D
ifferent methods of parting gold from silver, and, on the other hand, silver from gold, were discussed in the last book; also the separation of copper from the latter, and further, of lead from gold as well as from silver; and, lastly, the methods for refining the two precious metals. Now I will speak of the methods by which silver must be separated from copper, and likewise from iron.[1]
Building Plan for RefinerySix long walls: A—The first. B—The first part of the second. C—The further part of the second. D—The third. E—The fourth. F—The fifth. G—The sixth. Fourteen transverse walls: H—The first. I—The second. K—The third. L—The fourth. M—The fifth. N—The sixth. O—The seventh. P—The eighth. Q—The ninth. R—The tenth. S—The eleventh. T—The twelfth. V—The thirteenth. X—The fourteenth.[Pg 493]Theofficina, or the building necessary for the purposes and use of those who separate silver from copper, is constructed in this manner. First, four long walls are built, of which the first, which is parallel with the bank of a stream, and the second, are both two hundred and sixty-four feet long. The second, however, stops at one hundred and fifty-one feet, and after, as it were, a break for a length of twenty-four feet, it continues again until it is of a length equal to the first wall. The third wall is one hundred and twenty feet long, starting at a point opposite the sixty-seventh foot of the other walls, and reaching to their one hundred and eighty-sixth foot.The fourth wall is one hundred and fifty-one feet long. The height of each of these walls, and likewise of the other two and of the transverse walls, of which I will speak later on, is ten feet, and the thickness two feet and as many palms. The second long wall only is built fifteen feet high, because of the furnaces which must be built against it. The first long wall is distant fifteen feet from the second, and the third is distant the same number of feet from the fourth, but the second is distant thirty-nine feet from the third. Then transverse walls are built, the first of which leads from the beginning of the first long wall to the beginning of the second long wall; and the second transverse wall from the beginning of the second long wall to the beginning of the fourth long wall, for the third long wall does not reach so far. Then from the beginning of the third long wall are built two walls—the one to the sixty-seventh foot of the second long wall, the other to the same point in the fourth long wall. The fifth transverse wall is built at a distance of ten feet from the fourth transverse wall toward the second transverse wall;it is twenty feet long, and starts from the fourth long wall. The sixth transverse wall is built also from the fourth long wall, at a point distant thirty feet from the fourth transverse wall, and it extends as far as the back of the third long wall. The seventh transverse wall is constructed from the second long wall, where this first leaves off, to the third long wall; and from the back of the third long wall the eighth transverse wall is built, extending to the end of the fourth long wall. Then the fifth long wall is built from the seventh transverse wall, starting at a point nineteen feet from the second long wall; it is one hundred and nine feet in length; and at a point twenty-four feet along it, the ninth transverse wall is carried to the third end of the second long wall, where that begins again. The tenth transverse wall is built from the end of the fifth long wall, and leads to the further end of the second long wall; and from there the eleventh transverse wall leads to the further end of the first long wall. Behind the fifth long wall, and five feet toward the third long wall, the sixth long wall is built, leading from the seventh transverse wall; its length is thirty-five feet, and from its further end the twelfth transverse wall is built to the third long wall, and from it the thirteenth transverse wall is built to the fifth long wall. The fourteenth transverse wall divides into equal parts the space which lies between the seventh transverse wall and the twelfth.
The length, height, breadth, and position of the walls are as above. Their archways, doors, and openings are made at the same time that the walls are built. The size of these and the way they are made will be much better understood hereafter. I will now speak of the furnace hoods and of the roofs. The first side[2]of the hood stands on the second long wall, and is similar in every respect to those whose structure I explained inBook IX, when I described the works in whose furnaces are smelted the ores of gold, silver, and copper. From this side of the hood a roof, which consists of burnt tiles, extends to the first long wall; and this part of the building contains the bellows, the machinery for compressing them, and the instruments for inflating them. In the middle space, which is situated between the second and third transverse walls, an upright post eight feet high and two feet thickand wide, is erected on a rock foundation, and is distant thirteen feet from the second long wall. On that upright post, and in the second transverse wall, which has at that point a square hole two feet high and wide, is placed a beam thirty-four feet and a palm long. Another beam, of the same length, width, and thickness, is fixed on the same upright post and in the third transverse wall. The heads of those two beams, where they meet, are joined together with iron staples. In a similar manner another post is erected, at a distance of ten feet from the first upright post in the direction of the fourth wall, and two beams are laid upon it and into the same walls in a similar way to those I have just now described. On these two beams and on the fourth long wall are fixed seventeen cross-beams, forty-three feet and three palms long, a foot wide, and three palms thick; the first of these is laid upon the second transverse wall, the last lies along the third and fourth transverse walls; the rest are set in the space between them. These cross-beams are three feet apart one from the other.
In the ends of these cross-beams, facing the second long wall, are mortised the ends of the same number of rafters reaching to those timbers which stand upright on the second long wall, and in this manner is made the inclined side of the hood in a similar way to the one described inBook IX. To prevent this from falling toward the vertical wall of the hood, there are iron rods securing it, but only a few, because the four brick chimneys which have to be built in that space partly support it. Twelve feet back are likewise mortised into the cross-beams, which lie upon the two longitudinal beams and the fourth long wall, the lower ends of as many rafters, whose upper ends are mortised into the upper ends of an equal number of similar rafters, whose lower ends are mortised to the ends of the beams at the fourth long wall. From the first set of rafters[4]to the second set of rafters is a distance of twelve feet, in order that a gutter may be well placed in the middle space. Between these two are again erected two sets of rafters, the lower ends of which are likewise mortised into the beams, which lie on the two longitudinal beams and the fourth long wall, and are interdistant a cubit. The upper ends of the ones fifteen feet long rest on the backs of the rafters of the first set; the ends of the others, which are eighteen feet long, rest on the backs of the rafters of the second set, which are longer; in this manner, in the middle of the rafters, is a sub-structure. Upon each alternate cross-beam which is placed upon the two longitudinal beams and the fourth long wall is erected an upright post, and that it may be sufficiently firm it is strengthened by means of a slanting timber. Upon these posts is laid a long beam, upon which rests one set of middle rafters. In a similar manner the other set of middle rafters rests on a long beam which is placed upon other posts. Besides this, two feet above every cross-beam, which is placed on the two longitudinal beams and thefourth long wall, is placed a tie-beam which reaches from the first set of middle rafters to the second set of middle rafters; upon the tie-beams is placed a gutter hollowed out from a tree. Then from the back of each of the first set of middle rafters a beam six feet long reaches almost to the gutter; to the lower end of this beam is attached a piece of wood two feet long; this is repeated with each rafter of the first set of middle rafters. Similarly from the back of each rafter of the second set of middle rafters a little beam, seven feet long, reaches almost to the gutter; to the lower end of it is likewise attached a short piece of wood; this is repeated on each rafter of the second set of middle rafters. Then in the upper part, to the first and second sets of principal rafters are fastened long boards, upon which are fixed the burnt tiles; and in the same manner, in the middle part, they are fastened to the first and second sets of middle rafters, and at the lower part to the little beams which reach from each rafter of the first and second set of middle rafters almost to the gutter; and, finally, to the little boards fastened to the short pieces of wood are fixed shingles of pine-wood extending into the gutter, so that the violent rain or melted snow may not penetrate into the building. The substructures in the interior which support the second set of rafters, and those on the opposite side which support the third, being not unusual, I need not explain.
In that part of the building against the second long wall are the furnaces, in which exhausted liquation cakes which have already been "dried" are smelted, that they may recover once again the appearance and colour of copper, inasmuch as they really are copper. The remainder of the room is occupied by the passage which leads from the door to the furnaces, together with two other furnaces, in one of which the whole cakes of copper are heated, and in the other the exhausted liquation cakes are "dried" by the heat of the fire.
Likewise, in the room between the third and seventh[5]transverse walls, two posts are erected on rock foundation; both of them are eight feet high and two feet wide and thick. The one is at a distance of thirteen feet from the second long wall; the other at the same distance from the third long wall; there is a distance of thirteen feet between them. Upon these two posts and upon the third transverse wall are laid two longitudinal beams, forty-one feet and one palm long, and two feet wide and thick. Two other beams of the same length, width, and thickness are laid upon the upright posts and upon the seventh transverse wall, and the heads of the two long beams, where they meet, are joined with iron staples. On these longitudinal beams are again placed twenty-one transverse beams, thirteen feet long, a foot wide, and three palms thick, of which the first is set on the third transverse wall, and the last on the seventh transverse wall; the rest are laid in the space between these two, and they are distant from one another three feet. Into the ends of the transverse beams which face the second long wall, are mortised the ends of the same number of rafters erected toward the upright posts which are placed upon the second long wall, and in this manner is madethe second inclined side wall of the hood. Into the ends of the transverse beams facing the third long wall, are mortised the ends of the same number of rafters rising toward the rafters of the first inclined side of the second hood, and in this manner is made the other inclined side of the second hood. But to prevent this from falling in upon the opposite inclined side of the hood, and that again upon the opposite vertical one, there are many iron rods reaching from some of the rafters to those opposite them; and this is also prevented in part by means of a few tie-beams, extending from the back of the rafters to the back of those which are behind them. These tie-beams are two palms thick and wide, and have holes made through them at each end; each of the rafters is bound round with iron bands three digits wide and half a digit thick, which hold together the ends of the tie-beams of which I have spoken; and so that the joints may be firm, an iron nail, passing through the plate on both sides, is driven through the holes in the ends of the beams. Since one weight counter-balances another, the rafters on the opposite hoods cannot fall. The tie-beams and middle posts which have to support the gutters and the roof, are made in every particular as I stated above, except only that the second set of middle rafters are not longer than the first set of middle rafters, and that the little beams which reach from the back of each rafter of the second set of middle rafters nearly to the gutter are not longer than the little beams which reach from the back of each rafter of the first set of middle rafters almost to the gutter. In this part of the building, against the second long wall, are the furnaces in which copper is alloyed with lead, and in which "slags" are re-smelted. Against the third long wall are the furnaces in which silver and lead are liquated from copper. The interior is also occupied by two cranes, of which one deposits on the ground the cakes of copper lifted out of the moulding pans; the other lifts them from the ground into the second furnace.
On the third and the fourth long walls are set twenty-one beams eighteen feet and three palms long. In mortises in them, two feet behind the third long wall, are set the ends of the same number of rafters erected opposite to the rafters of the other inclined wall of the second furnace hood, and in this manner is made the third inclined wall, exactly similar to the others. The ends of as many rafters are mortised into these beams where they are fixed in the fourth long wall; these rafters are erected obliquely, and rest against the backs of the preceding ones and support the roof, which consists entirely of burnt tiles and has the usual substructures. In this part of the building there are two rooms, in the first of which the cakes of copper, and in the other the cakes of lead, are stored.
In the space enclosed between the ninth and tenth transverse walls and the second and fifth long walls, a post twelve feet high and two feet wide and thick is erected on a rock foundation; it is distant thirteen feet from the second long wall, and six from the fifth long wall. Upon this post and upon the ninth transverse wall is laid a beam thirty-three feet and three palms long, and two palms wide and thick. Another beam, also of the same length, width and thickness, is laid upon the same post and upon the tenth transversewall, and the ends of these two beams where they meet are joined by means of iron staples. On these beams and on the fifth long wall are placed ten cross-beams, eight feet and three palms long, the first of which is placed on the ninth transverse wall, the last on the tenth, the remainder in the space between them; they are distant from one another three feet. Into the ends of the cross-beams facing the second long wall, are mortised the ends of the same number of rafters inclined toward the posts which stand vertically upon the second long wall. This, again, is the manner in which the inclined side of the furnace hood is made, just as with the others; at the top where the fumes are emitted it is two feet distant from the vertical side. The ends of the same number of rafters are mortised into the cross-beams, where they are set in the fifth long wall; each of them is set up obliquely and rests against the back of one of the preceding set; they support the roof, made of burnt tiles. In this part of the building, against the second long wall, are four furnaces in which lead is separated from silver, together with the cranes by means of which the domes are lifted from the crucibles.
In that part of the building which lies between the first long wall and the break in the second long wall, is the stamp with which the copper cakes are crushed, and the four stamps with which the accretions that are chipped off the walls of the furnace are broken up and crushed to powder, and likewise the bricks on which the exhausted liquation cakes of copper are stood to be "dried." This room has the usual roof, as also has the space between the seventh transverse wall and the twelfth and thirteenth transverse walls.
Hearths for melting lead cakesA—Hearth. B—Rocks sunk into the ground. C—Walls which protect the fourth long wall from damage by fire. D—Dipping-pot. E—Masses of lead. F—Trolley. G—Its wheels. H—Crane. I—Tongs. K—Wood. L—Moulds. M—Ladle. N—Pick. O—Cakes.[Pg 499]At the sides of these rooms are the fifth, the sixth, and the third long walls. This part of the building is divided into two parts, in the first of which stand the little furnaces in which the artificer assays metals; and the bone ash, together with the other powders, are kept here. In the other room is prepared the powder from which the hearths and the crucibles of the furnaces are made. Outside the building, at the back of the fourth long wall, near the door to the left as you enter, is a hearth in which smaller masses of lead are melted from large ones, that they may be the more easily weighed; because the masses of lead, just as much as the cakes of copper, ought to be first prepared so that they can be weighed, and a definite weight can be melted and alloyed in the furnaces. To begin with, the hearth in which the masses of lead are liquefied is six feet long and five wide; it is protected on both sides by rocks partly sunk into the earth, but a palm higher than the hearth, and it is lined in the inside with lute. It slopes toward the middle and toward the front, in order that the molten lead may run down and flow out into the dipping-pot. There is a wall at the back of the hearth which protects the fourth long wall from damage by the heat; this wall, which is made of bricks and lute, is four feet high, three palms thick, and five feet long at the bottom, and at the top three feet and two palms long; therefore it narrows gradually, and in the upper part are laid seven bricks, the middle ones of which are set upright, and the end ones inclined; they are all thickly coated with lute. In front of the hearth is a dipping-pot, whose pit is a foot deep, and a foot and three palms wide at the top, and gradually narrows.When the masses of lead are to be melted, the workman first places the wood in the hearth so that one end of each billet faces the wall, and the other end the dipping-pot. Then, assisted by other workmen, he pushes the mass of lead forward with crowbars on to a low trolley, and draws it to the crane. The trolley consists of planks fastened together, is two and one-half feet wide and five feet long, and has two small iron axles, around which at each end revolve small iron wheels, two palms in diameter and as many digits wide. The trolley has a tongue, and attached to this is a rope, by which it is drawn to the crane. The crane is exactly similar to those in the second part of the works, except that the crane-arm is not so long. The tongs in whose jaws[6]the masses of lead are seized, are two feet a palm and two digits long; both of the jaws, when struck with a hammer, impinge upon the mass and are driven into it. The upper part of both handles of the tongs are curved back, the one to the right, the other to the left, and each handle is engaged in one of the lowest links of two short chains, which are three links long. The upper links are engaged in a large round ring, in which is fixed the hook of a chain let down from the pulley of the crane-arm. When the crank of the crane is turned, the mass is lifted and is carried by the crane-arm to the hearth and placed on the wood. The workmen wheel up one mass after another and place them in a similar manner on the wood of the hearth; masses which weigh a total of about a hundred and sixtycentumpondia[7]are usually placed upon the wood and melted at one time. Then a workman throws charcoal on the masses, and all are made ready in the evening. If he fears that it may rain, he covers it up with a cover, which may be moved here and there; at the back this cover has two legs, so that the rain which it collects may flow down the slope on to the open ground. Early in the morning of the following day, he throws live coals on the charcoal with a shovel, and by this method the masses of lead melt, and from time to time charcoal is added. The lead, as soon as it begins to run into the dipping-pot, is ladled out with an iron ladle into copper moulds such as the refiners generally use. If it does not cool immediately he pours water over it, and then sticks the pointed pick into it and pulls it out. The pointed end of the pick is three palms long and the round end is two digits long. It is necessary to smear the moulds with a wash of lute, in order that, when they have been turned upside down and struck with the broad round end of the pick, the cakes of lead may fall out easily. If the moulds are not washed over with the lute, there is a risk that they may be melted by the lead and let it through. Others take hold of a billet of wood with their left hand, and with the heavy lower end of it they pound the mould, and with the right hand they stick the point of the pick into the cake of lead, and thus pull it out. Then immediately the workman pours other lead into the empty moulds, and this he does until the work of melting the lead is finished. When the lead is melted, something similar to litharge is produced; but it is no wonder that it should be possible to makeit in this case, when it used formerly to be produced at Puteoli from lead alone when melted by a fierce fire in the cupellation furnace.[8]Afterward these cakes of lead are carried into the lead store-room.
Stamp-mill for breaking copper cakesA—Block of wood. B—Upright posts. C—Transverse beams. D—Head of the stamp. E—Its tooth. F—The hole in the stamp-stem. G—Iron bar. H—Masses of lead. I—The bronze saddle. K—Axle. L—Its arms. M—Little iron axle. N—Bronze pipe.[Pg 501]The cakes of copper, put into wheelbarrows, are carried into the third part of the building, where each is laid upon a saddle, and is broken up by the impact of successive blows from the iron-shod stamp. This machine is made by placing upon the ground a block of oak, five feet long and three feet wide and thick; it is cut out in the middle for a length of two feet and two palms, a width of two feet, and a depth of three palms and two digits, and is open in front; the higher part of it is at the back, and the wide part lies flat in the block. In the middle of it is placed a bronze saddle. Its base is a palm and two digits wide, and is planted between two masses of lead, and extends under them to a depth of a palm on both sides. The whole saddle is three palms and two digits wide, a foot long, andtwo palms thick. Upon each end of the block stands a post, a cubit wide and thick, the upper end of which is somewhat cut away and is mortised into the beams of the building. At a height of four feet and two digits above the block there are joined to the posts two transverse beams, each of which is three palms wide and thick; their ends are mortised into the upright posts, and holes are bored through them; in the holes are driven iron claves, horned in front and so driven into the post that one of the horns of each points upward and the other downward; the other end of each clavis is perforated, and a wide iron wedge is inserted and driven into the holes, and thus holds the transverse beams in place. These transverse beams have in the middle a square opening three palms and half a digit wide in each direction, through which the iron-shod stamp passes. At a height of three feet and two palms above these transverse beams there are again two beams of the same kind, having also a square opening and holding the same stamp. This stamp is square, eleven feet long, three palms wide and thick; its iron shoe is a foot and a palm long; its head is two palms long and wide, a palm two digits thick at the top, and at the bottom the same number of digits, for it gradually narrows. But the tail is three palms long; where the head begins is two palms wide and thick, and the further it departs from the same the narrower it becomes. The upper part is enclosed in the stamp-stem, and it is perforated so that an iron bolt may be driven into it; it is bound by three rectangular iron bands, the lowest of which, a palm wide, is between the iron shoe and the head of the stamp; the middle band, three digits wide, follows next and binds round the head of the stamp, and two digits above is the upper one, which is the same number of digits wide. At a distance of two feet and as many digits above the lowest part of the iron shoe, is a rectangular tooth, projecting from the stamp for a distance of a foot and a palm; it is two palms thick, and when it has extended to a distance of six digits from the stamp it is made two digits narrower. At a height of three palms upward from the tooth there is a round hole in the middle of the stamp-stem, into which can be thrust a round iron bar two feet long and a digit and a half in diameter; in its hollow end is fixed a wooden handle two palms and the same number of digits long. The bar rests on the lower transverse beam, and holds up the stamp when it is not in use. The axle which raises the stamp has on each side two arms, which are two palms and three digits distant from each other, and which project from the axle a foot, a palm and two digits; penetrating through them are bolts, driven in firmly; the arms are each a palm and two digits wide and thick, and their round heads, for a foot downward on either side, are covered with iron plates of the same width as the arms and fastened by iron nails. The head of each arm has a round hole, into which is inserted an iron pin, passing through a bronze pipe; this little axle has at the one end a wide head, and at the other end a perforation through which is driven an iron nail, lest this little axle should fall out of the arms. The bronze pipe is two palms long and one in diameter; the little iron axle penetrates through its round interior, which is two digits in diameter. The bronze pipe not only revolves round the little iron axle, but it alsorotates with it; therefore, when the axle revolves, the little axle and the bronze tube in their turn raise the tooth and the stamp. When the little iron axle and the bronze pipe have been taken out of the arms, the tooth of the stamps is not raised, and other stamps may be raised without this one. Further on, a drum with spindles fixed around the axle of a water-wheel moves the axle of a toothed drum, which depresses the sweeps of the bellows in the adjacent fourth part of the building; but it turns in the contrary direction; for the axis of the drum which raises the stamps turns toward the north, while that one which depresses the sweeps of the bellows turns toward the south.
Hearths for heating copper cakesA—Back wall. B—Walls at the sides. C—Upright posts. D—Chimney. E—The cakes arranged. F—Iron plates. G—Rocks. H—Rabble with two prongs. I—Hammers.[Pg 504]Those cakes which are too thick to be rapidly broken by blows from the iron-shod stamp, such as are generally those which have settled in the bottom of the crucible,[9]are carried into the first part of the building. They are there heated in a furnace, which is twenty-eight feet distant from the second long wall and twelve feet from the second transverse wall. The three sides of this furnace are built of rectangular rocks, upon which bricks are laid; the back furnace wall is three feet and a palm high, and the rear of the side walls is the same; the side walls are sloping, and where the furnace is open in front they are only two feet and three palms high; all the walls are a foot and a palm thick. Upon these walls stand upright posts not less thick, in order that they may bear the heavy weight placed upon them, and they are covered with lute; these posts support the sloping chimney and penetrate through the roof. Moreover, not only the ribs of the chimney, but also the rafters, are covered thickly with lute. The hearth of the furnace is six feet long on each side, is sloping, and is paved with bricks. The cakes of copper are placed in the furnace and heated in the following way. They are first of all placed in the furnace in rows, with as many small stones the size of an egg between, so that the heat of the fire can penetrate through the spaces between them; indeed, those cakes which are placed at the bottom of the crucible are each raised upon half a brick for the same reason. But lest the last row, which lies against the mouth of the furnace, should fall out, against the mouth are placed iron plates, or the copper cakes which are the first taken from the crucible when copper is made, and against them are laid exhausted liquation cakes or rocks. Then charcoal is thrown on the cakes, and then live coals; at first the cakes are heated by a gentle fire, and afterward more charcoal is added to them until it is at times three-quarters of a foot deep. A fiercer fire is certainly required to heat the hard cakes of copper than the fragile ones. When the cakes have been sufficiently heated, which usually occurs within the space of about two hours, the exhausted liquation cakes or the rocks and the iron plate are removed from the mouth of the furnace. Then the hot cakes are taken out row after row with a two-pronged rabble, such as the one which is used by those who "dry" the exhausted liquation cakes. Then the first cake is laid upon the exhausted liquation cakes, and beaten by two workmen with hammers until it breaks; the hotter the cakes are, thesooner they are broken up; the less hot, the longer it takes, for now and then they bend into the shape of copper basins. When the first cake has been broken, the second is put on to the other fragments and beaten until it breaks into pieces, and the rest of the cakes are broken up in the same manner in due order. The head of the hammer is three palms long and one wide, and sharpened at both ends, and its handle is of wood three feet long. When they have been broken by the stamp, if cold, or with hammers if hot, the fragments of copper or the cakes are carried into the store-room for copper.
The foreman of the works, according to the different proportions of silver in eachcentumpondiumof copper, alloys it with lead, without which he could not separate the silver from the copper.[10]If there be a moderateamount of silver in the copper, he alloys it fourfold; for instance, if in three-quarters of acentumpondiumof copper there is less than the following proportions,i.e.: half alibraof silver, or half alibraand asicilicus, or half alibraand asemi-uncia, or half alibraandsemi-unciaand asicilicus, then rich lead—that is, that from which the silver has not yet been separated—is added, to the amount of half acentumpondiumor a wholecentumpondium, or a whole and a half, in such a way that there may be in the copper-lead alloy some one of the proportions of silver which I have just mentioned, which is the first alloy. To this "first" alloy is added such a weight of de-silverized lead or litharge as is required to make out of all of these a single liquation cake that will contain approximately twocentumpondiaof lead; but as usually from one hundred and thirtylibraeof litharge only one hundredlibraeof lead are made, a greater proportion of litharge than of de-silverized lead is added as a supplement. Since four cakes of this kind are placed at the same time into the furnace in which the silver and lead is liquated from copper, there will be in all the cakes threecentumpondiaof copper and eightcentumpondiaof lead. When the lead has been liquated from the copper, it weighs sixcentumpondia, in eachcentumpondiumof which there is a quarter of alibraand almost asicilicusof silver. Only sevenunciaeof the silver remain in the exhausted liquation cakes and in that copper-lead alloy which we call "liquation thorns"; they are not called by this name so much because they have sharp points as because they are base. If in three-quarters of acentumpondiumof copper there are less than sevenunciaand asemi-unciaor abesof silver, then so much rich lead must be added as to make in the copper and lead alloy one of the proportions of silver which I have already mentioned. This is the "second" alloy. To this is again to be added as great a weightof de-silverized lead, or of litharge, as will make it possible to obtain from that alloy a liquation cake containing two and a quartercentumpondiaof lead, in which manner in four of these cakes there will be threecentumpondiaof copper and ninecentumpondiaof lead. The lead which liquates from these cakes weighs sevencentumpondia, in eachcentumpondiumof which there is a quarter of alibraof silver and a little more than asicilicus. About sevenunciaeof silver remain in the exhausted liquation cakes and in the liquation thorns, if we may be allowed to make common the old name (spinae= thorns) and bestow it upon a new substance. If in three-quarters of acentumpondiumof copper there is less than three-quarters of alibraof silver, or three-quarters and asemi-uncia, then as much rich lead must be added as will produce one of the proportions of silver in the copper-lead alloy above mentioned; this is the "third" alloy. To this is added such an amount of de-silverized lead or of litharge, that a liquation cake made from it contains in all two and three-quarterscentumpondiaof lead. In this manner four such cakes will contain threecentumpondiaof copper and elevencentumpondiaof lead. The lead which these cakes liquate, when they are melted in the furnace, weighs about ninecentumpondia, in eachcentumpondiumof which there is a quarter of alibraand more than asicilicusof silver; and sevenunciaeof silver remain in the exhausted liquation cakes and in the liquation thorns. If, however, in three-quarters of acentumpondiumof copper there is less than ten-twelfths of alibraor ten-twelfths of alibraand asemi-unciaof silver, then such a proportion of rich lead is added as will produce in the copper-lead alloy one of the proportions of silver which I mentioned above; this is the "fourth" alloy. To this is added such a weight of de-silverized lead or of litharge, that a liquation cake made from it contains threecentumpondiaoflead, and in four cakes of this kind there are threecentumpondiaof copper and twelvecentumpondiaof lead. The lead which is liquated therefrom weighs about tencentumpondia, in eachcentumpondiumof which there is a quarter of alibraand more than asemi-unciaof silver, or sevenunciae; abes, or sevenunciaeand asemi-uncia, of silver remain in the exhausted liquation cakes and in the liquation thorns.
Blast FurnacesA—Furnace in which "slags" are re-smelted. B—Furnace in which copper is alloyed with lead. C—Door. D—Forehearths on the ground. E—Copper moulds. F—Rabble. G—Hook. H—Cleft stick. I—Arm of the crane. K—The hook of its chain.[Pg 508]Against the second long wall in the second part of the building, whose area is eighty feet long by thirty-nine feet wide, are four furnaces in which the copper is alloyed with lead, and six furnaces in which "slags" are re-smelted. The interior of the first kind of furnace is a foot and three palms wide, two feet three digits long; and of the second is a foot and a palm wide and a foot three palms and a digit long. The side walls of these furnaces are the same height as the furnaces in which gold or silver ores are smelted. As the whole room is divided into two parts by upright posts, the front part must have, first, two furnaces in which "slags" are re-melted; second, two furnaces in which copper is alloyed with lead; and third, one furnace in which "slags" are re-melted. The back part of the room has first, one furnace in which "slags" are re-melted; next, two furnaces in which copper is alloyed with lead; and third, two furnaces in which "slags" are re-melted. Each of these is six feet distant from the next; on the right side of the first is a space of three feet and two palms, and on the left side of the last one of seven feet. Each pair of furnaces has a common door, six feet high and a cubit wide, but the first and the tenth furnace each has one of its own. Each of the furnaces is set in an arch of its own in the back wall, and in front has a forehearth pit; this is filled with a powder compound rammed down and compressed in order to make a crucible. Under each furnace is a hidden receptacle for the moisture,[11]from which a vent is made through the back wall toward the right, which allows the vapour to escape. Finally, to the right, in front, is the copper mould into which the copper-lead alloy is poured from the forehearth, in order that liquation cakes of equal weight may be made. This copper mould is a digit thick, its interior is two feet in diameter and six digits deep. Behind the second long wall are ten pairs of bellows, two machines for compressing them, and twenty instruments for inflating them. The way in which these should be made may be understood fromBook IX.
The smelter, when he alloys copper with lead, with his hand throws into the heated furnace, first the large fragments of copper, then a basketful of charcoal, then the smaller fragments of copper. When the copper is melted and begins to run out of the tap-hole into the forehearth, he throws litharge into the furnace, and, lest part of it should fly away, he first throws charcoal over it, and lastly lead. As soon as he has thrown into the furnace the copper and the lead, from which alloy the first liquation cake is made, he again throws in a basket of charcoal, and then fragments of copper are thrown over them, from which the second cake may be made. Afterward with a rabble he skims the "slag" from the copper and lead as they flow into the forehearth. Such a rabble is a board into which an iron bar is fixed; theboard is made of elder-wood or willow, and is ten digits long, six wide, and one and a half digits thick; the iron bar is three feet long, and the wooden handle inserted into it is two and a half feet long. While he purges the alloy and pours it out with a ladle into the copper mould, the fragments of copper from which he is to make the second cake are melting. As soon as this begins to run down he again throws in litharge, and when he has put on more charcoal he adds the lead. This operation he repeats until thirty liquation cakes have been made, on which work he expends nine hours, or at most ten; if more than thirty cakes must be made, then he is paid for another shift when he has made an extra thirty.
At the same time that he pours the copper-lead alloy into the copper mould, he also pours water slowly into the top of the mould. Then, with a cleft stick, he takes a hook and puts its straight stem into the molten cake. The hook itself is a digit and a half thick; its straight stem is two palms long and two digits wide and thick. Afterward he pours more water over the cakes. When they are cold he places an iron ring in the hook of the chainlet down from the pulley of the crane arm; the inside diameter of this ring is six digits, and it is about a digit and a half thick; the ring is then engaged in the hook whose straight stem is in the cake, and thus the cake is raised from the mould and put into its place.
The copper and lead, when thus melted, yield a small amount of "slag"[12]and much litharge. The litharge does not cohere, but falls to pieces like the residues from malt from which beer is made.Pompholyxadheres to the walls in white ashes, and to the sides of the furnace adheresspodos.
In this practical manner lead is alloyed with copper in which there is but a moderate portion of silver. If, however, there is much silver in it, as, for instance, twolibrae, or twolibraeand abes, to thecentumpondium,—which weighs one hundred and thirty-three and a thirdlibrae, or one hundred and forty-sixlibraeand abes,[13]—then the foreman of the works adds to acentumpondiumof such copper threecentumpondiaof lead, in eachcentumpondiumof which there is a third of alibraof silver, or a third of alibraand asemi-uncia. In this manner three liquation cakes are made, which contain altogether threecentumpondiaof copper and ninecentumpondiaof lead.[14]The lead, when it has been liquated from the copper, weighs sevencentumpondia; and in eachcentumpondium—if thecentumpondiumof copper contain twolibraeof silver, and the lead contain a third of alibra—there will be alibraand a sixth and more than asemi-unciaof silver; while in the exhausted liquation cakes, and in the liquation thorns, there remains a third of alibra.If acentumpondiumof copper contains twolibraeand abesof silver, and the lead a third of alibraand asemi-uncia, there will be in each liquation cake one and a halflibraeand asemi-uncia, and a little more than asicilicusof silver. In the exhausted liquation cakes there remain a third of alibraand asemi-unciaof silver.
Furnaces enriching copper bottomsA—Furnace. B—Forehearth. C—Dipping-Pot. D—Cakes.[Pg 510]If there be in the copper only a minute proportion of silver, it cannot be separated easily until it has been re-melted in other furnaces, so that in the "bottoms" there remains more silver and in the "tops" less.[15]This furnace, vaulted with unbaked bricks, is similar to an oven, and also to the cupellation furnace, in which the lead is separated from silver, which I described in the last book. The crucible is made of ashes, in the same manner asin the latter, and in the front of the furnace, three feet above the floor of the building, is the mouth out of which the re-melted copper flows into a forehearth and a dipping-pot. On the left side of the mouth is an aperture, through which beech-wood may be put into the furnace to feed the fire. If in acentumpondiumof copper there were a sixth of alibraand asemi-unciaof silver, or a quarter of alibra, or a quarter of alibraand asemi-uncia—there is re-melted at the same time thirty-eightcentumpondiaof it in this furnace, until there remain in eachcentumpondiumof the copper "bottoms" a third of alibraand asemi-unciaof silver. For example, if in eachcentumpondiumof copper not yet re-melted, there is a quarter of alibraand asemi-unciaof silver, then the thirty-eightcentumpondiathat are smelted together must contain a total of elevenlibraeand anunciaof silver. Since from fifteencentumpondiaof re-melted copper there was a total of four and a thirdlibraeand asemi-unciaof silver, there remain only two and a thirdlibrae. Thus there is left in the "bottoms," weighing twenty-threecentumpondia, a total of eight and three-quarterlibraeof silver. Therefore, eachcentumpondiumof this contains a third of alibraand asemi-uncia, adrachma, and the twenty-third part of adrachmaof silver; from such copper it is profitable to separate the silver. In order that the master may be more certain of the number ofcentumpondiaof copper in the "bottoms," he weighs the "tops" that have been drawn off from it; the "tops" were first drawn off into the dipping-pot, and cakes were made from them. Fourteen hours are expended on the work of thus dividing the copper. The "bottoms," when a certain weight of lead has been added to them, of which alloy I shall soon speak, are melted in the blast furnace; liquation cakes are then made, and the silver is afterward separated from the copper. The "tops" are subsequently melted in the blast furnace, and re-melted in the refining furnace, in order that red copper shall be made[16]; and the "tops" from this are again smelted in the blast furnace, and then again in the refining furnace, that therefromshall be madecaldariumcopper. But when the copper, yellow or red orcaldariumis re-smelted in the refining furnace, fortycentumpondiaare placed in it, and from it they make at least twenty, and at most thirty-five,centumpondia. About twenty-twocentumpondiaof exhausted liquation cakes and ten of yellow copper and eight of red, are simultaneously placed in this latter furnace and smelted, in order that they may be made into refined copper.
The copper "bottoms" are alloyed in three different ways with lead.[17]First, five-eighths of acentumpondiumof copper and two and three-quarterscentumpondiaof lead are taken; and since one liquation cake is made from this, therefore two and a halfcentumpondiaof copper and elevencentumpondiaof lead make four liquation cakes. Inasmuch as in eachcentumpondiumof copper there is a third of alibraof silver, there would be in the whole of the copper ten-twelfths of alibraof silver; to these are added fourcentumpondiaof lead re-melted from "slags," eachcentumpondiumof which contains asicilicusand adrachmaof silver, which weights make up a total of anunciaand a half of silver. There is also added sevencentumpondiaof de-silverized lead, in eachcentumpondiumof which there is adrachmaof silver; therefore in the four cakes of copper-lead alloy there is a total of alibra, asicilicusand adrachmaof silver. In each singlecentumpondiumof lead, after it has been liquated from the copper, there is anunciaand adrachmaof silver, which alloy we call "poor" argentiferous lead, because it contains but little silver. But as five cakes of that kind are placed together in the furnace, they liquate from them usually as much as nine and three-quarterscentumpondiaof poorargentiferous lead, in eachcentumpondiumof which there is anunciaand adrachmaof silver, or a total of tenunciaeless fourdrachmae. Of the liquation thorns there remain threecentumpondia, in eachcentumpondiumof which there are threesiciliciof silver; and there remain fourcentumpondiaof exhausted liquation cakes, eachcentumpondiumof which contains asemi-unciaor four and a halfdrachmae. Inasmuch as in acentumpondiumof copper "bottoms" there is a third of alibraand asemi-unciaof silver, in five of those cakes there must be more than one and a halfunciaeand half adrachmaof silver.
Then, again, from another two and a halfcentumpondiaof copper "bottoms," together with elevencentumpondiaof lead, four liquation cakes are made. If in eachcentumpondiumof copper there was a third of alibraof silver, there would be in the whole of thecentumpondiaof base metal five-sixths of alibraof the precious metal. To this copper is added eightcentumpondiaof poor argentiferous lead, eachcentumpondiumof which contains anunciaand adrachmaof silver, or a total of three-quarters of alibraof silver. There is also added threecentumpondiaof de-silverized lead, in eachcentumpondiumof which there is adrachmaof silver. Therefore, four liquation cakes contain a total of alibra, sevenunciae, asicilicusand adrachmaof silver; thus eachcentumpondiumof lead, when it has been liquated from the copper, contains anunciaand a half and asicilicusof silver, which alloy we call "medium" silver-lead.
Then, again, from another two and a halfcentumpondiaof copper "bottoms," together with elevencentumpondiaof lead, they make four liquation cakes. If in eachcentumpondiumof copper there were likewise a third of alibraof silver, there will be in all the weight of the base metal five-sixths of alibraof the precious metal. To this is added ninecentumpondiaof medium silver-lead, eachcentumpondiumof which contains anunciaand a half and asicilicusof silver; or a total of alibraand a quarter and asemi-unciaand asicilicusof silver. And likewise they add twocentumpondiaof poor silver-lead, in each of which there is anunciaand adrachmaof silver. Therefore the four liquation cakes contain two and a thirdlibraeof silver. Eachcentumpondiumof lead, when it has been liquated from the copper, contains a sixth of alibraand asemi-unciaand adrachmaof silver. This alloy we call "rich" silver-lead; it is carried to the cupellation furnace, in which lead is separated from silver. I have now mentioned in how many ways copper containing various proportions of silver is alloyed with lead, and how they are melted together in the furnace and run into the casting pan.