FOOTNOTES:

END OF BOOK I.

FOOTNOTES:[Pg 1][1]Fibrae—"fibres." SeeNote 6, p. 70.[2]Commissurae saxorum—"rock joints," "seams," or "cracks." Agricola and all of the old authors laid a wholly unwarranted geologic value on these phenomena. See description and footnotes, Book III., pages43and72.[3]Succi—"juice," orsucci concreti—"solidified juice." Ger. Trans.,saffte. The old English translators and mineralogists often use the word juices in the same sense, and we have adopted it. The words "solutions" and "salts" convey a chemical significance not warranted by the state of knowledge in Agricola's time. Instances of the former use of this word may be seen in Barba's "First Book of the Art of Metals," (Trans. Earl Sandwich, London, 1674, p. 2, etc.,) and in Pryce'sMineralogia Cornubiensis(London, 1778, p. 25, 32).[4]In order that the reader should be able to grasp the author's point of view as to his divisions of the Mineral Kingdom, we introduce here his own statement fromDe Natura Fossilium, (p. 180). It is also desirable to read the footnote on his theory of ore-deposits on pages43to53, and the review ofDe Natura Fossiliumgiven in theAppendix."The subterranean inanimate bodies are divided into two classes, one of which, because it is a fluid or an exhalation, is called by those names, and the other class is called the minerals. Mineral bodies are solidified from particles of the same substance, such as pure gold, each particle of which is gold, or they are of different substances such as lumps which consist of earth, stone, and metal; these latter may be separated into earth, stone and metal, and therefore the first is not a mixture while the last is called a mixture. The first are again divided into simple and compound minerals. The simple minerals are of four classes, namely earths, solidified juices, stones and metals, while the mineral compounds are of many sorts, as I shall explain later."Earth is a simple mineral body which may be kneaded in the hands when moistened, or from which lute is made when it has been wetted. Earth, properly so called, is found enclosed in veins or veinlets, or frequently on the surface in fields and meadows. This definition is a general one. The harder earth, although moistened by water, does not at once become lute, but does turn into lute if it remains in water for some time. There are many species of earths, some of which have names but others are unnamed."Solidified juices are dry and somewhat hard (subdurus) mineral bodies which when moistened with water do not soften but liquefy instead; or if they do soften, they differ greatly from the earths by their unctuousness (pingue) or by the material of which they consist. Although occasionally they have the hardness of stone, yet because they preserve the form and nature which they had when less hard, they can easily be distinguished from the stones. The juices are divided into 'meagre' and unctuous (macer et pinguis). The 'meagre' juices, since they originate from three different substances, are of three species. They are formed from a liquid mixed with earth, or with metal, or with a mineral compound. To the first species belong salt andNitrum(soda); to the second, chrysocolla, verdigris, iron-rust, and azure; to the third, vitriol, alum, and an acrid juice which is unnamed. The first two of these latter are obtained from pyrites, which is numbered amongst the compound minerals. The third of these comes fromCadmia(in this case the cobalt-zinc-arsenic minerals; the acrid juice is probably zinc sulphate). To the unctuous juices belong these species: sulphur, bitumen, realgar and orpiment. Vitriol and alum, although they are somewhat unctuous yet do not burn, and they differ in their origin from the unctuous juices, for the latter are forced out from the earth by heat, whereas the former are produced when pyrites is softened by moisture.[Pg 2]"Stone is a dry and hard mineral body which may either be softened by remaining for a long time in water and be reduced to powder by a fierce fire; or else it does not soften with water but the heat of a great fire liquefies it. To the first species belong those stones which have been solidified by heat, to the second those solidified (literally 'congealed') by cold. These two species of stones are constituted from their own material. However, writers on natural subjects who take into consideration the quantity and quality of stones and their value, divide them into four classes. The first of these has no name of its own but is called in common parlance 'stone': to this class belong loadstone, jasper (or bloodstone) andAetites(geodes?). The second class comprises hard stones, either pellucid or ornamental, with very beautiful and varied colours which sparkle marvellously; they are called gems. The third comprises stones which are only brilliant after they have been polished, and are usually called marble. The fourth are called rocks; they are found in quarries, from which they are hewn out for use in building, and they are cut into various shapes. None of the rocks show colour or take a polish. Few of the stones sparkle; fewer still are transparent. Marble is sometimes only distinguishable from opaque gems by its volume; rock is always distinguishable from stones properly so-called by its volume. Both the stones and the gems are usually to be found in veins and veinlets which traverse the rocks and marble. These four classes, as I have already stated, are divided into many species, which I will explain in their proper place."Metal is a mineral body, by nature either liquid or somewhat hard. The latter may be melted by the heat of the fire, but when it has cooled down again and lost all heat, it becomes hard again and resumes its proper form. In this respect it differs from the stone which melts in the fire, for although the latter regain its hardness, yet it loses its pristine form and properties. Traditionally there are six different kinds of metals, namely gold, silver, copper, iron, tin and lead. There are really others, for quicksilver is a metal, although the Alchemists disagree with us on this subject, and bismuth is also. The ancient Greek writers seem to have been ignorant of bismuth, wherefore Ammonius rightly states that there are many species of metals, animals, and plants which are unknown to us.Stibiumwhen smelted in the crucible and refined has as much right to be regarded as a proper metal as is accorded to lead by writers. If when smelted, a certain portion be added to tin, a bookseller's alloy is produced from which the type is made that is used by those who print books on paper. Each metal has its own form which it preserves when separated from those metals which were mixed with it. Therefore neither electrum norStannumis of itself a real metal, but rather an alloy of two metals. Electrum is an alloy of gold and silver,Stannumof lead and silver (seenote 33, p. 473). And yet if silver be parted from the electrum, then gold remains and not electrum; if silver be taken away fromStannum, then lead remains and notStannum. Whether brass, however, is found as a native metal or not, cannot be ascertained with any surety. We only know of the artificial brass, which consists of copper tinted with the colour of the mineral calamine. And yet if any should be dug up, it would be a proper metal. Black and white copper seem to be different from the red kind. Metal, therefore, is by nature either solid, as I have stated, or fluid, as in the unique case of quicksilver. But enough now concerning the simple kinds."I will now speak of the compounds which are composed of the simple minerals cemented together by nature, and under the word 'compound' I now discuss those mineral bodies which consist of two or three simple minerals. They are likewise mineral substances, but so thoroughly mixed and alloyed that even in the smallest part there is not wanting any substance that is contained in the whole. Only by the force of the fire is it possible to separate one of the simple mineral substances from another; either the third from the other two, or two from the third, if there were three in the same compound. These two, three or more bodies are so completely mixed into one new species that the pristine form of none of these is recognisable."The 'mixed' minerals, which are composed of those same simple minerals, differ from the 'compounds,' in that the simple minerals each preserves its own form so that they can be separated one from the other not only by fire but sometimes by water and sometimes by hand. As these two classes differ so greatly from one another I usually use two different words in order to distinguish one from the other. I am well aware that[Pg 3]Galen calls the metallic earth a compound which is really a mixture, but he who wishes to instruct others should bestow upon each separate thing a definite name."For convenience of reference we may reduce the above to a diagram as follows:1. Fluids and gases.2. Mineral bodiesA. Homogenous bodies(a) Simple mineralsEarthsSolidified juicesStonesMetals(b) Compound mineralsBeing heterogeneous mixtures of (a)B. Mixtures.Being homogenous mixtures of (a)[5]Experiendae—"a trial." That actual assaying in its technical sense is meant, is sufficiently evident fromBook VII.[6]... plumbum ... candidum ac cinereum vel nigrum. "Lead ... white, or ash-coloured, or black." Agricola himself coined the termplumbum cinereumfor bismuth, no doubt following the Roman term for tin—plumbum candidum. The following passage fromBermannus(p. 439) is of interest, for it appears to be the first description of bismuth, although mention of it occurs in theNützlich Bergbüchlin(seeAppendix B). "Bermannus: I will show you another kind of mineral which is numbered amongst metals, but appears to me to have been unknown to the Ancients; we call itbisemutum.Naevius: Then in your opinion there are more kinds of metals than the seven commonly believed?Bermannus: More, I consider; for this which just now I said we calledbisemutum, cannot correctly be calledplumbum candidum(tin), nornigrum(lead), but is different from both and is a third one.Plumbum candidumis whiter andplumbum nigrumis darker, as you see.Naevius: We see that this is of the colour ofgalena.Ancon: How then canbisemutum, as you call it, be distinguished fromgalena?Bermannus: Easily; when you take it in your hands it stains them with black, unless it is quite hard. The hard kind is not friable likegalena, but can be cut. It is blacker than the kind ofrudissilver which we say is almost the colour of lead, and thus is different from both. Indeed, it not rarely contains some silver. It generally indicates that there is silver beneath the place where it is found, and because of this our miners are accustomed to call it the 'roof of silver.' They are wont to roast this mineral, and from the better part they make metal; from the poorer part they make a pigment of a kind not to be despised."[7]Nitrum.The Ancients comprised many salts under this head, but Agricola in the main uses it for soda, although sometimes he includes potash. He usually, however, refers to potash aslixiviumor salt therefrom, and by other distinctive terms. For description of method of manufacture and discussion, see Book XII., p.558.[8]Atramentum sutorium—"Shoemaker's blacking." See p.572for description of method of manufacture and historical footnote. In the main Agricola means green vitriol, but he does describe three main varieties, green, blue, and white (De Natura Fossilium, p. 219). The blue was of course copper sulphate, and it is fairly certain that the white was zinc vitriol.[Pg 4][9]Lavandi—"Washing." By this term the author includes all the operations of sluicing, buddling, and wet concentration generally. There is no English equivalent of such wide application, and there is some difficulty in interpretation without going further than the author intends.Book VIII.is devoted to the subject.[Pg 5][10]Operam et oleum perdit—"loss of labour and oil."[11]InVeteribus et Novis Metallis, andBermannus, Agricola states that the mines of Schemnitz were worked 800 years before that time (1530), or about 750A.D., and, further,[Pg 6]that the lead mines of Goslar in the Hartz were worked by Otho the Great (936-973), and that the silver mines at Freiberg were discovered during the rule of Prince Otho (about 1170). To continue the argument to-day we could add about 360 years more of life to the mines of Goslar and Freiberg. See alsoNote 16, p. 36, andnote 19, p. 37.[12]Xenophon. Essay on the Revenues of Athens,I., 5.[Pg 7][13]Ovid,Metamorphoses,I., 137 to 143.[14]Diogenes Laertius,II., 5. The lines are assigned, however, to Philemon, not Euripides. (Kock,Comicorum Atticorum FragmentaII., 512).[15]We have not considered it of sufficient interest to cite the references to all of the minor poets and those whose preserved works are but fragmentary. The translations from the Greek into Latin are not literal and suffer again by rendering into English; we have however considered it our duty to translate Agricola's view of the meaning.[Pg 9][16]Diogenes Laertius,II.[Pg 10][17]An inspection of the historical incidents mentioned here and further on, indicates that Agricola relied for such information on Diogenes Laertius, Plutarch, Livy, Valerius Maximus, Pliny, and often enough on Homer, Horace, and Virgil.[18]Juvenal.SatiresI., l. 112, andVI., l. 298.[Pg 11][19]Pliny,XXXIV., 39.[20]Horace.Odes,I., 35, ll. 17-20.[Pg 15][21]Horace.Satires,II., 3, ll. 99-102.[Pg 16][22]Virgil.Æneid,III., l. 55, andI., l. 349.[Pg 17][23]Horace.Satires,I., l. 73; and Epistle,I., 10, l. 47.[Pg 18][25]Theognis. Maxims,II., l. 210.[Pg 19][26]Pindar.Olymp.II., 58-60.[27]Antiphanes, 4.[Pg 22][28]Jurati Venditores—"Sworn brokers." (?)[Pg 23][29]There is no doubt that Thucydides had some connection with gold mines; he himself is the authority for the statement that he worked mines in Thrace. Agricola seems to have obtained his idea that Thucydides held an appointment from the Athenians in charge of mines in Thasos, from Marcellinus (Vita, Thucydides, 30), who also says that Thucydides obtained possession of mines in Thrace through his marriage with a Thracian woman, and that it was while residing on the mines at Scapte-Hyle that he wrote his history. Later scholars, however, find little warrant for these assertions. The gold mines of Thasos—an island off the mainland of Thrace—are frequently mentioned by the ancient authors. Herodotus,VI., 46-47, says:—"Their (the Thasians') revenue was derived partly from their possessions upon the mainland, partly from the mines which they owned. They were masters of the gold mines of Scapte-Hyle, the yearly produce of which amounted to eighty talents. Their mines in Thasos yielded less, but still were so prolific that besides being entirely free from land-tax they had a surplus of income derived from the two sources of their territory on the mainland and their mines, in common years two hundred and in best years three hundred talents. I myself have seen the mines in question. By far the most curious of them are those which the Phoenicians discovered at the time when they went with Thasos and colonized the island, which took its name from him.[Pg 24]These Phoenician workings are in Thasos itself, between Coenyra and a place called Aenyra over against Samothrace; a high mountain has been turned upside down in the search for ores." (Rawlinson's Trans.). The occasion of this statement of Herodotus was the relations of the Thasians with Darius (521-486B.C.). The date of the Phoenician colonization of Thasos is highly nebular—anywhere from 1200 to 900B.C.[30]Agricola,De Veteribus et Novis Metallis, BookI., p. 392, says:—"Conrad, whose nickname in former years was 'pauper,' suddenly became rich from the silver mines of Mount Jura, known as theFirstum." He was ennobled with the title of Graf Cuntz von Glück by the Emperor Maximilian (who was Emperor of the Holy Roman Empire, 1493-1519). Conrad was originally a working miner at Schneeberg where he was known as Armer Cuntz (poor Cuntz or Conrad) and grew wealthy from the mines of Fürst in Leberthal. This district is located in the Vosges Mountains on the borders of Lorraine and Upper Alsace. The story of Cuntz or Conrad von Glück is mentioned by Albinus (Meissnische Land und Berg Chronica, Dresden, 1589, p. 116), Mathesius (Sarepta, Nuremberg, 1578, fol.XVI.), and by others.[31]Vladislaus III. was King of Poland, 1434-44, and also became King of Hungary in 1440. Tursius seems to be a Latinized name and cannot be identified.

[Pg 1][1]Fibrae—"fibres." SeeNote 6, p. 70.

[Pg 1][1]Fibrae—"fibres." SeeNote 6, p. 70.

[2]Commissurae saxorum—"rock joints," "seams," or "cracks." Agricola and all of the old authors laid a wholly unwarranted geologic value on these phenomena. See description and footnotes, Book III., pages43and72.

[2]Commissurae saxorum—"rock joints," "seams," or "cracks." Agricola and all of the old authors laid a wholly unwarranted geologic value on these phenomena. See description and footnotes, Book III., pages43and72.

[3]Succi—"juice," orsucci concreti—"solidified juice." Ger. Trans.,saffte. The old English translators and mineralogists often use the word juices in the same sense, and we have adopted it. The words "solutions" and "salts" convey a chemical significance not warranted by the state of knowledge in Agricola's time. Instances of the former use of this word may be seen in Barba's "First Book of the Art of Metals," (Trans. Earl Sandwich, London, 1674, p. 2, etc.,) and in Pryce'sMineralogia Cornubiensis(London, 1778, p. 25, 32).

[3]Succi—"juice," orsucci concreti—"solidified juice." Ger. Trans.,saffte. The old English translators and mineralogists often use the word juices in the same sense, and we have adopted it. The words "solutions" and "salts" convey a chemical significance not warranted by the state of knowledge in Agricola's time. Instances of the former use of this word may be seen in Barba's "First Book of the Art of Metals," (Trans. Earl Sandwich, London, 1674, p. 2, etc.,) and in Pryce'sMineralogia Cornubiensis(London, 1778, p. 25, 32).

[4]In order that the reader should be able to grasp the author's point of view as to his divisions of the Mineral Kingdom, we introduce here his own statement fromDe Natura Fossilium, (p. 180). It is also desirable to read the footnote on his theory of ore-deposits on pages43to53, and the review ofDe Natura Fossiliumgiven in theAppendix."The subterranean inanimate bodies are divided into two classes, one of which, because it is a fluid or an exhalation, is called by those names, and the other class is called the minerals. Mineral bodies are solidified from particles of the same substance, such as pure gold, each particle of which is gold, or they are of different substances such as lumps which consist of earth, stone, and metal; these latter may be separated into earth, stone and metal, and therefore the first is not a mixture while the last is called a mixture. The first are again divided into simple and compound minerals. The simple minerals are of four classes, namely earths, solidified juices, stones and metals, while the mineral compounds are of many sorts, as I shall explain later."Earth is a simple mineral body which may be kneaded in the hands when moistened, or from which lute is made when it has been wetted. Earth, properly so called, is found enclosed in veins or veinlets, or frequently on the surface in fields and meadows. This definition is a general one. The harder earth, although moistened by water, does not at once become lute, but does turn into lute if it remains in water for some time. There are many species of earths, some of which have names but others are unnamed."Solidified juices are dry and somewhat hard (subdurus) mineral bodies which when moistened with water do not soften but liquefy instead; or if they do soften, they differ greatly from the earths by their unctuousness (pingue) or by the material of which they consist. Although occasionally they have the hardness of stone, yet because they preserve the form and nature which they had when less hard, they can easily be distinguished from the stones. The juices are divided into 'meagre' and unctuous (macer et pinguis). The 'meagre' juices, since they originate from three different substances, are of three species. They are formed from a liquid mixed with earth, or with metal, or with a mineral compound. To the first species belong salt andNitrum(soda); to the second, chrysocolla, verdigris, iron-rust, and azure; to the third, vitriol, alum, and an acrid juice which is unnamed. The first two of these latter are obtained from pyrites, which is numbered amongst the compound minerals. The third of these comes fromCadmia(in this case the cobalt-zinc-arsenic minerals; the acrid juice is probably zinc sulphate). To the unctuous juices belong these species: sulphur, bitumen, realgar and orpiment. Vitriol and alum, although they are somewhat unctuous yet do not burn, and they differ in their origin from the unctuous juices, for the latter are forced out from the earth by heat, whereas the former are produced when pyrites is softened by moisture.[Pg 2]"Stone is a dry and hard mineral body which may either be softened by remaining for a long time in water and be reduced to powder by a fierce fire; or else it does not soften with water but the heat of a great fire liquefies it. To the first species belong those stones which have been solidified by heat, to the second those solidified (literally 'congealed') by cold. These two species of stones are constituted from their own material. However, writers on natural subjects who take into consideration the quantity and quality of stones and their value, divide them into four classes. The first of these has no name of its own but is called in common parlance 'stone': to this class belong loadstone, jasper (or bloodstone) andAetites(geodes?). The second class comprises hard stones, either pellucid or ornamental, with very beautiful and varied colours which sparkle marvellously; they are called gems. The third comprises stones which are only brilliant after they have been polished, and are usually called marble. The fourth are called rocks; they are found in quarries, from which they are hewn out for use in building, and they are cut into various shapes. None of the rocks show colour or take a polish. Few of the stones sparkle; fewer still are transparent. Marble is sometimes only distinguishable from opaque gems by its volume; rock is always distinguishable from stones properly so-called by its volume. Both the stones and the gems are usually to be found in veins and veinlets which traverse the rocks and marble. These four classes, as I have already stated, are divided into many species, which I will explain in their proper place."Metal is a mineral body, by nature either liquid or somewhat hard. The latter may be melted by the heat of the fire, but when it has cooled down again and lost all heat, it becomes hard again and resumes its proper form. In this respect it differs from the stone which melts in the fire, for although the latter regain its hardness, yet it loses its pristine form and properties. Traditionally there are six different kinds of metals, namely gold, silver, copper, iron, tin and lead. There are really others, for quicksilver is a metal, although the Alchemists disagree with us on this subject, and bismuth is also. The ancient Greek writers seem to have been ignorant of bismuth, wherefore Ammonius rightly states that there are many species of metals, animals, and plants which are unknown to us.Stibiumwhen smelted in the crucible and refined has as much right to be regarded as a proper metal as is accorded to lead by writers. If when smelted, a certain portion be added to tin, a bookseller's alloy is produced from which the type is made that is used by those who print books on paper. Each metal has its own form which it preserves when separated from those metals which were mixed with it. Therefore neither electrum norStannumis of itself a real metal, but rather an alloy of two metals. Electrum is an alloy of gold and silver,Stannumof lead and silver (seenote 33, p. 473). And yet if silver be parted from the electrum, then gold remains and not electrum; if silver be taken away fromStannum, then lead remains and notStannum. Whether brass, however, is found as a native metal or not, cannot be ascertained with any surety. We only know of the artificial brass, which consists of copper tinted with the colour of the mineral calamine. And yet if any should be dug up, it would be a proper metal. Black and white copper seem to be different from the red kind. Metal, therefore, is by nature either solid, as I have stated, or fluid, as in the unique case of quicksilver. But enough now concerning the simple kinds."I will now speak of the compounds which are composed of the simple minerals cemented together by nature, and under the word 'compound' I now discuss those mineral bodies which consist of two or three simple minerals. They are likewise mineral substances, but so thoroughly mixed and alloyed that even in the smallest part there is not wanting any substance that is contained in the whole. Only by the force of the fire is it possible to separate one of the simple mineral substances from another; either the third from the other two, or two from the third, if there were three in the same compound. These two, three or more bodies are so completely mixed into one new species that the pristine form of none of these is recognisable."The 'mixed' minerals, which are composed of those same simple minerals, differ from the 'compounds,' in that the simple minerals each preserves its own form so that they can be separated one from the other not only by fire but sometimes by water and sometimes by hand. As these two classes differ so greatly from one another I usually use two different words in order to distinguish one from the other. I am well aware that[Pg 3]Galen calls the metallic earth a compound which is really a mixture, but he who wishes to instruct others should bestow upon each separate thing a definite name."For convenience of reference we may reduce the above to a diagram as follows:1. Fluids and gases.2. Mineral bodiesA. Homogenous bodies(a) Simple mineralsEarthsSolidified juicesStonesMetals(b) Compound mineralsBeing heterogeneous mixtures of (a)B. Mixtures.Being homogenous mixtures of (a)

[4]In order that the reader should be able to grasp the author's point of view as to his divisions of the Mineral Kingdom, we introduce here his own statement fromDe Natura Fossilium, (p. 180). It is also desirable to read the footnote on his theory of ore-deposits on pages43to53, and the review ofDe Natura Fossiliumgiven in theAppendix.

"The subterranean inanimate bodies are divided into two classes, one of which, because it is a fluid or an exhalation, is called by those names, and the other class is called the minerals. Mineral bodies are solidified from particles of the same substance, such as pure gold, each particle of which is gold, or they are of different substances such as lumps which consist of earth, stone, and metal; these latter may be separated into earth, stone and metal, and therefore the first is not a mixture while the last is called a mixture. The first are again divided into simple and compound minerals. The simple minerals are of four classes, namely earths, solidified juices, stones and metals, while the mineral compounds are of many sorts, as I shall explain later.

"Earth is a simple mineral body which may be kneaded in the hands when moistened, or from which lute is made when it has been wetted. Earth, properly so called, is found enclosed in veins or veinlets, or frequently on the surface in fields and meadows. This definition is a general one. The harder earth, although moistened by water, does not at once become lute, but does turn into lute if it remains in water for some time. There are many species of earths, some of which have names but others are unnamed.

"Solidified juices are dry and somewhat hard (subdurus) mineral bodies which when moistened with water do not soften but liquefy instead; or if they do soften, they differ greatly from the earths by their unctuousness (pingue) or by the material of which they consist. Although occasionally they have the hardness of stone, yet because they preserve the form and nature which they had when less hard, they can easily be distinguished from the stones. The juices are divided into 'meagre' and unctuous (macer et pinguis). The 'meagre' juices, since they originate from three different substances, are of three species. They are formed from a liquid mixed with earth, or with metal, or with a mineral compound. To the first species belong salt andNitrum(soda); to the second, chrysocolla, verdigris, iron-rust, and azure; to the third, vitriol, alum, and an acrid juice which is unnamed. The first two of these latter are obtained from pyrites, which is numbered amongst the compound minerals. The third of these comes fromCadmia(in this case the cobalt-zinc-arsenic minerals; the acrid juice is probably zinc sulphate). To the unctuous juices belong these species: sulphur, bitumen, realgar and orpiment. Vitriol and alum, although they are somewhat unctuous yet do not burn, and they differ in their origin from the unctuous juices, for the latter are forced out from the earth by heat, whereas the former are produced when pyrites is softened by moisture.

[Pg 2]"Stone is a dry and hard mineral body which may either be softened by remaining for a long time in water and be reduced to powder by a fierce fire; or else it does not soften with water but the heat of a great fire liquefies it. To the first species belong those stones which have been solidified by heat, to the second those solidified (literally 'congealed') by cold. These two species of stones are constituted from their own material. However, writers on natural subjects who take into consideration the quantity and quality of stones and their value, divide them into four classes. The first of these has no name of its own but is called in common parlance 'stone': to this class belong loadstone, jasper (or bloodstone) andAetites(geodes?). The second class comprises hard stones, either pellucid or ornamental, with very beautiful and varied colours which sparkle marvellously; they are called gems. The third comprises stones which are only brilliant after they have been polished, and are usually called marble. The fourth are called rocks; they are found in quarries, from which they are hewn out for use in building, and they are cut into various shapes. None of the rocks show colour or take a polish. Few of the stones sparkle; fewer still are transparent. Marble is sometimes only distinguishable from opaque gems by its volume; rock is always distinguishable from stones properly so-called by its volume. Both the stones and the gems are usually to be found in veins and veinlets which traverse the rocks and marble. These four classes, as I have already stated, are divided into many species, which I will explain in their proper place.

"Metal is a mineral body, by nature either liquid or somewhat hard. The latter may be melted by the heat of the fire, but when it has cooled down again and lost all heat, it becomes hard again and resumes its proper form. In this respect it differs from the stone which melts in the fire, for although the latter regain its hardness, yet it loses its pristine form and properties. Traditionally there are six different kinds of metals, namely gold, silver, copper, iron, tin and lead. There are really others, for quicksilver is a metal, although the Alchemists disagree with us on this subject, and bismuth is also. The ancient Greek writers seem to have been ignorant of bismuth, wherefore Ammonius rightly states that there are many species of metals, animals, and plants which are unknown to us.Stibiumwhen smelted in the crucible and refined has as much right to be regarded as a proper metal as is accorded to lead by writers. If when smelted, a certain portion be added to tin, a bookseller's alloy is produced from which the type is made that is used by those who print books on paper. Each metal has its own form which it preserves when separated from those metals which were mixed with it. Therefore neither electrum norStannumis of itself a real metal, but rather an alloy of two metals. Electrum is an alloy of gold and silver,Stannumof lead and silver (seenote 33, p. 473). And yet if silver be parted from the electrum, then gold remains and not electrum; if silver be taken away fromStannum, then lead remains and notStannum. Whether brass, however, is found as a native metal or not, cannot be ascertained with any surety. We only know of the artificial brass, which consists of copper tinted with the colour of the mineral calamine. And yet if any should be dug up, it would be a proper metal. Black and white copper seem to be different from the red kind. Metal, therefore, is by nature either solid, as I have stated, or fluid, as in the unique case of quicksilver. But enough now concerning the simple kinds.

"I will now speak of the compounds which are composed of the simple minerals cemented together by nature, and under the word 'compound' I now discuss those mineral bodies which consist of two or three simple minerals. They are likewise mineral substances, but so thoroughly mixed and alloyed that even in the smallest part there is not wanting any substance that is contained in the whole. Only by the force of the fire is it possible to separate one of the simple mineral substances from another; either the third from the other two, or two from the third, if there were three in the same compound. These two, three or more bodies are so completely mixed into one new species that the pristine form of none of these is recognisable.

"The 'mixed' minerals, which are composed of those same simple minerals, differ from the 'compounds,' in that the simple minerals each preserves its own form so that they can be separated one from the other not only by fire but sometimes by water and sometimes by hand. As these two classes differ so greatly from one another I usually use two different words in order to distinguish one from the other. I am well aware that[Pg 3]Galen calls the metallic earth a compound which is really a mixture, but he who wishes to instruct others should bestow upon each separate thing a definite name."

For convenience of reference we may reduce the above to a diagram as follows:

1. Fluids and gases.2. Mineral bodiesA. Homogenous bodies(a) Simple mineralsEarthsSolidified juicesStonesMetals(b) Compound mineralsBeing heterogeneous mixtures of (a)B. Mixtures.Being homogenous mixtures of (a)

[5]Experiendae—"a trial." That actual assaying in its technical sense is meant, is sufficiently evident fromBook VII.

[5]Experiendae—"a trial." That actual assaying in its technical sense is meant, is sufficiently evident fromBook VII.

[6]... plumbum ... candidum ac cinereum vel nigrum. "Lead ... white, or ash-coloured, or black." Agricola himself coined the termplumbum cinereumfor bismuth, no doubt following the Roman term for tin—plumbum candidum. The following passage fromBermannus(p. 439) is of interest, for it appears to be the first description of bismuth, although mention of it occurs in theNützlich Bergbüchlin(seeAppendix B). "Bermannus: I will show you another kind of mineral which is numbered amongst metals, but appears to me to have been unknown to the Ancients; we call itbisemutum.Naevius: Then in your opinion there are more kinds of metals than the seven commonly believed?Bermannus: More, I consider; for this which just now I said we calledbisemutum, cannot correctly be calledplumbum candidum(tin), nornigrum(lead), but is different from both and is a third one.Plumbum candidumis whiter andplumbum nigrumis darker, as you see.Naevius: We see that this is of the colour ofgalena.Ancon: How then canbisemutum, as you call it, be distinguished fromgalena?Bermannus: Easily; when you take it in your hands it stains them with black, unless it is quite hard. The hard kind is not friable likegalena, but can be cut. It is blacker than the kind ofrudissilver which we say is almost the colour of lead, and thus is different from both. Indeed, it not rarely contains some silver. It generally indicates that there is silver beneath the place where it is found, and because of this our miners are accustomed to call it the 'roof of silver.' They are wont to roast this mineral, and from the better part they make metal; from the poorer part they make a pigment of a kind not to be despised."

[6]... plumbum ... candidum ac cinereum vel nigrum. "Lead ... white, or ash-coloured, or black." Agricola himself coined the termplumbum cinereumfor bismuth, no doubt following the Roman term for tin—plumbum candidum. The following passage fromBermannus(p. 439) is of interest, for it appears to be the first description of bismuth, although mention of it occurs in theNützlich Bergbüchlin(seeAppendix B). "Bermannus: I will show you another kind of mineral which is numbered amongst metals, but appears to me to have been unknown to the Ancients; we call itbisemutum.Naevius: Then in your opinion there are more kinds of metals than the seven commonly believed?Bermannus: More, I consider; for this which just now I said we calledbisemutum, cannot correctly be calledplumbum candidum(tin), nornigrum(lead), but is different from both and is a third one.Plumbum candidumis whiter andplumbum nigrumis darker, as you see.Naevius: We see that this is of the colour ofgalena.Ancon: How then canbisemutum, as you call it, be distinguished fromgalena?Bermannus: Easily; when you take it in your hands it stains them with black, unless it is quite hard. The hard kind is not friable likegalena, but can be cut. It is blacker than the kind ofrudissilver which we say is almost the colour of lead, and thus is different from both. Indeed, it not rarely contains some silver. It generally indicates that there is silver beneath the place where it is found, and because of this our miners are accustomed to call it the 'roof of silver.' They are wont to roast this mineral, and from the better part they make metal; from the poorer part they make a pigment of a kind not to be despised."

[7]Nitrum.The Ancients comprised many salts under this head, but Agricola in the main uses it for soda, although sometimes he includes potash. He usually, however, refers to potash aslixiviumor salt therefrom, and by other distinctive terms. For description of method of manufacture and discussion, see Book XII., p.558.

[7]Nitrum.The Ancients comprised many salts under this head, but Agricola in the main uses it for soda, although sometimes he includes potash. He usually, however, refers to potash aslixiviumor salt therefrom, and by other distinctive terms. For description of method of manufacture and discussion, see Book XII., p.558.

[8]Atramentum sutorium—"Shoemaker's blacking." See p.572for description of method of manufacture and historical footnote. In the main Agricola means green vitriol, but he does describe three main varieties, green, blue, and white (De Natura Fossilium, p. 219). The blue was of course copper sulphate, and it is fairly certain that the white was zinc vitriol.

[8]Atramentum sutorium—"Shoemaker's blacking." See p.572for description of method of manufacture and historical footnote. In the main Agricola means green vitriol, but he does describe three main varieties, green, blue, and white (De Natura Fossilium, p. 219). The blue was of course copper sulphate, and it is fairly certain that the white was zinc vitriol.

[Pg 4][9]Lavandi—"Washing." By this term the author includes all the operations of sluicing, buddling, and wet concentration generally. There is no English equivalent of such wide application, and there is some difficulty in interpretation without going further than the author intends.Book VIII.is devoted to the subject.

[Pg 4][9]Lavandi—"Washing." By this term the author includes all the operations of sluicing, buddling, and wet concentration generally. There is no English equivalent of such wide application, and there is some difficulty in interpretation without going further than the author intends.Book VIII.is devoted to the subject.

[Pg 5][10]Operam et oleum perdit—"loss of labour and oil."

[Pg 5][10]Operam et oleum perdit—"loss of labour and oil."

[11]InVeteribus et Novis Metallis, andBermannus, Agricola states that the mines of Schemnitz were worked 800 years before that time (1530), or about 750A.D., and, further,[Pg 6]that the lead mines of Goslar in the Hartz were worked by Otho the Great (936-973), and that the silver mines at Freiberg were discovered during the rule of Prince Otho (about 1170). To continue the argument to-day we could add about 360 years more of life to the mines of Goslar and Freiberg. See alsoNote 16, p. 36, andnote 19, p. 37.

[11]InVeteribus et Novis Metallis, andBermannus, Agricola states that the mines of Schemnitz were worked 800 years before that time (1530), or about 750A.D., and, further,[Pg 6]that the lead mines of Goslar in the Hartz were worked by Otho the Great (936-973), and that the silver mines at Freiberg were discovered during the rule of Prince Otho (about 1170). To continue the argument to-day we could add about 360 years more of life to the mines of Goslar and Freiberg. See alsoNote 16, p. 36, andnote 19, p. 37.

[12]Xenophon. Essay on the Revenues of Athens,I., 5.

[12]Xenophon. Essay on the Revenues of Athens,I., 5.

[Pg 7][13]Ovid,Metamorphoses,I., 137 to 143.

[Pg 7][13]Ovid,Metamorphoses,I., 137 to 143.

[14]Diogenes Laertius,II., 5. The lines are assigned, however, to Philemon, not Euripides. (Kock,Comicorum Atticorum FragmentaII., 512).

[14]Diogenes Laertius,II., 5. The lines are assigned, however, to Philemon, not Euripides. (Kock,Comicorum Atticorum FragmentaII., 512).

[15]We have not considered it of sufficient interest to cite the references to all of the minor poets and those whose preserved works are but fragmentary. The translations from the Greek into Latin are not literal and suffer again by rendering into English; we have however considered it our duty to translate Agricola's view of the meaning.

[15]We have not considered it of sufficient interest to cite the references to all of the minor poets and those whose preserved works are but fragmentary. The translations from the Greek into Latin are not literal and suffer again by rendering into English; we have however considered it our duty to translate Agricola's view of the meaning.

[Pg 9][16]Diogenes Laertius,II.

[Pg 9][16]Diogenes Laertius,II.

[Pg 10][17]An inspection of the historical incidents mentioned here and further on, indicates that Agricola relied for such information on Diogenes Laertius, Plutarch, Livy, Valerius Maximus, Pliny, and often enough on Homer, Horace, and Virgil.

[Pg 10][17]An inspection of the historical incidents mentioned here and further on, indicates that Agricola relied for such information on Diogenes Laertius, Plutarch, Livy, Valerius Maximus, Pliny, and often enough on Homer, Horace, and Virgil.

[18]Juvenal.SatiresI., l. 112, andVI., l. 298.

[18]Juvenal.SatiresI., l. 112, andVI., l. 298.

[Pg 11][19]Pliny,XXXIV., 39.

[Pg 11][19]Pliny,XXXIV., 39.

[20]Horace.Odes,I., 35, ll. 17-20.

[20]Horace.Odes,I., 35, ll. 17-20.

[Pg 15][21]Horace.Satires,II., 3, ll. 99-102.

[Pg 15][21]Horace.Satires,II., 3, ll. 99-102.

[Pg 16][22]Virgil.Æneid,III., l. 55, andI., l. 349.

[Pg 16][22]Virgil.Æneid,III., l. 55, andI., l. 349.

[Pg 17][23]Horace.Satires,I., l. 73; and Epistle,I., 10, l. 47.

[Pg 17][23]Horace.Satires,I., l. 73; and Epistle,I., 10, l. 47.

[Pg 18][25]Theognis. Maxims,II., l. 210.

[Pg 18][25]Theognis. Maxims,II., l. 210.

[Pg 19][26]Pindar.Olymp.II., 58-60.

[Pg 19][26]Pindar.Olymp.II., 58-60.

[27]Antiphanes, 4.

[27]Antiphanes, 4.

[Pg 22][28]Jurati Venditores—"Sworn brokers." (?)

[Pg 22][28]Jurati Venditores—"Sworn brokers." (?)

[Pg 23][29]There is no doubt that Thucydides had some connection with gold mines; he himself is the authority for the statement that he worked mines in Thrace. Agricola seems to have obtained his idea that Thucydides held an appointment from the Athenians in charge of mines in Thasos, from Marcellinus (Vita, Thucydides, 30), who also says that Thucydides obtained possession of mines in Thrace through his marriage with a Thracian woman, and that it was while residing on the mines at Scapte-Hyle that he wrote his history. Later scholars, however, find little warrant for these assertions. The gold mines of Thasos—an island off the mainland of Thrace—are frequently mentioned by the ancient authors. Herodotus,VI., 46-47, says:—"Their (the Thasians') revenue was derived partly from their possessions upon the mainland, partly from the mines which they owned. They were masters of the gold mines of Scapte-Hyle, the yearly produce of which amounted to eighty talents. Their mines in Thasos yielded less, but still were so prolific that besides being entirely free from land-tax they had a surplus of income derived from the two sources of their territory on the mainland and their mines, in common years two hundred and in best years three hundred talents. I myself have seen the mines in question. By far the most curious of them are those which the Phoenicians discovered at the time when they went with Thasos and colonized the island, which took its name from him.[Pg 24]These Phoenician workings are in Thasos itself, between Coenyra and a place called Aenyra over against Samothrace; a high mountain has been turned upside down in the search for ores." (Rawlinson's Trans.). The occasion of this statement of Herodotus was the relations of the Thasians with Darius (521-486B.C.). The date of the Phoenician colonization of Thasos is highly nebular—anywhere from 1200 to 900B.C.

[Pg 23][29]There is no doubt that Thucydides had some connection with gold mines; he himself is the authority for the statement that he worked mines in Thrace. Agricola seems to have obtained his idea that Thucydides held an appointment from the Athenians in charge of mines in Thasos, from Marcellinus (Vita, Thucydides, 30), who also says that Thucydides obtained possession of mines in Thrace through his marriage with a Thracian woman, and that it was while residing on the mines at Scapte-Hyle that he wrote his history. Later scholars, however, find little warrant for these assertions. The gold mines of Thasos—an island off the mainland of Thrace—are frequently mentioned by the ancient authors. Herodotus,VI., 46-47, says:—"Their (the Thasians') revenue was derived partly from their possessions upon the mainland, partly from the mines which they owned. They were masters of the gold mines of Scapte-Hyle, the yearly produce of which amounted to eighty talents. Their mines in Thasos yielded less, but still were so prolific that besides being entirely free from land-tax they had a surplus of income derived from the two sources of their territory on the mainland and their mines, in common years two hundred and in best years three hundred talents. I myself have seen the mines in question. By far the most curious of them are those which the Phoenicians discovered at the time when they went with Thasos and colonized the island, which took its name from him.[Pg 24]These Phoenician workings are in Thasos itself, between Coenyra and a place called Aenyra over against Samothrace; a high mountain has been turned upside down in the search for ores." (Rawlinson's Trans.). The occasion of this statement of Herodotus was the relations of the Thasians with Darius (521-486B.C.). The date of the Phoenician colonization of Thasos is highly nebular—anywhere from 1200 to 900B.C.

[30]Agricola,De Veteribus et Novis Metallis, BookI., p. 392, says:—"Conrad, whose nickname in former years was 'pauper,' suddenly became rich from the silver mines of Mount Jura, known as theFirstum." He was ennobled with the title of Graf Cuntz von Glück by the Emperor Maximilian (who was Emperor of the Holy Roman Empire, 1493-1519). Conrad was originally a working miner at Schneeberg where he was known as Armer Cuntz (poor Cuntz or Conrad) and grew wealthy from the mines of Fürst in Leberthal. This district is located in the Vosges Mountains on the borders of Lorraine and Upper Alsace. The story of Cuntz or Conrad von Glück is mentioned by Albinus (Meissnische Land und Berg Chronica, Dresden, 1589, p. 116), Mathesius (Sarepta, Nuremberg, 1578, fol.XVI.), and by others.

[30]Agricola,De Veteribus et Novis Metallis, BookI., p. 392, says:—"Conrad, whose nickname in former years was 'pauper,' suddenly became rich from the silver mines of Mount Jura, known as theFirstum." He was ennobled with the title of Graf Cuntz von Glück by the Emperor Maximilian (who was Emperor of the Holy Roman Empire, 1493-1519). Conrad was originally a working miner at Schneeberg where he was known as Armer Cuntz (poor Cuntz or Conrad) and grew wealthy from the mines of Fürst in Leberthal. This district is located in the Vosges Mountains on the borders of Lorraine and Upper Alsace. The story of Cuntz or Conrad von Glück is mentioned by Albinus (Meissnische Land und Berg Chronica, Dresden, 1589, p. 116), Mathesius (Sarepta, Nuremberg, 1578, fol.XVI.), and by others.

[31]Vladislaus III. was King of Poland, 1434-44, and also became King of Hungary in 1440. Tursius seems to be a Latinized name and cannot be identified.

[31]Vladislaus III. was King of Poland, 1434-44, and also became King of Hungary in 1440. Tursius seems to be a Latinized name and cannot be identified.

Q

ualities which the perfect miner should possess and the arguments which are urged for and against the arts of mining and metallurgy, as well as the people occupied in the industry, I have sufficiently discussed in the first Book. Now I have determined to give more ample information concerning the miners.

In the first place, it is indispensable that they should worship God with reverence, and that they understand the matters of which I am going to speak, and that they take good care that each individual performs his duties efficiently and diligently. It is decreed by Divine Providence that those who know what they ought to do and then take care to do it properly, for the most part meet with good fortune in all they undertake; on the other hand, misfortune overtakes the indolent and those who are careless in their work. No person indeed can, without great and sustained effort and labour, store in his mind the knowledge of every portion of the metallic arts which are involved in operating mines. If a man has the means of paying the necessary expense, he hires as many men as he needs, and sends them to the various works. Thus formerly Sosias, the Thracian, sent into the silver mines a thousand slaves whom he had hired from the Athenian Nicias, the son of Niceratus[1]. But if a man cannot afford the expenditure he chooses of the various kinds of mining that work which he himself can most easily and efficiently do. Of these kinds, the two most important are the making prospect trenches and the washing of the sands of rivers, for out of these sands are often collected gold dust, or certain black stones from which tin is smelted, or even gems are sometimes found in them; the trenching occasionally lays bare at the grass-roots veins which are found rich in metals. If therefore by skill or by luck, such sands or veins shall fall into his hands, he will be able to establish his fortune without expenditure, and from poverty rise to wealth. If on the contrary, his hopes are not realized, then he can desist from washing or digging.

When anyone, in an endeavour to increase his fortune, meets the expenditure of a mine alone, it is of great importance that he should attend to his works and personally superintend everything that he has ordered to be done. For this reason, he should either have his dwelling at the mine,where he may always be in sight of the workmen and always take care that none neglect their duties, or else he should live in the neighbourhood, so that he may frequently inspect his mining works. Then he may send word by a messenger to the workmen that he is coming more frequently than he really intends to come, and so either by his arrival or by the intimation of it, he so frightens the workmen that none of them perform their duties otherwise than diligently. When he inspects the mines he should praise the diligent workmen and occasionally give them rewards, that they and the others may become more zealous in their duties; on the other hand, he should rebuke the idle and discharge some of them from the mines and substitute industrious men in their places. Indeed, the owner should frequently remain for days and nights in the mine, which, in truth, is no habitation for the idle and luxurious; it is important that the owner who is diligent in increasing his wealth, should frequently himself descend into the mine, and devote some time to the study of the nature of the veins and stringers, and should observe and consider all the methods of working, both inside and outside the mine. Nor is this all he ought to do, for sometimes he should undertake actual labour, not thereby demeaning himself, but in order to encourage his workmen by his own diligence, and to teach them their art; for that mine is well conducted in which not only the foreman, but also the owner himself, gives instruction as to what ought to be done. A certain barbarian, according to Xenophon, rightly remarked to the King of Persia that "the eye of the master feeds the horse,"[2]for the master's watchfulness in all things is of the utmost importance.

When several share together the expenditure on a mine, it is convenient and useful to elect from amongst their own number a mine captain, and also a foreman. For, since men often look after their own interests but neglect those of others, they cannot in this case take care of their own without at the same time looking after the interests of the others, neither can they neglect the interests of the others without neglecting their own. But if no man amongst them be willing or able to undertake and sustain the burdens of these offices, it will be to the common interest to place them in the hands of most diligent men. Formerly indeed, these things were looked after by the mining prefect[3], because the owners were kings, as Priam, who owned the gold mines round Abydos, or as Midas, who was the owner of those situated in Mount Bermius, or as Gyges, or as Alyattes, or as Crœsus, who was the owner of those mines near a deserted town between Atarnea and Pergamum[4]; sometimes the mines belonged to a Republic, as, forinstance, the prosperous silver mines in Spain which belonged to Carthage[5]; sometimes they were the property of great and illustrious families, as were the Athenian mines in Mount Laurion[6].

When a man owns mines but is ignorant of the art of mining, then it is advisable that he should share in common with others the expenses, not of one only, but of several mines. When one man alone meets the expense for a long time of a whole mine, if good fortune bestows on him a vein abundant in metals, or in other products, he becomes very wealthy; if, on the contrary, the mine is poor and barren, in time he will lose everything which he has expended on it. But the man who, in common with others, has laid out his money on several mines in a region renowned for its wealth of metals, rarely spends it in vain, for fortune usually responds to his hopes in part. For when out of twelve veins in which he has a joint interestone yields an abundance of metals, it not only gives back to the owner the money he has spent, but also gives a profit besides; certainly there will be for him rich and profitable mining, if of the whole number, three, or four, or more veins should yield metal. Very similar to this is the advice which Xenophon gave to the Athenians when they wished to prospect for new veins of silver without suffering loss. "There are," he said, "ten tribes of Athenians; if, therefore, the State assigned an equal number of slaves to each tribe, and the tribes participated equally in all the new veins, undoubtedly by this method, if a rich vein of silver were found by one tribe, whatever profit were made from it would assuredly be shared by the whole number. And if two, three, or four tribes, or even half the whole number find veins, their works would then become more profitable; and it is not probable that the work of all the tribes will be disappointing."[7]Although this advice of Xenophon is full of prudence, there is no opportunity for it except in free and wealthy States; for those people who are under the authority of kings and princes, or are kept in subjection by tyranny, do not dare, without permission, to incur such expenditure; those who are endowed with little wealth and resources cannot do so on account of insufficient funds. Moreover, amongst our race it is not customary for Republics to have slaves whom they can hire out for the benefit of the people[8]; but, instead, nowadays those who are in authority administer the funds for mining in the name of the State, not unlike private individuals.

Some owners prefer to buy shares[9]in mines abounding in metals, rather than to be troubled themselves to search for the veins; these men employ an easier and less uncertain method of increasing their property. Although their hopes in the shares of one or another mine may be frustrated, the buyers of shares should not abandon the rest of the mines, for all the money expended will be recovered with interest from some other mine. They should not buy only high priced shares in those mines producing metals, nor should they buy too many in neighbouring mines where metal has not yet been found, lest, should fortune not respond, they may be exhausted by their losses and have nothing with which they may meet their expenses or buy other shares which may replace their losses. This calamity overtakes those who wish to grow suddenly rich from mines, and instead, they become very much poorer than before. So then, in the buying of shares, as in other matters, there should be a certain limit of expenditure which miners should set themselves, lest blinded by the desire for excessive wealth, they throw all their money away. Moreover, a prudent owner, before he buys shares, ought to go to the mine and carefully examine the nature of the vein, for it is very important that he should be on his guard lest fraudulent sellers of shares should deceive him. Investors in shares may perhaps become less wealthy, but they are more certain of some gain than those who mine for metals at their own expense, as they are more cautious in trusting to fortune. Neither ought miners to be altogether distrustful of fortune, as we see some are, who as soon as the shares of any mine begin to go up invalue, sell them, on which account they seldom obtain even moderate wealth. There are some people who wash over the dumps from exhausted and abandoned mines, and those dumps which are derived from the drains of tunnels; and others who smelt the old slags; from all of which they make an ample return.

Now a miner, before he begins to mine the veins, must consider seven things, namely:—the situation, the conditions, the water, the roads, the climate, the right of ownership, and the neighbours. There are four kinds of situations—mountain, hill, valley, and plain. Of these four, the first two are the most easily mined, because in them tunnels can be driven to drain off the water, which often makes mining operations very laborious, if it does not stop them altogether. The last two kinds of ground are more troublesome, especially because tunnels cannot be driven in such places. Nevertheless, a prudent miner considers all these four sorts of localities in the region in which he happens to be, and he searches for veins in those places where some torrent or other agency has removed and swept the soil away; yet he need not prospect everywhere, but since there is a great variety, both in mountains and in the three other kinds of localities, he always selects from them those which will give him the best chance of obtaining wealth.

In the first place, mountains differ greatly in position, some being situated in even and level plains, while others are found in broken and elevated regions, and others again seem to be piled up, one mountain upon another. The wise miner does not mine in mountains which are situated on open plains, neither does he dig in those which are placed on the summits of mountainous regions, unless by some chance the veins in those mountains have been denuded of their surface covering, and abounding in metals and other products, are exposed plainly to his notice,—for with regard to what I have already said more than once, and though I never repeat it again, I wish to emphasize this exception as to the localities which should not be selected. All districts do not possess a great number of mountains crowded together; some have but one, others two, others three, or perhaps a few more. In some places there are plains lying between them; in others the mountains are joined together or separated only by narrow valleys. The miner should not dig in those solitary mountains, dispersed through the plains and open regions, but only in those which are connected and joined with others. Then again, since mountains differ in size, some being very large, others of medium height, and others more like hills than mountains, the miner rarely digs in the largest or the smallest of them, but generally only in those of medium size. Moreover, mountains have a great variety of shapes; for with some the slopes rise gradually, while others, on the contrary, are all precipitous; in some others the slopes are gradual on one side, and on the other sides precipitous; some are drawn out in length; some are gently curved; others assume different shapes. But the miner may dig in all parts of them, except where there are precipices, and he should not neglect even these latter if metallic veinsare exposed before his eyes. There are just as great differences in hills as there are in mountains, yet the miner does not dig except in those situated in mountainous districts, and even very rarely in those. It is however very little to be wondered at that the hill in the Island of Lemnos was excavated, for the whole is of a reddish-yellow colour, which furnishes for the inhabitants that valuable clay so especially beneficial to mankind[10]. In like manner, other hills are excavated if chalk or other varieties of earth are exposed, but these are not prospected for.

There are likewise many varieties of valleys and plains. One kind is enclosed on the sides with its outlet and entrance open; another has either its entrance or its outlet open and the rest of it is closed in; both of these are properly called valleys. There is a third variety which is surrounded on all sides by mountains, and these are calledconvalles. Some valleys again, have recesses, and others have none; one is wide, another narrow; one is long, another short; yet another kind is not higher than the neighbouring plain, and others are lower than the surrounding flat country. But the miner does not dig in those surrounded on all sides by mountains, nor in those that are open, unless there be a low plain close at hand, or unless a vein of metal descending from the mountains should extend into the valley. Plains differ from one another, one being situated at low elevation, and others higher, one being level and another with a slight incline. The miner should never excavate the low-lying plain, nor one which is perfectly level, unless it be in some mountain, and rarely should he mine in the other kinds of plains.

With regard to the conditions of the locality the miner should not contemplate mining without considering whether the place be covered with trees or is bare. If it be a wooded place, he who digs there has this advantage, besides others, that there will be an abundant supply of wood for his underground timbering, his machinery, buildings, smelting, and other necessities. If there is no forest he should not mine there unless there is a river near, by which he can carry down the timber. Yet wherever there is a hope that pure gold or gems may be found, the ground can be turned up, even though there is no forest, because the gems need only to be polished and the gold to be purified. Therefore the inhabitants of hot regions obtain these substances from rough and sandy places, where sometimes there are not even shrubs, much less woods.

The miner should next consider the locality, as to whether it has a perpetual supply of running water, or whether it is always devoid of water except when a torrent supplied by rains flows down from the summits of the mountains. The place that Nature has provided with a river or stream canbe made serviceable for many things; for water will never be wanting and can be carried through wooden pipes to baths in dwelling-houses; it may be carried to the works, where the metals are smelted; and finally, if the conditions of the place will allow it, the water can be diverted into the tunnels, so that it may turn the underground machinery. Yet on the other hand, to convey a constant supply of water by artificial means to mines where Nature has denied it access, or to convey the ore to the stream, increases the expense greatly, in proportion to the distance the mines are away from the river.

The miner also should consider whether the roads from the neighbouring regions to the mines are good or bad, short or long. For since a region which is abundant in mining products very often yields no agricultural produce, and the necessaries of life for the workmen and others must all be imported, a bad and long road occasions much loss and trouble with porters and carriers, and this increases the cost of goods brought in, which, therefore, must be sold at high prices. This injures not so much the workmen as the masters; since on account of the high price of goods, the workmen are not content with the wages customary for their labour, nor can they be, and they ask higher pay from the owners. And if the owners refuse, the men will not work any longer in the mines but will go elsewhere. Although districts which yield metals and other mineral products are generally healthy, because, being often situated on high and lofty ground, they are fanned by every wind, yet sometimes they are unhealthy, as has been related in my other book, which is called "De Natura Eorum Quae Effluunt ex Terra." Therefore, a wise miner does not mine in such places, even if they are very productive, when he perceives unmistakable signs of pestilence. For if a man mines in an unhealthy region he may be alive one hour and dead the next.

Then, the miner should make careful and thorough investigation concerning the lord of the locality, whether he be a just and good man or a tyrant, for the latter oppresses men by force of his authority, and seizes their possessions for himself; but the former governs justly and lawfully and serves the common good. The miner should not start mining operations in a district which is oppressed by a tyrant, but should carefully consider if in the vicinity there is any other locality suitable for mining and make up his mind if the overlord there be friendly or inimical. If he be inimical the mine will be rendered unsafe through hostile attacks, in one of which all of the gold or silver, or other mineral products, laboriously collected with much cost, will be taken away from the owner and his workmen will be struck with terror; overcome by fear, they will hastily fly, to free themselves from the danger to which they are exposed. In this case, not only are the fortunes of the miner in the greatest peril but his very life is in jeopardy, for which reason he should not mine in such places.

Since several miners usually come to mine the veins in one locality, a settlement generally springs up, for the miner who began first cannot keep it exclusively for himself. TheBergmeistergives permits to some to minethe superior and some the inferior parts of the veins; to some he gives the cross veins, to others the inclined veins. If the man who first starts work finds the vein to be metal-bearing or yielding other mining products, it will not be to his advantage to cease work because the neighbourhood may be evil, but he will guard and defend his rights both by arms and by the law. When theBergmeister[11]delimits the boundaries of each owner, it is the duty of a good miner to keep within his bounds, and of a prudent one to repel encroachments of his neighbours by the help of the law. But this is enough about the neighbourhood.

The miner should try to obtain a mine, to which access is not difficult, in a mountainous region, gently sloping, wooded, healthy, safe, and not far distant from a river or stream by means of which he may convey his mining products to be washed and smelted. This indeed, is the best position. As for the others, the nearer they approximate to this position the better they are; the further removed, the worse.

Now I will discuss that kind of minerals for which it is not necessary to dig, because the force of water carries them out of the veins. Of these there are two kinds, minerals—and their fragments[12]—and juices. When there are springs at the outcrop of the veins from which, as I have already said, the above-mentioned products are emitted, the miner should consider these first, to see whether there are metals or gems mixed with the sand, or whether the waters discharged are filled with juices. In case metals or gems have settled in the pool of the spring, not only should the sand from it be washed, but also that from the streams which flow from these springs, and even from the river itself into which they again discharge. If the springs discharge water containing some juice, this also should be collected; the further such a stream has flowed from the source, the more it receives plain water and the more diluted does it become, and so much the more deficient in strength. If the stream receives no water of another kind, or scarcely any, not only the rivers, but likewise the lakes which receive these waters, are of the same nature as the springs, and serve the same uses; of this kind is the lake which the Hebrews call the Dead Sea, and which is quite full of bituminous fluids[13]. But I must return to the subject of the sands.

Springs may discharge their waters into a sea, a lake, a marsh, a river, or a stream; but the sand of the sea-shore is rarely washed, for although the water flowing down from the springs into the sea carries some metals or gems with it, yet these substances can scarcely ever be reclaimed, because they are dispersed through the immense body of waters and mixed up withother sand, and scattered far and wide in different directions, or they sink down into the depths of the sea. For the same reasons, the sands of lakes can very rarely be washed successfully, even though the streams rising from the mountains pour their whole volume of water into them. The particles of metals and gems from the springs are very rarely carried into the marshes, which are generally in level and open places. Therefore, the miner, in the first place, washes the sand of the spring, then of the stream which flows from it, then finally, that of the river into which the stream discharges. It is not worth the trouble to wash the sands of a large river which is on a level plain at a distance from the mountains. Where several springs carrying metals discharge their waters into one river, there is more hope of productive results from washing. The miner does not neglect even the sands of the streams in which excavated ores have been washed.

The waters of springs taste according to the juice they contain, and they differ greatly in this respect. There are six kinds of these tastes which the worker[14]especially observes and examines; there is the salty kind, which shows that salt may be obtained by evaporation; the nitrous, which indicates soda; the aluminous kind, which indicates alum; the vitrioline, which indicates vitriol; the sulphurous kind, which indicates sulphur; and as for the bituminous juice, out of which bitumen is melted down, the colour itself proclaims it to the worker who is evaporating it. The sea-water however, is similar to that of salt springs, and may be drawn into low-lying pits, and, evaporated by the heat of the sun, changes of itself into salt; similarly the water of some salt-lakes turns to salt when dried by the heat of summer. Therefore an industrious and diligent man observes and makes use of these things and thus contributes something to the common welfare.

The strength of the sea condenses the liquid bitumen which flows into it from hidden springs, into amber and jet, as I have described already in my books "De Subterraneorum Ortu et Causis"[15]. The sea, with certaindirections of the wind, throws both these substances on shore, and for this reason the search for amber demands as much care as does that for coral.

Moreover, it is necessary that those who wash the sand or evaporate the water from the springs, should be careful to learn the nature of the locality, its roads, its salubrity, its overlord, and the neighbours, lest on account of difficulties in the conduct of their business they become either impoverished by exhaustive expenditure, or their goods and lives are imperilled. But enough about this.

The miner, after he has selected out of many places one particular spot adapted by Nature for mining, bestows much labour and attention on the veins. These have either been stripped bare of their covering by chance and thus lie exposed to our view, or lying deeply hidden and concealed they are found after close search; the latter is more usual, the former more rarely happens, and both of these occurrences must be explained. There is more than one force which can lay bare the veins unaided by the industry or toil of man; since either a torrent might strip off the surface, which happened in the case of the silver mines of Freiberg (concerning which I havewritten in Book I. of my work "De Veteribus et Novis Metallis")[16]; or they may be exposed through the force of the wind, when it uproots and destroys the trees which have grown over the veins; or by the breaking away of the rocks; or by long-continued heavy rains tearing away the mountain; or by an earthquake; or by a lightning flash; or by a snowslide; or by the violence of the winds: "Of such a nature are the rocks hurled down from the mountains by the force of the winds aided by the ravages of time." Or the plough may uncover the veins, for Justin relates in his history that nuggets of gold had been turned up in Galicia by the plough; or this may occur through a fire in the forest, as Diodorus Siculus tells us happened in the silver mines in Spain; and that saying of Posidonius is appropriate enough: "The earth violently moved by the fires consuming the forest sends forth new products, namely, gold and silver."[17]And indeed, Lucretius has explained the same thing more fully in the following lines: "Copper and gold and iron were discovered, and at the same time weighty silver and the substance of lead, when fire had burned up vast forests on the great hills, either by a discharge of heaven's lightning, or else because, when men were waging war with one another, forest fires had carried fire among the enemy in order to strike terror to them, or because, attracted by the goodness of the soil, they wished to clear rich fields and bring the country into pasture, or else to destroy wild beasts and enrich themselves with the game; for hunting with pitfalls and with fire came into use before the practice of enclosing the wood with toils and rousing the game with dogs. Whatever the fact is, fromwhatever cause the heat of flame had swallowed up the forests with a frightful crackling from their very roots, and had thoroughly baked the earth with fire, there would run from the boiling veins and collect into the hollows of the grounds a stream of silver and gold, as well as of copper and lead."[18]But yet the poet considers that the veins are not laid bare in the first instance so much by this kind of fire, but rather that all mining had its origin in this. And lastly, some other force may by chance disclose the veins, for a horse, if this tale can be believed, disclosed the lead veins at Goslar by a blow from his hoof[19]. By such methods as these does fortune disclose the veins to us.

But by skill we can also investigate hidden and concealed veins, by observing in the first place the bubbling waters of springs, which cannot be very far distant from the veins because the source of the water is from them; secondly, by examining the fragments of the veins which the torrents break off from the earth, for after a long time some of these fragments are again buried in the ground. Fragments of this kind lying about on the ground, if they are rubbed smooth, are a long distance from the veins, because the torrent, which broke them from the vein, polished them while it rolled them a long distance; but if they are fixed in the ground, or if they are rough, they are nearer to the veins. The soil also should be considered, for this is often the cause of veins being buried more or less deeply under the earth; in this case the fragments protrude more or less widely apart, and miners are wont to call the veins discovered in this manner "fragmenta."[20]

Further, we search for the veins by observing the hoar-frosts, which whiten all herbage except that growing over the veins, because the veins emit a warm and dry exhalation which hinders the freezing of the moisture, for which reason such plants appear rather wet than whitened by the frost. This may be observed in all cold places before the grass has grown to its full size, as in the months of April and May; or when the late crop ofhay, which is called thecordum, is cut with scythes in the month of September. Therefore in places where the grass has a dampness that is not congealed into frost, there is a vein beneath; also if the exhalation be excessively hot, the soil will produce only small and pale-coloured plants. Lastly, there are trees whose foliage in spring-time has a bluish or leaden tint, the upper branches more especially being tinged with black or with any other unnatural colour, the trunks cleft in two, and the branches black or discoloured. These phenomena are caused by the intensely hot and dry exhalations which do not spare even the roots, but scorching them, render the trees sickly; wherefore the wind will more frequently uproot trees of this kind than any others. Verily the veins do emit this exhalation. Therefore, in a place where there is a multitude of trees, if a long row of them at an unusual time lose their verdure and become black or discoloured, and frequently fall by the violence of the wind, beneath this spot there is a vein. Likewise along a course where a vein extends, there grows a certain herb or fungus which is absent from the adjacent space, or sometimes even from the neighbourhood of the veins. By these signs of Nature a vein can be discovered.

There are many great contentions between miners concerning the forked twig[21], for some say that it is of the greatest use in discovering veins, and others deny it. Some of those who manipulate and use the twig, first cut a fork from a hazel bush with a knife, for this bush they consider more efficacious than any other for revealing the veins, especially if the hazelbush grows above a vein. Others use a different kind of twig for each metal, when they are seeking to discover the veins, for they employ hazel twigs for veins of silver; ash twigs for copper; pitch pine for lead and especially tin, and rods made of iron and steel for gold. All alike grasp the forks of the twig with their hands, clenching their fists, it being necessary that the clenched fingers should be held toward the sky in order that the twig should be raised at that end where the two branches meet. Then they wander hither and thither at random through mountainous regions. It is said that the moment they place their feet on a vein the twig immediately turns and twists, and so by its action discloses the vein; when they move their feet again and go away from that spot the twig becomes once more immobile.

The truth is, they assert, the movement of the twig is caused by the power of the veins, and sometimes this is so great that the branches of trees growing near a vein are deflected toward it. On the other hand, those who say that the twig is of no use to good and serious men, also deny that the motion is due to the power of the veins, because the twigs will not move for everybody, but only for those who employ incantations and craft. Moreover, they deny the power of a vein to draw to itself the branches of trees, but they say that the warm and dry exhalations cause these contortions. Those who advocate the use of the twig make this reply to these objections: when one of the miners or some other person holds the twig in his hands, and it is not turned by the force of a vein, this is due to some peculiarity of the individual, which hinders and impedes the power of the vein, for since the power of the vein in turning and twisting the twig may be not unlike that of a magnet attracting and drawing iron toward itself, this hidden quality of a man weakens and breaks the force, just the same as garlic weakens and overcomes the strength of a magnet. For a magnet smeared with garlic juice cannot attract iron; nor does it attract the latter when rusty. Further, concerning the handling of the twig, they warn us that we should not press the fingers together too lightly, nor clench them too firmly, for if the twig is held lightly they say that it will fall before the force of the vein can turn it; if however, it is grasped too firmly the force of the hands resists the force of the veins and counteracts it. Therefore, they consider that five things are necessary to insure that the twig shall serve its purpose: of these the first is the size of the twig, for the force of the veins cannot turn too large a stick; secondly, there is the shape of the twig, which must be forked or the vein cannot turn it; thirdly, the power of the vein which has the nature to turn it; fourthly, the manipulation of the twig; fifthly, the absence of impeding peculiarities. These advocates of the twig sum up their conclusions as follows: if the rod does not move for everybody, it is due to unskilled manipulation or to the impeding peculiarities of the man which oppose and resist the force of the veins, as we said above, and those who search for veins by means of the twig need not necessarily make incantations, but it is sufficient that they handle it suitably and are devoid of impeding power; therefore, the twig may be of use to good and seriousmen in discovering veins. With regard to deflection of branches of trees they say nothing and adhere to their opinion.


Back to IndexNext