgekehrt proportional der Grösse. Für Vallisneria spiralis führtJürgensenetwas Aehnliches an, indem er sagt, dass von zwei im Laufe sich überholenden Chlorophyllkörnern das schnellere stets das kleinere sei (l. c. 94), doch kommt hier möglicher Weise noch ein anderes Moment ins Spiel, die geringere oder grössere Entfernung von der Zellenwand, welches sich auch beiCharageltend zu machen scheint und seinen Grund in der verschiedenen nach der Zellwand zu wachsenden Dichtigkeit des Protoplasma haben dürfte.

Ich glaube hiernach, dass wir vollkommen berechtigt sind, zunächst die bisher geltende Ansicht, dass die Körnchenbewegungin der Substanz des contractilen Protoplasma selbst ihren Sitz habe, aufrecht zu halten. WieBrückeist auchHeidenhainder Beweis für den von ihm mit folgenden Worten aufgestellten Satz: »Im Innern des geformten Protoplasmas strömt eine körnerreiche Flüssigkeit (Brücke), welche wahrscheinlich durch die Contractionen des Protoplasmas in Bewegung versetzt wird« (l. c. p. 67) schuldig geblieben.

Wir kommen zu dem zweiten Theil derBrücke’schen Ansicht über die Protoplasmabewegungen, inwiefern nämlich die Niveauveränderungendes Protoplasma gegen die Intracellularflüssigkeit als über die Oberfläche hinziehende Contractionswellen zu deuten seien: »Man wird sich durch das Fortrücken des Wulstes nicht täuschen lassen, zu glauben, dass das sogenannte Protoplasma fliesse: denn man weiss, dass eine Contractionswelle der Länge nach über eine ganze Muskelfaser abläuft und schliesslich alle Theile derselben doch wieder am alten Orte sind.« Es könnte hiernach scheinen, als wennBrückedie Bewegungen des Protoplasma, auf welchen die proteischen Veränderungen in der Anordnung desselben beruhen, ganz übersehen habe. Dem ist jedoch nicht so. In seinem ersten Aufsatze (l. c. p. 404) sagt er, wie bereits wiederholt angeführt worden, es giebt zwei Arten von Bewegungen im Protoplasma »eine langsame, ziehende oder kriechende, von dieser hängendie Veränderungen in der Anordnung der Protoplasmamassen ab; ferner eine zweite schnellere, fliessende etc.« Wenn nun auchBrückenicht angiebt, woran er die »ziehende oder kriechende« Bewegung des Protoplasma, welche er auch eine langsamfliessendehätte nennen können, von der reinen Wellenbewegung der Oberfläche unterscheidet, so hatHeidenhaindochBrückemissverstanden, wenn er ihn der Ansicht zeiht (l. c. p. 62), »dass das Protoplasma selbst gar keine fortschreitende Locomotionsbewegung mache«, und in Folge dessen die auf den ersten Blick zu sehenden Locomotionsbewegungen glaubt besonders beweisen zu müssen.

Ich habe bereits angeführt, dass ich es nach meinen Beobachtungen für vollständig unmöglich halte, die langsam ziehende, kriechende von der schneller fliessenden Bewegung des Protoplasma scharf zu unterscheiden. Da die erstere unzweifelhaft der Ausdruck einer Locomotion des Protoplasma ist, so weiss ich für die zweite die Grenze nicht festzustellen, wo sie nicht mehr eine fliessende Bewegung des Protoplasma genannt werden kann, sondern von Wellenbewegung der Oberfläche abhängen soll. Erinnern wir uns ferner, dass die ganze Hypothese mit der contractilen Rinde und der körnerreichen Flüssigkeit, welcheBrückeaufstellte, zunächst noch vollkommen in der Luft schwebt, so fällt vollends jeder Grund fort, die schneller fliessende von der langsam kriechenden Bewegung zu trennen und leuchtet ein, dass, wenn die eine in einer Locomotion des Protoplasma ihren Grund hat, die andere es auch haben kann. Die langsam ziehenden Bewegungen sind zugegebenermaassen Ortsveränderungen gewisser, besonderer Abtheilungen des Protoplasma.Wenn solche an sich höchst dunkle Bewegungen gesonderter Abschnitte des Protoplasma überhaupt vorkommen, so hat es sicher nichts Ungereimtes, wie schon angedeutet, diese gesonderten Abschnitte immer kleiner werden zu lassen, bis sie auf die nächste Umgebung eines einzelnen Kornes herabgesunken sind. Und bewegen sich diese ziehend, kriechend, fliessend oder wie man es nennen will, so schwindet das Auffallende der Erscheinung, welchesBrückehervorhebt, dass »oft in ganz schmalen Bahnen Kügelchen in entgegengesetzter Richtung fliessen und sich vibrirend umeinander herumbewegen«; und wasHeidenhain[55]hinzufügt, dass er sogar beobachtet habe, wie »zwei Kügelchen direct aufeinander losliefen, aneinander prallten, dann das eine umkehrte und die Richtung des anderen stärkeren (?) annahm, welches die seinige unverändert beibehalten hatte«, kann natürlich ebensowenig als Gegenbeweis dienen.

Wenn ich es somit durchaus nicht für erwiesen betrachten kann, dass »das Fortrücken des Wulstes« keine Massenbewegung des Protoplasma sei, vielmehr solche Massenbewegung mit diesem Fortrücken in bestimmte Verbindung bringe, so will ich damit nicht ausgesprochen haben, dass es nicht auch Wellenbewegungen sein könnten, welche das Fortrücken der Plasmabestandtheile bedingen. Es gehört zum Zustandekommen diesesFortrückensdurch Wellenbewegung vor Anderem die Annahme, dass die Oberfläche eine etwas grössere Dichtigkeit habe, als die Tiefe. Wenn ich den vonBrückeangenommenen Unterschied eineralleincontractilen Rinde und einer passiv bewegten Flüssigkeit als unbewiesen bezeichnete und mich zu der Annahme desselben nicht verstehen konnte, so können dochConsistenzunterschiede zwischen Rinde und Inhalt am Protoplasma auf zweierlei Weise zugegeben werden.

Ich habe an verschiedenen Orten darauf aufmerksam gemacht, dass das Protoplasma einer Zelle eine sehr verschiedene Dichtigkeit haben kann. Die Angelegenheit ist oben in der Einleitung ausführlich besprochen worden. Bei den kleineren Furchungs- oder Embryonalzellen springt die Rinde als hyaline, körnchenfreie Schicht über die körnchenhaltige Substanz vor. Aehnliches scheint an fast allen als Zellen fungirenden Protoplasmamassen vorzukommen. Für die Amoeben und Myxomyceten wurde dasselbe Verhältniss oben besprochen.Hier hat es auch öfter den Anschein, als wenn die Rinde das vorzugsweise Contractile, und das körnige Innere das mehr passiv Bewegte sei. Es ist aber nicht bewiesen, dass diesem Letzteren die Contractilität abgehe. Und wenn, wie bei manchen Amoeben, namentlich der von mir beschriebenen Amoeba porrecta, eine solche hyaline Rindenschicht nicht mehr zu beobachten ist, so leitet uns diese hinüber in das Verhältniss, wie wir es bei den Pseudopodien der Polythalamien finden, bei denen wir nach Allem, was vorliegt, die zerfliesslich weiche, körnige Substanz als mit ausgezeichneter Contractilität begabt ansehen müssen. Und wollten wir aus dem Verhalten der hyalinen Pseudopodien der Gromia oviformis oder der starren, wenig beweglichen Axe der Strahlenfäden von Actinophrys Eichhornii auf den Grad der Contractilität der hyalinen Rindenschicht der Amoeben und Myxomyceten zurückschliessen, so könnten wir gerade das Umgekehrte von dem, was wir oben anführten, erschliessen, nämlich dass das körnige Innere das hauptsächlich bewegende Element und die hyaline Rinde das mehr passiv bewegte sei. Ich führe das nur an, um darauf aufmerksam zu machen, wie wenig Recht wir vorläufig haben eine Differenzirung von contractilen und nicht contractilen Schichten im Protoplasma anzunehmen, und wie Organisation und Contractilität sich nicht an eine bestimmte Dichtigkeit der organischen Substanz knüpft.

Es giebt aber zweitens noch einen anderen Punkt, welcher uns auf Dichtigkeitsunterschiede im Protoplasma führt, auch wenn wir aus der Beobachtung keinen Grund entnehmen können, dass solche Verschiedenheiten, wie z. B. bei den Amoeben existiren, vielmehr die betreffende Protoplasmamasse von durch und durch gleicher Dichtigkeit erscheint. Die Physiker sind namentlich durch genauere, vonPoissonangeregte Betrachtungen über die Capillarerscheinungen zu der wichtigen Annahme gekommen, dass jedesmal dieOberflächeeiner Flüssigkeit eine andere und grössere Dichtigkeit besitze, als das Innere[56]. »Leichte, unbenetzte Körper veranlassen nur ein Einbiegen der Oberfläche, ohne sie zu durchbrechen; neben benetzten Körpern erhebt sich die Oberfläche. Die so entstehenden aufwärts oder abwärts gekehrten Ränder ziehen sich an, wenn sie gleichartig sind;ein benetzter und ein unbenetzter Rand stossen sich ab. Kleine Quantitäten Flüssigkeit auf unbenetzten Flächen nehmen durch die Spannung der Oberfläche Kugelgestalt an. Bei der Blasenbildung erscheint die Oberfläche ganz frei und getrennt von der inneren Masse. Bei strömendem Wasser bewegt sich die Oberfläche langsamer als die darunter befindliche Masse, wie es der durch momentanes Eintauchen eines mit Tusche gefüllten Pinsels entstehende schwarze Streifen zeigt. Auch bei der Bildung und dem Zusammenfliessen einzelner Tropfen finden auffallende Bewegungen statt. Diese Erscheinungen lassen vermuthen,dass die Oberfläche eine festere Decke sei, deren dicht zusammengedrängte Theilchen, wenn sie auch noch immer leicht trennbar und verschiebbar sind, dennoch einen viel stärkeren Zusammenhang haben, als die Theilchen im Innern der Flüssigkeit.«

Noch manche Thatsachen lassen sich anführen, welche für die Richtigkeit dieses Satzes sprechen. Wasser steigt zwischen zwei parallelen Glasplatten vermöge der Capillarität schnell zu einem Maximum der Höhe, von welchem es allmählich und noch Tage lang sinkt. Die Erhebung ist um so grösser, jefrischerdie Oberfläche ist. Das Maximum der Höhe erreicht man durch wiederholtes Abheben der Oberfläche zwischen den beiden Scheiben mittelst dickem Löschpapier. Ein ähnlicher Einfluss diesesFrischmachensder Oberfläche lässt sich auch mit einem Oeltropfen erkennen, der auf dem frischen Wasserspiegel sich sogleich ausbreitet und irisirt, auf einer Oberfläche aber, die längere Zeit selbst unter einer Glasglocke gestanden hat, ruhig liegen bleibt. Nach allem diesem können wir uns nicht sträuben, eine Anwendung obigen Satzes auch auf die dickschleimig-flüssige Protoplasmasubstanz, wo sie von wässrig-flüssigem Zellsafte oder von Wasser umgeben ist, zu machen. Wir haben dann anzunehmen, dass auch die Oberfläche eines Protoplasmafadens oder einer Protoplasmakugel, wo sie das umgebende Wasser berührt, eine grössere Dichtigkeit habe, als die unter ihr liegende Substanz, und wir kommen dadurch zu der Nothwendigkeit, eine Art von Membran anzuerkennen, wo histiologisch eine solche noch nicht differenzirt ist. Die Sache hat ihre Wichtigkeit, z. B. bei Erklärung der Thatsache, warum zwei aneinander stossende Protoplasmamassen von einer so geringen Dichtigkeit, dass ein Zusammenfliessen beider möglich ist, nicht immer und sofort bei der Berührung wirklich zusammenfliessen. Wie bei zwei aneinanderstossenden Fetttropfen beobachtet werden kann, dassdas erwartete Zusammenfliessen erst eintritt wenn mittelst einer Nadel die Oberfläche eines derselben oder beider durchbrochen wird, eine Erscheinung, welche die grössere Dichtigkeit der Oberfläche zu beweisen scheint, so dürfte unter Umständen auch die oben erwähnte Thatsache, dass zwei derselben Polythalamie angehörende Pseudopodien, wo sie sich auf ihrem Wege begegnen, nicht immer sofort gleich zusammenfliessen, in einer solchen »Contactmembran«, wie ich die dichtere Schicht der Oberfläche nennen will, wenigstens theilweise ihre Erklärung finden. Jedenfalls ist die ganze Angelegenheit für die Beurtheilung der Dichtigkeitsverhältnisse der nackten Protoplasmamassen und der an die Intracellularflüssigkeit grenzenden Protoplasmaoberflächen von nicht zu unterschätzender Bedeutung.

Wenn die Körnchenbewegung in Contractionen des Protoplasma ihren Grund hat, welche sich in über die Oberfläche ablaufenden Wellen äussert, so gehört, um die Fortbewegung der Körnchen zu erklären, wie angeführt, dazu die Annahme einer härteren Rinde und eines weicheren Inhaltes. Möglich, dass schon die geringen Dichtigkeitsunterschiede und die verschwindend feine Haut, auf welche wir, gestützt auf obige Annahmen, kommen, zur Erklärung der Körnchenbewegung benutzt werden können. Schwebt auch diese Deduction, da sie sich auf eine noch nicht scharf erwiesene physikalische Praemisse stützt, gewissermaassen in der Luft, so hat dieselbe doch ein Recht auf Berücksichtigung. Wir dürfen unsere Augen gegen die aus den oben berichteten Thatsachen folgenden Consequenzen nicht verschliessen, wenn wir auch gegen eine Uebertragung derselben auf einelebendigeSubstanz sich Bedenken erheben sehen. Denn was für ruhende Flüssigkeiten wahr ist, braucht noch nicht für die ununterbrochen veränderliche lebende Protoplasmasubstanz zu gelten. Dennoch halte ich die Angelegenheit für die Erklärung der Körnchenbewegung, und weiter bei Beurtheilung der Möglichkeit der Existenz solcher Zellen, welchen eine vom Protoplasma differente Membran fehlt, für nicht gleichgültig.

Ueberblicken wir endlich noch einmal, was wir gegen die vonBrückeangenommene Differenzirung des beweglichen Protoplasma in eine contractile äussere Schicht und eine passiv bewegte, körnerreiche Flüssigkeit vorgebracht haben, so ergiebt sich, dass, wenn auch ein directer Gegenbeweis gegen die Richtigkeit dieser Annahme nicht geliefert werden konnte, dieselbe doch durch die Beobachtung zu wenig gestützt ist als dass sie beanspruchen könnte, die Frage nachder Natur der so merkwürdigen Körnchenbewegung zu einer befriedigenden Lösung gebracht zu haben. Die Zeit zu einer solchen scheint mir überhaupt noch nicht gekommen zu sein. Ich möchte glauben, dass wir die Vorgänge organischer Bewegungen auch in ihrer einfachsten Erscheinung noch viel zu wenig übersehen, als dass wir wagen dürften eine Theorie der, wie wohl nicht bezweifelt werden kann, höchst verwickelten Erscheinungen der Körnchenbewegung aufzustellen.


Back to IndexNext