Chapter 16

Shield for Muffle FurnaceA—Handle of tablet. B—Its crack.[Pg 241]While the assayer is assaying the ore, in order to prevent the great heat of the fire from injuring his eyes, it will be useful for him always to have ready a thin wooden tablet, two palms wide, with a handle by which it may be held, and with a slit down the middle in order that he may look through it as through a crack, since it is necessary for him to look frequently within and carefully to consider everything.

Now the lead which has absorbed the silver from a metallic ore is consumed in the cupel by the heat in the space of three quarters of an hour. When the assays are completed the muffle is taken out of the furnace, and the ashes removed with an iron shovel, not only from the brick and iron furnaces, but also from the earthen one, so that the furnace need not be removed from its foundation.

From ore placed in the triangular crucible a button is melted out, from which metal is afterward made. First of all, glowing charcoal is put into the iron hoop, then is put in the triangular crucible, which contains the ore together with those things which can liquefy it and purge it of its dross; then the fire is blown with the double bellows, and the ore is heated until the button settles in the bottom of the crucible. We have explained that there are two methods of assaying ore,—one, by which the lead is mixedwith ore in the scorifier and afterward again separated from it in the cupel; the other, by which it is first melted in the triangular earthen crucible and afterward mixed with lead in the scorifier, and later separated from it in the cupel. Now let us consider which is more suitable for each ore, or, if neither is suitable, by what other method in one way or another we can assay it.

We justly begin with a gold ore, which we assay by both methods, for if it is rich and seems not to be strongly resistant to fire, but to liquefy easily, onecentumpondiumof it (known to us as the lesser weights),[27]together with one and a half, or twounciaeof lead of the larger weights, are mixed together and placed in the scorifier, and the two are heated in the fire until they are well mixed. But since such an ore sometimes resists melting, add a little salt to it, eithersal torrefactusorsal artificiosus, for this will subdue it, and prevent the alloy from collecting much dross; stir it frequently with an iron rod, in order that the lead may flow around the gold on every side, and absorb it and cast out the waste. When this has been done, take out the alloy and cleanse it of slag; then place it in the cupel and heat it until it exhales all the lead, and a bead of gold settles in the bottom.

If the gold ore is seen not to be easily melted in the fire, roast it and extinguish it with brine. Do this again and again, for the more often you roast it and extinguish it, the more easily the ore can be crushed fine, and the more quickly does it melt in the fire and give up whatever dross it possesses.Mix one part of this ore, when it has been roasted, crushed, and washed, with three parts of some powder compound which melts ore, and six parts of lead. Put the charge into the triangular crucible, place it in the iron hoop to which the double bellows reaches, and heat first in a slow fire, and afterward gradually in a fiercer fire, till it melts and flows like water. If the ore does not melt, add to it a little more of these fluxes, mixed with an equal portion of yellow litharge, and stir it with a hot iron rod until it all melts. Then take the crucible out of the hoop, shake off the button when it has cooled, and when it has been cleansed, melt first in the scorifier and afterward in the cupel. Finally, rub the gold which has settled in the bottom of the cupel, after it has been taken out and cooled, on the touchstone, in order to find out what proportion of silver it contains. Another method is to put acentumpondium(of the lesser weights) of gold ore into the triangular crucible, and add to it adrachma(of the larger weights) of glass-galls. If it resists melting, add half adrachmaof roasted argol, and if even then it resists, add the same quantity of roasted lees of vinegar, or lees of theaquawhich separates gold from silver, and the button will settle in the bottom of the crucible. Melt this button again in the scorifier and a third time in the cupel.

We determine in the following way, before it is melted in the muffle furnace, whether pyrites contains gold in it or not: if, after being three times roasted and three times quenched in sharp vinegar, it has not broken nor changed its colour, there is gold in it. The vinegar by which it is quenched should be mixed with salt that is put in it, and frequently stirred and dissolved for three days. Nor is pyrites devoid of gold, when, after being roasted and then rubbed on the touchstone, it colours the touchstone in the same way that it coloured it when rubbed in its crude state. Nor is gold lacking in that, whose concentrates from washing, when heated in the fire, easily melt, giving forth little smell and remaining bright; such concentrates are heated in the fire in a hollowed piece of charcoal covered over with another charcoal.

We also assay gold ore without fire, but more often its sand or the concentrates which have been made by washing, or the dust gathered up by some other means. A little of it is slightly moistened with water and heated until it begins to exhale an odour, and then to one portion of ore are placed two portions of quicksilver[28]in a wooden dish as deep as a basin. They are mixed together with a little brine, and are then ground with a wooden pestle for the space of two hours, until the mixture becomes of the thickness of dough, and the quicksilver can no longer be distinguished from the concentrates made by the washing, nor the concentrates from the quicksilver. Warm, or at least tepid, water is poured into the dish and the material is washed until the water runs out clear. Afterward cold water is poured into the same dish, and soon the quicksilver, which has absorbed all the gold, runs together into a separate place away from the rest of the concentrates made by washing. The quicksilver is afterward separated from the gold by means of a pot covered with soft leather, or with canvas made of woven threads of cotton; the amalgam is poured into the middle of the cloth orleather, which sags about one hand's breadth; next, the leather is folded over and tied with a waxed string, and the dish catches the quicksilver which is squeezed through it. As for the gold which remains in the leather, it is placed in a scorifier and purified by being placed near glowing coals. Others do not wash away the dirt with warm water, but with strong lye and vinegar, for they pour these liquids into the pot, and also throw into it the quicksilver mixed with the concentrates made by washing. Then they set the pot in a warm place, and after twenty-four hours pour out the liquids with the dirt, and separate the quicksilver from the gold in the manner which I have described. Then they pour urine into a jar set in the ground, and in the jar place a pot with holes in the bottom, and in the pot they place the gold; then the lid is put on and cemented, and it is joined with the jar; they afterward heat it till the pot glows red. After it has cooled, if there is copper in the gold they melt it with lead in a cupel, that the copper may be separated from it; but if there is silver in the gold they separate them by means of theaquawhich has the power of parting these two metals. There are some who, when they separate gold from quicksilver, do not pour the amalgam into a leather, but put it into a gourd-shaped earthen vessel, which they place in the furnace and heat gradually over burning charcoal; next, with an iron plate, they cover the opening of the operculum, which exudes vapour, and as soon as it has ceased to exude, they smear it with lute and heat it for a short time; then they remove the operculum from the pot, and wipe off the quicksilver which adheres to it with a hare's foot, and preserve it for future use. By the latter method, a greater quantity of quicksilver is lost, and by the former method, a smaller quantity.

If an ore is rich in silver, as isrudissilver[29], frequently silver glance, or rarely ruby silver, gray silver, black silver, brown silver, or yellow silver, as soon as it is cleansed and heated, acentumpondium(of the lesser weights) of it is placed in anunciaof molten lead in a cupel, and is heated until the lead exhales. But if the ore is of poor or moderate quality, it must first be dried, then crushed, and then to acentumpondium(of the lesser weights) anunciaof lead is added, and it is heated in the scorifier until it melts. If it is not soon melted by the fire, it should be sprinkled with a little powder of the first order of fluxes, and if then it does not melt, more is added little by little until it melts and exudes its slag; that this result may be reached sooner, the powder which has been sprinkled over it should be stirred in with an iron rod. When the scorifier has been taken out of the assay furnace, the alloy should be poured into a hole in a baked brick; and when it has cooled and been cleansed of the slag, it should be placed in a cupel and heated until it exhales all its lead; the weight of silver which remains in the cupel indicates what proportion of silver is contained in the ore.

We assay copper ore without lead, for if it is melted with it, the copper usually exhales and is lost. Therefore, a certain weight of such an oreis first roasted in a hot fire for about six or eight hours; next, when it has cooled, it is crushed and washed; then the concentrates made by washing are again roasted, crushed, washed, dried, and weighed. The portion which it has lost whilst it is being roasted and washed is taken into account, and these concentrates by washing represent the cake which will be melted out of the copper ore. Place threecentumpondia(lesser weights) of this, mixed with threecentumpondia(lesser weights) each of copper scales[30], saltpetre, and Venetian glass, mixed, into the triangular crucible, and place it in the iron hoop which is set on the hearth in front of the double bellows. Cover the crucible with charcoal in such a way that nothing may fall into the ore which is to be melted, and so that it may melt more quickly. At first blow a gentle blast with the bellows in order that the ore may be heated gradually in the fire; then blow strongly till it melts, and the fire consumes that which has been added to it, and the ore itself exudes whatever slag it possesses. Next, cool the crucible which has been taken out, and when this is broken you will find the copper; weigh this, in order to ascertain how great a portion of the ore the fire has consumed. Some ore is only once roasted, crushed, and washed; and of this kind of concentrates, threecentumpondia(lesser weights) are taken with onecentumpondiumeach of common salt, argol and glass-galls. Heat them in the triangular crucible, and when the mixture has cooled a button of pure copper will be found, if the ore is rich in this metal. If, however, it is less rich, a stony lump results, with which the copper is intermixed; this lump is again roasted, crushed, and, after adding stones which easily melt and saltpetre, it is again melted in another crucible, and there settles in the bottom of the crucible a button of pure copper. If you wish to know what proportion of silver is in this copper button, melt it in a cupel after adding lead. With regard to this test I will speak later.

Those who wish to know quickly what portion of silver the copper ore contains, roast the ore, crush and wash it, then mix a little yellow litharge with onecentumpondium(lesser weights) of the concentrates, and put the mixture into a scorifier, which they place under the muffle in a hot furnace for the space of half an hour. When the slag exudes, by reason of the melting force which is in the litharge, they take the scorifier out; when it has cooled, they cleanse it of slag and again crush it, and with onecentumpondiumof it they mix one and a halfunciaeof lead granules. They then put it into another scorifier, which they place under the muffle in a hot furnace, adding to the mixture a little of the powder of some one of the fluxes which cause ore to melt; when it has melted they take it out, and after it has cooled, cleanse it of slag; lastly, they heat it in the cupel till it has exhaled all of the lead, and only silver remains.

Lead ore may be assayed by this method: crush half anunciaof pure lead-stone and the same quantity of thechrysocollawhich they call borax, mix them together, place them in a crucible, and put a glowing coalin the middle of it. As soon as the borax crackles and the lead-stone melts, which soon occurs, remove the coal from the crucible, and the lead will settle to the bottom of it; weigh it out, and take account of that portion of it which the fire has consumed. If you also wish to know what portion of silver is contained in the lead, melt the lead in the cupel until all of it exhales.

Another way is to roast the lead ore, of whatsoever quality it be, wash it, and put into the crucible onecentumpondiumof the concentrates, together with threecentumpondiaof the powdered compound which melts ore, mixed together, and place it in the iron hoop that it may melt; when it has cooled, cleanse it of its slag, and complete the test as I have already said. Another way is to take twounciaeof prepared ore, fivedrachmaeof roasted copper, oneunciaof glass, or glass-galls reduced to powder, asemi-unciaof salt, and mix them. Put the mixture into the triangular crucible, and heat it over a gentle fire to prevent it from breaking; when the mixture has melted, blow the fire vigorously with the bellows; then take the crucible off the live coals and let it cool in the open air; do not pour water on it, lest the lead button being acted upon by the excessive cold should become mixed with the slag, and the assay in this way be erroneous. When the crucible has cooled, you will find in the bottom of it the lead button. Another way is to take twounciaeof ore, asemi-unciaof litharge, twodrachmaeof Venetian glass and asemi-unciaof saltpetre. If there is difficulty in melting the ore, add to it iron filings, which, since they increase the heat, easily separate the waste from lead and other metals. By the last way, lead ore properly prepared is placed in the crucible, and there is added to it only the sand made from stones which easily melt, or iron filings, and then the assay is completed as formerly.

You can assay tin ore by the following method. First roast it, then crush, and afterward wash it; the concentrates are again roasted, crushed, and washed. Mix one and a halfcentumpondiaof this with onecentumpondiumof thechrysocollawhich they call borax; from the mixture, when it has been moistened with water, make a lump. Afterwards, perforate a large round piece of charcoal, making this opening a palm deep, three digits wide on the upper side and narrower on the lower side; when the charcoal is put in its place the latter should be on the bottom and the former uppermost. Let it be placed in a crucible, and let glowing coal be put round it on all sides; when the perforated piece of coal begins to burn, the lump is placed in the upper part of the opening, and it is covered with a wide piece of glowing coal, and after many pieces of coal have been put round it, a hot fire is blown up with the bellows, until all the tin has run out of the lower opening of the charcoal into the crucible. Another way is to take a large piece of charcoal, hollow it out, and smear it with lute, that the ore may not leap out when white hot. Next, make a small hole through the middle of it, then fill up the large opening with small charcoal, and put the ore upon this; put fire in the small hole and blow the fire with the nozzle of a hand bellows; place the piece of charcoal in a small crucible, smeared with lute, in which, when the melting is finished, you will find a button of tin.

In assaying bismuth ore, place pieces of ore in the scorifier, and put it under the muffle in a hot furnace; as soon as they are heated, they drip with bismuth, which runs together into a button.

Quicksilver ore is usually tested by mixing one part of broken ore with three-parts of charcoal dust and a handful of salt. Put the mixture into a crucible or a pot or a jar, cover it with a lid, seal it with lute, place it on glowing charcoal, and as soon as a burnt cinnabar colour shows in it, take out the vessel; for if you continue the heat too long the mixture exhales the quicksilver with the fumes. The quicksilver itself, when it has become cool, is found in the bottom of the crucible or other vessel. Another way is to place broken ore in a gourd-shaped earthen vessel, put it in the assay furnace, and cover with an operculum which has a long spout; under the spout, put an ampulla to receive the quicksilver which distills. Cold water should be poured into the ampulla, so that the quicksilver which has been heated by the fire may be continuously cooled and gathered together, for the quicksilver is borne over by the force of the fire, and flows down through the spout of the operculum into the ampulla. We also assay quicksilver ore in the very same way in which we smelt it. This I will explain in its proper place.

Lastly, we assay iron ore in the forge of a blacksmith. Such ore is burned, crushed, washed, and dried; a magnet is laid over the concentrates, and the particles of iron are attracted to it; these are wiped off with a brush, and are caught in a crucible, the magnet being continually passed over the concentrates and the particles wiped off, so long as there remain any particles which the magnet can attract to it. These particles are heated in the crucible with saltpetre until they melt, and an iron button is melted out of them. If the magnet easily and quickly attracts the particles to it, we infer that the ore is rich in iron; if slowly, that it is poor; if it appears actually to repel the ore, then it contains little or no iron. This is enough for the assaying of ores.

I will now speak of the assaying of the metal alloys. This is done both by coiners and merchants who buy and sell metal, and by miners, but most of all by the owners and mine masters, and by the owners and masters of the works in which the metals are smelted, or in which one metal is parted from another.

First I will describe the way assays are usually made to ascertain what portion of precious metal is contained in base metal. Gold and silver are now reckoned as precious metals and all the others as base metals. Once upon a time the base metals were burned up, in order that the precious metals should be left pure; the Ancients even discovered by such burning what portion of gold was contained in silver, and in this way all the silver was consumed, which was no small loss. However, the famous mathematician, Archimedes[31], to gratify King Hiero, invented a method of testing the silver,which was not very rapid, and was more accurate for testing a large mass than a small one. This I will explain in my commentaries. The alchemists have shown us a way of separating silver from gold by which neither of them is lost[32].

Gold which contains silver,[33]or silver which contains gold, is first rubbed on the touchstone. Then a needle in which there is a similar amount of gold or silver is rubbed on the same touchstone, and from the lines which are produced in this way, is perceived what portion of silver there is in the gold, or what portion of gold there is in the silver. Next there is added to the silver which is in the gold, enough silver to make it three times as much as the gold. Then lead is placed in a cupel and melted; a little later, a small amount of copper is put in it, in fact, half anunciaof it, or half anunciaand asicilicus(of the smaller weights) if the gold or silver does not contain any copper. The cupel, when the lead and copper are wanting, attracts the particles of gold and silver, and absorbs them. Finally, one-third of alibraof the gold, and onelibra[34]of the silver must be placed together in the same cupel and melted; for if the gold and silver were first placed in the cupel and melted, as I have already said, it absorbs particles of them, and the gold, when separated from the silver, will not be found pure. These metals are heated until the lead and the copper are consumed, and again, the same weight of each is melted in the same manner in another cupel. The buttons are pounded with a hammer and flattened out, and each little leaf is shaped in the form of a tube, and each is put into a small glass ampulla. Over these there is poured oneunciaand onedrachma(of the large weight) of the third qualityaqua valens, which I will describe in theTenth Book. This is heated over a slow fire, and small bubbles, resembling pearls in shape, will be seen to adhere to the tubes. The redder theaquaappears, the better it is judged to be; when the redness has vanished, small white bubbles are seen to be resting on the tubes, resembling pearls not only in shape, but also in colour. After a short time theaquais poured off and other is poured on; when this has again raised six or eight small white bubbles, it is poured off and the tubes are taken out and washed four or five times with spring water; or if they are heated with the same water, when it is boiling, they will shine more brilliantly. Then they are placed in a saucer, which is held in the hand and gradually dried by the gentle heat of the fire; afterward the saucer is placed over glowing charcoal and covered with a charcoal, and a moderate blast is blown upon itwith the mouth and then a blue flame will be emitted. In the end the tubes are weighed, and if their weights prove equal, he who has undertaken this work has not laboured in vain. Lastly, both are placed in another balance-pan and weighed; of each tube four grains must not be counted, on account of the silver which remains in the gold and cannot be separated from it. From the weight of the tubes we learn the weight both of the gold and of the silver which is in the button. If some assayer has omitted to add so much silver to the gold as to make it three times the quantity, but only double, or two and a half times as much, he will require the stronger quality ofaquawhich separates gold from silver, such as the fourth quality. Whether theaquawhich he employs for gold and silver is suitable for the purpose, or whether it is more or less strong than is right, is recognised by its effect. That of medium strength raises the little bubbles on the tubes and is found to colour the ampulla and the operculum a strong red; the weaker one is found to colour them a light red, and the stronger one to break the tubes. To pure silver in which there is some portion of gold, nothing should be added when they are being heated in the cupel prior to their being parted, except abesof lead and one-fourth or one-third its amount of copper of the lesser weights. If the silver contains in itself a certain amount of copper, let it be weighed, both after it has been melted with the lead, and after the gold has been parted from it; by the former we learn how much copper is in it, by the latter how much gold. Base metals are burnt up even to-day for the purpose of assay, because to lose so little of the metal is small loss, but from a large mass of base metal, the precious metal is always extracted, as I will explain in BooksX.andXI.

We assay an alloy of copper and silver in the following way. From a few cakes of copper the assayer cuts out portions, small samples from small cakes, medium samples from medium cakes, and large samples from large cakes; the small ones are equal in size to half a hazel nut, the large ones do not exceed the size of half a chestnut, and those of medium size come between the two. He cuts out the samples from the middle of the bottom of each cake. He places the samples in a new, clean, triangular crucible and fixes to them pieces of paper upon which are written the weight of the cakes of copper, of whatever size they may be; for example, he writes, "These samples have been cut from copper which weighs twentycentumpondia." When he wishes to know how much silver onecentumpondiumof copper of this kind has in it, first of all he throws glowing coals into the iron hoop, then adds charcoal to it. When the fire has become hot, the paper is taken out of the crucible and put aside, he then sets that crucible on the fire and gradually heats it for a quarter of an hour until it becomes red hot. Then he stimulates the fire by blowing with a blast from the double bellows for half an hour, because copper which is devoid of lead requires this time to become hot and to melt; copper not devoid of lead melts quicker. When he has blown the bellows for about the space of time stated, he removes the glowing charcoal with the tongs, and stirs the copper with a splinter of wood, which he grasps with the tongs. If it does not stir easily, it is a sign that thecopper is not wholly liquefied; if he finds this is the case, he again places a large piece of charcoal in the crucible, and replaces the glowing charcoal which had been removed, and again blows the bellows for a short time. When all the copper has melted he stops using the bellows, for if he were to continue to use them, the fire would consume part of the copper, and then that which remained would be richer than the cake from which it had been cut; this is no small mistake.Copper Mould for AssayingA—Iron mould. B—Its handle.[Pg 250]Therefore, as soon as the copper has become sufficiently liquefied, he pours it out into a little iron mould, which may be large or small, according as more or less copper is melted in the crucible for the purpose of the assay. The mould has a handle, likewise made of iron, by which it is held when the copper is poured in, after which, he plunges it into a tub of water placed near at hand, that the copper may be cooled. Then he again dries the copper by the fire, and cuts off its point with an iron wedge; the portion nearest the point he hammers on an anvil and makes into a leaf, which he cuts into pieces.

Others stir the molten copper with a stick of linden tree charcoal, and then pour it over a bundle of new clean birch twigs, beneath which is placed a wooden tub of sufficient size and full of water, and in this manner the copper is broken up into little granules as small as hemp seeds. Others employ straw in place of twigs. Others place a broad stone in a tub and pour in enough water to cover the stone, then they run out the molten copper from the crucible on to the stone, from which the minute granules roll off; others pour the molten copper into water and stir it until it is resolved into granules. The fire does not easily melt the copper in the cupel unless it has been poured and a thin leaf made of it, or unless it has been resolved into granules or made into filings; and if it does not melt, all the labour has been undertaken in vain. In order that they may be accurately weighed out, silver and lead are resolved into granules in the same manner as copper. But to return to the assay of copper. When the copper has been prepared by these methods, if it is free of lead and iron, and rich in silver, to eachcentumpondium(lesser weights) add one and a halfunciaeof lead (larger weights). If, however, the copper contains some lead, add oneunciaof lead; if it contains iron, add twounciae. First put the lead into a cupel, and after it begins to smoke, add the copper; the fire generally consumes the copper, together with the lead, in about one hour and a quarter. When this is done, the silverwill be found in the bottom of the cupel. The fire consumes both of those metals more quickly if they are heated in that furnace which draws in air. It is better to cover the upper half of it with a lid, and not only to put on the muffle door, but also to close the window of the muffle door with a piece of charcoal, or with a piece of brick. If the copper be such that the silver can only be separated from it with difficulty, then before it is tested with fire in the cupel, lead should first be put into the scorifier, and then the copper should be added with a moderate quantity of melted salt, both that the lead may absorb the copper and that the copper may be cleansed of the dross which abounds in it.

Tin which contains silver should not at the beginning of the assay be placed in a cupel, lest the silver, as often happens, be consumed and converted into fumes, together with the tin. As soon as the lead[35]has begun to fume in the scorifier, then add that[36]to it. In this way the lead will take the silver and the tin will boil and turn into ashes, which may be removed with a wooden splinter. The same thing occurs if any alloy is melted in which there is tin. When the lead has absorbed the silver which was in the tin, then, and not till then, it is heated in the cupel. First place the lead with which the silver is mixed, in an iron pan, and stand it on a hot furnace and let it melt; afterward pour this lead into a small iron mould, and then beat it out with a hammer on an anvil and make it into leaves in the same way as the copper. Lastly, place it in the cupel, which assay can be carried out in the space of half an hour. A great heat is harmful to it, for which reason there is no necessity either to cover the half of the furnace with a lid or to close up its mouth.

The minted metal alloys, which are known as money, are assayed in the following way. The smaller silver coins which have been picked out from the bottom and top and sides of a heap are first carefully cleansed; then, after they have been melted in the triangular crucible, they are either resolved into granules, or made into thin leaves. As for the large coins which weigh adrachma, asicilicus, half anuncia, or anuncia, beat them into leaves. Then take abesof the granules, or an equal weight of the leaves, and likewise take anotherbesin the same way. Wrap each sample separately in paper, and afterwards place two small pieces of lead in two cupels which have first been heated. The more precious the money is, the smaller portion of lead do we require for the assay, the more base, the larger is the portion required; for if abesof silver is said to contain only half anunciaor oneunciaof copper, we add to thebesof granules half anunciaof lead. If it is composed of equal parts of silver and copper, we add anunciaof lead, but if in abesof copper there is only half anunciaor oneunciaof silver, we add anunciaand a half of lead. As soon as the lead has begun to fume, put into each cupel one of the papers in which is wrapped the sample of silver alloyed with copper, and close the mouth of the muffle with charcoal. Heat them with a gentle fire until all the lead and copper are consumed, for a hot fire by its heat forces thesilver, combined with a certain portion of lead, into the cupel, in which way the assay is rendered erroneous. Then take the beads out of the cupel and clean them of dross. If neither depresses the pan of the balance in which it is placed, but their weight is equal, the assay has been free from error; but if one bead depresses its pan, then there is an error, for which reason the assay must be repeated. If thebesof coin contains but sevenunciaeof pure silver it is because the King, or Prince, or the State who coins the money, has taken oneuncia, which he keeps partly for profit and partly for the expense of coining, he having added copper to the silver. Of all these matters I have written extensively in my bookDe Precio Metallorum et Monetis.

We assay gold coins in various ways. If there is copper mixed with the gold, we melt them by fire in the same way as silver coins; if there is silver mixed with the gold, they are separated by the strongestaqua valens; if there is copper and silver mixed with the gold, then in the first place, after the addition of lead, they are heated in the cupel until the fire consumes the copper and the lead, and afterward the gold is parted from the silver.

It remains to speak of the touchstone[37]with which gold and silver are tested, and which was also used by the Ancients. For although the assay made by fire is more certain, still, since we often have no furnace, nor muffle, nor crucibles, or some delay must be occasioned in using them, we can always rub gold or silver on the touchstone, which we can have in readiness. Further, when gold coins are assayed in the fire, of what use are they afterward? A touchstone must be selected which is thoroughly black and free of sulphur, for the blacker it is and the more devoid of sulphur, the better itgenerally is; I have written elsewhere of its nature[38]. First the gold is rubbed on the touchstone, whether it contains silver or whether it is obtained from the mines or from the smelting; silver also is rubbed in the same way. Then one of the needles, that we judge by its colour to be of similar composition, is rubbed on the touchstone; if this proves too pale, another needle which has a stronger colour is rubbed on the touchstone; and if this proves too deep in colour, a third which has a little paler colour is used. For this will show us how great a proportion of silver or copper, or silver and copper together, is in the gold, or else how great a proportion of copper is in silver.

These needles are of four kinds.[39]The first kind are made of gold and silver, the second of gold and copper, the third of gold, silver, and copper, and the fourth of silver and copper. The first three kinds of needles are used principally for testing gold, and the fourth for silver. Needles of this kind are prepared in the following ways. The lesser weights correspond proportionately to the larger weights, and both of them are used, not only by mining people, but by coiners also. The needles are made in accordance with the lesser weights, and each set corresponds to abes, which, in our own vocabulary, is called amark. Thebes, which is employed by those who coin gold, is divided into twenty-four doublesextulae, whichare now called after the Greek nameceratia; and each doublesextulais divided into foursemi-sextulae, which are calledgranas; and eachsemi-sextulais divided into three units of foursiliquaeeach, of which each unit is called agrenlin. If we made the needles to be each foursiliquae, there would be two hundred and eighty-eight in abes, but if each were made to be asemi-sextulaor a doublescripula, then there would be ninety-six in abes. By these two methods too many needles would be made, and the majority of them, by reason of the small difference in the proportion of the gold, would indicate nothing, therefore it is advisable to make them each of a doublesextula; in this way twenty-four needles are made, of which the first is made of twenty-threeduellaeof silver and one of gold. Fannius is our authority that the Ancients called the doublesextulaaduella. When a bar of silver is rubbed on the touchstone and colours it just as this needle does, it contains oneduellaof gold. In this manner we determine by the other needles what proportion of gold there is, or when the gold exceeds the silver in weight, what proportion of silver.

Touch-needles[Pg 255]The needles are made[40]:—

The1stneedle of23duellaeof silver and1duellaof gold."2nd"22""2duellaeof gold."3rd"21""3"""4th"20""4"""5th"19""5"""6th"18""6"""7th"17""7"""8th"16""8"""9th"15""9"""10th"14""10"""11th"13""11"""12th"12""12"""13th"11""13"""14th"10""14"""15th"9""15"""16th"8""16"""17th"7""17"""18th"6""18"""19th"5""19"""20th"4""20"""21st"3""21"""22nd"2""22"""23rd"1""23"""24th"pure gold

By the first eleven needles, when they are rubbed on the touchstone, we test what proportion of gold a bar of silver contains, and with the remaining thirteen we test what proportion of silver is in a bar of gold; and also what proportion of either may be in money.

Since some gold coins are composed of gold and copper, thirteen needles of another kind are made as follows:—

The1stof12duellaeof gold and12duellaeof copper."2nd"13""11"""3rd"14""10"""4th"15""9"""5th"16""8"""6th"17""7"""7th"18""6"""8th"19""5"""9th"20""4"""10th"21""3"""11th"22""2"""12th"23""1"""13th"pure gold.

These needles are not much used, because gold coins of that kind are somewhat rare; the ones chiefly used are those in which there is much copper. Needles of the third kind, which are composed of gold, silver, and copper, are more largely used, because such gold coins are common. But since with the gold there are mixed equal or unequal portions of silver and copper, two sorts of needles are made. If the proportion of silver and copper is equal, the needles are as follows:—


Back to IndexNext