Chapter 15

image: page305.jpg

Staat de maan echter in de noordelijkste of zuidelijkste deelen van haar baan, dan staat het waterei scheef ten opzichte van de aardas; de eene punt strijkt over het Noordelijk, de andere over het Zuidelijk halfrond; de eerste bewerkt op een plaats ter hoogte van Europa een sterken, de andere een veel zwakkeren vloed,nauwelijks hooger dande ebbe. Zoo wordt het begrijpelijk, waarom somtijds de vloed afwisselend sterk en zwak is.

Volgens deze eenvoudige theorie moest nu overal de tijd van hoogwater met den hoogsten en den laagsten stand van de maan samenvallen, dus m.a.w. de haventijd overal 0 uur zijn. Dit is echter niet het geval. Al dadelijk hierom niet, omdat het water wel eene dunne beweeglijke vloeistof is, maar niet zoo licht beweeglijk, dat zijn beweging in het geheel geen weerstand, geen wrijving zou ondervinden. Stellen wij ons voor, dat niet een wateroceaan, maar een hulsel van dikke, taaie olie de aarde omgaf, dan zou deze vloeistof aan de aantrekking van de maan maar moeilijk en langzaam gehoorzamen. Dit is in veel geringer mate ook nu het geval met het water; de vloedgolf blijft bij de maan achter en wordt door haar achter zich aan gesleept; of, anders gezegd, de rondwentelende vaste aarde met de groote watermassa er om heen sleurt, door de taaiheid van het water, de vloedbergen een eindje met zich mee, zoodat zij niet precies onder de maan kunnen blijven staan. Daardoor moet een algemeene, slechts met de diepte der zeeën eenigszins wisselende verlating van de vloedgolf ontstaan.

Maar oneindig veel belangrijker is een andere omstandigheid. Wij hebben tot nog toe aangenomen, dat de aarde overal met water bedekt is. In werkelijkheid liggen groote vastelanden over den aardbol verspreid, die de vloedgolf verhinderen regelmatig voort te loopen. Waar deze tegen een vasteland stoot, moet zij uitwijken, ombuigen, achterblijven, om later in de open zee weer vooruit te schieten. De vastelanden verdeelen het water in eenaantal bekkens, die slechts door nauwe straten verbonden zijn; van een geregeld om de aarde loopende vloedgolf kan dus eigenlijk in het geheel geen sprake zijn.

image: page306.jpg[Illustratie: De vloedgolf in den Atlantischen Oceaan.]

image: page306.jpg[Illustratie: De vloedgolf in den Atlantischen Oceaan.]

In ieder oceaanbekken ontstaat een eigen, uiterst ingewikkelde golf beweging; waar zulk een golf aan den ingang van een zeearm komt, rolt zij daarin voort volgens haar eigen wetten, zonder zich verder om de maan te bekommeren, soms zelfs in oostelijke richting tegen de beweging van de maan in.

Er is al dikwijls geprobeerd, om uit de haventijden van alle mogelijke kustplaatsen op aarde op een kaart weer te geven, hoe de vloedgolf over de oceanen voortloopt, op die manier, dat alle plaatsen op zee, die tegelijkertijd hoogwater hebben, door lijnen met elkaar verbonden worden. Natuurlijk is dat uiterst moeilijk, omdat men alleen gegevens van kustplaatsen heeft; midden in den oceaan is geen peilschaal te plaatsen, en de verstrooide eilanden vullen dit gemis maar gebrekkig aan. Waar deze lijnen ver van de kust af loopen, berusten ze grootendeels op fantasie. Een beeld van deze moeilijkheid kan ons kaartje van de Noordzee geven, waar deze lijnen aan de kusten aangegeven zijn; wie beproeft de lijnen over de open zee te teekenen, zal bemerken, dat dit bijna onmogelijk is. Men heeft wel gemeend, dat ten minste voor de groote oceanen, zooals de Indische en de Stille Oceaan, de vloedgolf vrij regelmatig van het Oosten naar het Westen voortrolde; en zoo vindt men het ook op oude kaarten voorgesteld. Maar in werkelijkheid is de beweging van het water hier oneindig veel gekompliceerder; hier vindt men plaatsen zonder getijwisseling, waar de vloedgolf in een kring omheenloopt; daar vindt men gebieden, waar de geheele watermassa als in een tobbe heen en weer schommelt. Voor den Atlantischen Oceaan is de vloedbeweging nog het best bekend. Uit de Zuidelijke IJszee komt de vloedgolf aanrollen, en loopt door dezen oceaan, die eigenlijk niet meer dan een breede zeestraat is, noordwaarts. Met de maan heeft deze golf dan niets meer te maken; na 12 uren heeft zij de kusten van Senegambië en van Noord-Amerika bereikt, en nog 12 uur later is zij op Spitsbergen gekomen en om Schotland heen en langs Calais in de Noordzee gedrongen. Vindt men dus in Ostende of aan de Schotsche kust een haventijd van 12 uur, d.w.z. dat de vloedgolf tegelijk met de maan komt, dan is deze golf reeds een dag vroeger door de maan veroorzaakt.

Bedenkt men nu, dat de sterkte van de vloedgolf nog weer verandert, al naar zon en maan verder noordelijk of zuidelijk staan, en dat ook de verschillende achter elkaar loopende golven elkaar weer beïnvloeden en doorkruisen, dan beseft men, hoe moeilijk het moet zijn, alleen nog maar het werkelijk verloop der verschijnselen uit de ervaring vast te stellen. En eerst wanneer dat gebeurd is, kan men trachten, dit verloop met den kustvorm en de diepte der zeeën in verband te brengen. Zoo eenvoudig en natuurlijk de verklaring van ebbe en vloed uit de aantrekking van zon en maan in het algemeen is, zoo moeilijk is het, de ingewikkelde bijzonderheden van dit verschijnsel uit de vormen van het aardoppervlak te verklaren.

In de uitdrukking "gewicht van de aarde" ligt eigenlijk een tegenstrijdigheid; want het gewicht van een ding geeft aan, hoe sterk het door de aarde wordt aangetrokken. Toch wordt de uitdrukking algemeen gebruikt, en ieder voelt ook onmiddellijk wat er mee bedoeld wordt:de massa van de aarde. Wij stellen dus de vraag: hoeveel malen is de massa van de aarde grooter dan de massa van een kilogram, b.v. dan de massa van het stuk platina, dat in Parijs als standaard van het kilogramgewicht bewaard wordt? Omdat bij de dingen in onze omgeving het gewicht 10 of 100 keer zoo groot is, wanneer de massa 10 of 100 keer grooter is, zijn wij gewend altijd gewicht te zeggen, wanneer wij massa bedoelen. In dien zin spreken wij dan ook van het gewicht van de aarde, maar wij bedoelen de massa.

De wet van Newton zegt, dat de kracht, waarmede twee voorwerpen elkaar aantrekken, evenredig met de massa van beiden verandert en omgekeerd evenredig met het vierkant van den afstand.Kunnen wij dus nu de kracht berekenen. wanneer wij de beide massa's en hun afstand kennen? Neen, en daarom moet er aan deze wet nog iets toe gevoegd worden. Wij moeten voor één geval, voor twee lichamen met bekende massa's en bekenden afstand, dekracht kennen; door de wet van Newton kennen wij ze dan voor alle andere gevallen. Nu kennen wij de kracht in geval het eene der beide lichamen onze aarde en het andere b.v. een kilogramstuk is, want die kracht is juist het gewicht van het kilogram. Maar in dit geval kennen wij de massa van de aarde niet. Nemen wij daarentegen voor het eene lichaam een zwaar blok van een ton gewicht, dan kennen wij de aantrekkingskracht niet, die het op ons kilogramstuk uitoefent; wij hebben van zulk een aantrekking nooit iets bemerkt, blijkbaar omdat zij haast onmerkbaar klein is. Men ziet, dat beide vragen op hetzelfde neerkomen; men moet òf de aantrekking kennen, die een lichaam van bekende massa uitoefent, òf de massa van een lichaam, waarvan, zooals bij de aarde, de aantrekking bekend is. Beide zijn ook uit elkaar te berekenen; weet men b.v. dat een 100 KG. zware bal op een afstand van 1 M. een lichaam met een kracht aantrekt, die 100 000 maal kleiner dan zijn gewicht is, dan rekenen wij: van het aardmiddelpunt is het lichaam 6 millioen meter, dus 6 millioen keer verder verwijderd dan van den bal, en toch trekt de aarde het nog 100 000 maal sterker aan: op gelijken afstand zou de aarde het dus 6 millioen x 6 millioen x 100 000 keer sterker aantrekken, en de massa van de aarde is dus 6 millioen x 6 millioen x 100 000 keer grooter dan die van den bal van 100 KG.De bepaling van de massa der aarde is dus hetzelfde als de bepaling van de onderlinge aantrekking van twee voorwerpen van bekende massa.

Nu is zelfs de aantrekking van een blok van 100 of 1000 KG. zoo onmerkbaar gering, dat het buitengewoon moeilijk is ze te meten. Men heeft daarom eerst beproefd het vraagstuk op te lossen door de aantrekking van heele bergen te meten. Toen wij de gedaante van de aarde behandelden, hebben wij vermeld, dat het oppervlak van het stilstaande water, als het door kanaaltjes overal door het vaste land geleid werd, niet precies een afgeplatte bol is, maar op onregelmatige wijze soms hooger, soms lager ligt, vooral in de buurt van gebergten. Wij zien nu, wat de oorzaak van deze onregelmatigheden is; de groote bergmassa's trekken alles in hun buurt aan; daardoor moet het schietlood aan beide kanten een beetje scheef naar het gebergte toe hangen, en de waterspiegel, die loodrecht op het schietlood staat, moet in debuurt van het gebergte hooger komen. Ook andere onregelmatigheden van de aardkorst, b.v. bijzonder zware of bijzonder lichte gesteenten, diep onder het aardoppervlak, bewerken zoo een hoogeren of lageren stand van het wateroppervlak.

image: page310.jpg[Illustratie: Aantrekking van een berg.]

image: page310.jpg[Illustratie: Aantrekking van een berg.]

Toen deze aantrekking der bergen in de 18deeeuw opgemerkt werd, begreep men dadelijk, dat zij ons de massa van de aarde kon leeren kennen. In 1774 deed de Engelsche sterrekundige Maskelyne met dit doel nauwkeurige metingen van de poolshoogte op twee plaatsen ten Noorden en ten Zuiden van een alleenstaanden berg in Schotland; en hij vond het verschil inderdaad aanmerkelijk grooter dan het volgens den afstand der beide plaatsen moest zijn. Dit kwam natuurlijk door de aantrekking van den berg; uit de figuur is te zien, dat de richtingen van het schietlood aan beide zijden van den berg veel meer verschillen, dan zonder den berg het geval zou zijn. Uit de afwijking was te zien, hoeveel malen de aantrekking van den berg kleiner is dan die van de aarde; uit de hoogte en den omvang van den berg benevens het gewicht van het gesteente, waaruit hij bestond, kon men de massa van den berg schatten en zoo de massa van de aarde vinden. Natuurlijk blijft de uitkomst ietwat onzeker, daar men niet precies weet, welk gesteente zich diep in het binnenste van den berg bevindt.

In de 19deeeuw werden de instrumenten zooveel nauwkeuriger en fijner, dat het nu niet meer hopeloos scheen, de zwakke aantrekking van een gewoon handelbaar aardsch voorwerp te meten.Allerlei methoden en instrumenten zijn daarvoor gebruikt. Het meest voor de hand liggende is een gewone weegschaal, die natuurlijk buitengewoon gevoelig moet zijn; daarmee hebben Jolly te München, Poynting in Engeland en later nog anderen de massa van de aarde bepaald. Ligt in de beide schalen een gewicht van 1 kilo, dan is de balans in evenwicht; wordt dan een zware metalen bol beurtelings onder het eene en onder het andere gewicht geplaatst, dan wordt dit door de aantrekking van den bol een paar milligram zwaarder, en deze gewichtsvermeerdering werd nauwkeurig gemeten.

image: page311.jpg

Een andere manier, de oudste van alle, is die, welke het eerst door Cavendish in 1797 toegepast werd. Aan een metaaldraad hangt, in het midden opgehangen, een horizontale stang met kleine bollen aan de beide uiteinden. Hangt alles geheel in evenwicht en draait men dan de stang een weinig om den draad als as, dan wordt deze draad iets ineengedraaid, gewrongen, tracht zich te ontwringen en brengt zoo de stang weer in den eersten stand terug. De kracht, waarmee de gewrongen draad de stang weer terug wil draaien, is wel uiterst gering, wat zich in de langzaamheid van de slingeringen heen en weer verraadt. Maar dat komt hier juist van pas; want nu kan de aantrekking van twee zware bollen, die naast de kleine bolletjes gezet worden,zooals de figuur aangeeft, de stang merkbaar uit haar ruststand trekken. Hier wordt dus de aantrekking van een zwaren bol niet onmiddellijk met die van de aarde vergeleken, maar met de uiterst zwakke draaikracht van een gewrongen draad; uit de langzaamheid der slingeringen, die deze kracht bewerkt, kan men afleiden, hoeveel malen zij zwakker is dan de aantrekkingskracht der aarde.

Uit al deze verschillende metingen is nu gevonden, dateen lichaam van100kilo op een afstand van 1 meter een aantrekkingskracht uitoefent, die niet meerbedraagt dan een1500millioenste van de aantrekking der aarde, dus een voorwerp van een kilogram met een kracht van1/1500milligram aantrekt. Als men daarmee de elektrische en magnetische krachten vergelijkt, die kleine voorwerpjes zelfs tegen hun zwaarte in naar boven trekken, dan ziet men, datde algemeene aantrekkingskracht tot de allerzwakste natuurkrachten behoort. Alleen omdat zij van reusachtige wereldlichamen uitgaat, wordt zij tot die machtige beweegkracht, die de loopbanen der wereldbollen beheerscht. Hadden wij haar niet dagelijks als aantrekking van den geweldigen aardbol voor oogen, dan waren wij zeker nooit op de gedachte gekomen, de onmerkbaar kleine wederzijdsche aantrekking van de lichamen in onze omgeving te onderzoeken.

Wij kunnen dezelfde uitkomst ook als massa der aarde uitdrukken. De aarde trekt van uit een afstand van 6360000 meter want zoover is haar middelpunt van ons af: en van uit dien 6360000 maal grooteren afstand trekt zij nog 1500 millioen maal sterker dan het lichaam van 100 Kilo; dus is haar massa 6360000 x 6360000 x 1500 millioen maal grooter dan dit lichaam, dus6 millioen x millioen x millioen x millioenkeer grooter dan de massa van een kilogramstuk. Dit getal drukt dus "het gewicht der aarde" in kilogrammen uit.

Wat hebben wij er nu aan, of wij dit reuzengetal kennen, dat wij niet eens kunnen uitspreken? Wanneer wij het vergelijken met den inhoud van de aarde, kunnen wij er een paar belangrijke gevolgtrekkingen over de innerlijke natuur der aarde uit afleiden. Het gewicht van een lichaam hangt ten eerste van zijn inhoud af, en ten tweede van dedichtheid of het soortelijk gewichtder stof, waaruit het lichaam bestaat. Deze dichtheid, het gewicht van een kubieken decimeter of een liter van de stof, drukt uit, hoeveel malen zij zwaarder of lichter dan water is, want 1 liter water weegt 1 Kilo. De meest voorkomende mineralen en gesteenten, zooals kwarts en veldspaat, hebben een dichtheid van ongeveer 21/2; daarentegen zijn de meeste metalen veel zwaarder: ijzer heeft een dichtheid van 7 tot 8, lood van 11, goud zelfs van 19. Wat is nu de dichtheid van de aarde? Berekenen wij haar inhoud, dan vinden wij 1083 x millioen x millioen x millioen kubieke meter; dus moet een kubieke meter vanhet aardlichaam 5500 kilogram wegen, d.w.z. dedichtheid der aarde is51/2.

Nu bestaat de aardkorst, zoover wij er door mijnen en boringen in kunnen dringen, uit gesteenten, die een dichtheid tusschen 2 en 3 hebben. Dat de aarde gemiddeld zooveel zwaarder is, bewijst, dat zij niet geheel en al uit zulke gesteenten kan bestaan;het voor ons onbereikbare binnenste der aarde moet uit andere, veel zwaardere stoffen bestaan. Daar wij geen andere zoo zware stoffen kennen dan metalen, neemt men aan, dat het binnenste der aarde door metalen, en wel vooral door ijzer wordt gevormd. Deze gevolgtrekking wordt nog op andere wijze bevestigd. Theoretische berekeningen hebben aangetoond, dat de aarde, als zij van binnen naar buiten overal uit dezelfde stof bestond, sterker moest afgeplat zijn dan zij is; haar kleinere afplatting bewijst, dat zij in haar binnenste dichter moet zijn dan aan de oppervlakte. Waarnemingen van aardbevingen hebben in de laatste jaren geleerd, dat de metalen kern en de steenen korst door een vrij scherpe grens gescheiden worden, die op ongeveer1/5van den straal der aarde beneden de oppervlakte ligt.

Men zou denken, dat Newton, toen hij zijn werk bekend maakte, dadelijk van alle zijden met instemming en bewondering begroet werd. Maar dat was niet het geval. Alleen onder zijn eigen landgenooten vond zijn "nieuwe filosofie" aanhang, en hier werd hij weldra geprezen en geëerd als een sieraad van zijn land; maar in het overige Europa bleef zij nog bijna een halve eeuw lang onopgemerkt. Men kende zijn theorie wel, maar begreep haar groote beteekenis niet. De groote natuuronderzoekers op het vasteland waardeerden wel de scherpzinnige berekeningen en gevolgtrekkingen van Newton, en twijfelden er ook niet aan dat zij goed en juist waren. Maar zijn geheele manier van denken, het grondkarakter van zijn werk, was hun ongewoon en vreemd. Christiaan Huygens schreef in een aanhangsel, dat hij aan zijngeschrift "Over de oorzaak van de zwaarte" toevoegde: "Ik had ook niet zoozeer aan die regelmatige afname van de zwaarte gedacht, namelijk, dat zij omgekeerd evenredig is met het vierkant van den afstand; dat is een nieuwe en hoogst merkwaardige eigenschap van de zwaarte, waarvan de oorzaak op te sporen zeer de moeite waard is..." Deze uiting toont duidelijk, dat voor hem door de ontdekking van Newtonde oorzaak van de planetenbeweging ook niet in 't minst verklaard werd.

Hier blijkt, hoe Newton's theorie bij haar verschijnen een algemeene denkwijze aantrof, die voor haar begrip hoogst ongunstig was. De natuuronderzoekers, die toen de wijsgeeren meteen waren, trachtten in de eerste plaats de wereld, de natuur uit haar grondprincipes te begrijpen. Daarvoor was wel de ervaring een onontbeerlijk hulpmiddel, maar volgens de "rationalistische" opvatting was het toch vooral de taak der menschelijke rede, deze principes te vinden. Naar de denkbeelden van den beroemden natuurfilosoofDescartes, die in de 2dehelft van de 17deeeuw in Frankrijk, het geestelijke centrum van het vasteland, algemeen aangehangen werden, was het heelal gevuld met een zeer dunne vloeistof, die om de zon draaide en de planeten in cirkelbanen om de zon meesleepte. Deze opvatting, waaruit Huygens dan nog nader een verklaring van de aardsche zwaarte wist af te leiden, gaf voor de beweging der planeten een dadelijk voor iedereen begrijpelijke verklaring. Iedereen had wel eens gezien, hoe schepen door stroomend water, bladeren door den wind meegevoerd werden; de waterdeeltjes drukken tegen het schip, de luchtdeeltjes tegen de bladeren, en zoo duwen ook de bewegende deeltjes van den wervelenden wereldaether de planeten voort. Wat bij Newton als gevolg van de aantrekkingskracht optreedt, is dus een uitwerking van dezen druk; Newtons's ontdekking over de afname van de aantrekking met den afstand was belangrijk, om nader uitsluitsel over dien druk en die wereldvloeistof te krijgen, maar meer ook niet. En Newton's opvatting, dat alle kleinste stofdeeltjes, ook die diep in het binnenste der aarde zitten, elkaar aantrekken, lijkt Huygens geheel absurd toe, want hij "gelooft duidelijk te zien, dat de oorzaak van zulk een aantrekking in het geheel niet verklaarbaar is door eenig principe der mechanika of door de wetten der beweging." Hij kan ook niet gelooven, dat Newton de zwaarte voor een grondeigenschap der materie wil verklaren: "Iets anders is het, wanneer wij de gravitatie als een innerlijke (inherente) eigenschap van de stoffelijke materie zouden beschouwen. Maar ik geloof niet, dat Newton dit wil, daar toch een dergelijke onderstelling ons ver van de wiskundige en mechanische principes zou verwijderen." En nog duidelijker drukte zich Leibniz in een brief aan Huygens uit: "Het schijnt, dat de zwaarte volgens hem (Newton) niets dan een zeker onstoffelijk en onverklaarbaar vermogen (vertu) is, terwijl gij haar daarentegen zeer goed door de wetten der mechanika verklaart."

Een geheel andere geestesrichting dan dit rationalisme heerschte in Engeland. In dit land, dat door den bloei van zijn handel langzamerhand aan de spits der ekonomische ontwikkeling kwam te staan en meer dan andere landen een onbegrensde toekomst voor zich zag, was de geest der menschen bovenal op de praktijk, op de werkelijkheid gericht. Hier heerschte filosofisch de van alle abstrakte bespiegeling afkeerige empiristische richting. De Engelschen lieten zich door geen spekulatief systeem verhinderen de praktijk tot leidster van hun filosofische denkwijze te maken, en zoo werden zij tot baanbrekers van een nieuwe wetenschappelijke beschouwingswijze. Zij konden met de theorie van Newton praktisch werken; zij konden daarmee de banen der hemellichamen juist en nauwkeurig berekenen, en dat bewees haar waarheid. Aan de geleerden op het vasteland gaf Newton's leer geen antwoord op de vragen, die hen bezighielden; want wanneer wij weten, volgens welke wet de aantrekking van de zon of de aarde werkt, zijn wij nog even ver van het inzicht verwijderd, waar deze kracht vandaan komt en wat eigenlijk haar wezen is. Daarentegen werden de Engelsche geleerden door zulke zorgen niet gekweld. "De oorzaak van deze eigenschappen der aantrekkingskracht" schreef Newton aan het slot van zijn werk, "kon ik echter niet uit de verschijnselen afleiden, en hypothesen verzin ik niet. Want een hypothese is dat, wat uit de verschijnselen niet kan gevonden worden; en hypothesen, hetzij metaphysische of physische, hetzij met behulp van verborgen eigenschappen of mechanische, behooren in de proefondervindelijke wijsbegeerte niet te huis."

Dat ten slotte de filosofische hindernissen in andere landenoverwonnen werden, lag niet enkel aan de overtuigingskracht, die van de juistheid der op Newton's theorie berustende berekeningen uitging. Er kwam bij, dat in de l8deeeuw in Frankrijk met de opkomende oppositie en kritiek der politieke en maatschappelijke toestanden een geestestoestand ontstond, die Engeland bewonderde en tot voorbeeld nam en de Engelsche empiristische denkwijze in zich opnam. Voltaire maakte zijn landgenooten met de nieuwe Engelsche filosofie bekend, die nu een veel gunstiger bodem vond. Een reeks van schitterende wiskundigen bouwden voort op Newton's werk, en berekenden volgens zijn aantrekkingswet de beweging van de planeten en de maan met steeds grooter nauwkeurigheid; toen zonken de oude wervelkringen, die tot zoo iets niet in staat waren, in de vergetelheid weg. En toen in het laatst van die eeuw Laplace het geheele zonnestelsel als een groot mechanisme, een machine beschreef, waar alle bewegingen tot in de kleinste bijzonderheden berekend werden als een puur wiskundig vraagstuk, toen was de triomf van Newton's theorie volkomen.

En nu trad ook een volkomen ommekeer in de gronddenkbeelden voor den dag. Terwijl Newton zelf, blijkens zijn boven aangehaalde woorden, over de "oorzaak" van de aantrekkingswet gesproken had als iets, waarover men alleen vermoedens kon opperen, die in de strenge wetenschap niet thuis behoorden, vond men nu zulk een oorzaak niet meer noodig; als een verschijnsel tot een uit de verte werkende aantrekkingskracht teruggebracht was, achtte men het volkomen verklaard en alle raadsels opgelost. Het doel der wetenschap, met name der mechanika, was nu, alle verschijnselen en bewegingen uit de krachten te verklaren, die ze bewerken. Een aantrekkingskracht, die van uit de verte door een leege ruimte heen op de lichamen werkte, scheen aan de geleerden in het begin der 19deeeuw zoo eenvoudig, begrijpelijk en natuurlijk toe, dat zij ook andere verschijnselen, b.v. de elektrische en magnetische werkingen door zulke van verre werkende krachten zochten te verklaren. En toen Gruithuisen, een door allerlei zonderlinge ideeën bekende Beiersche professor, eens verklaarde, dat aantrekking van verre een onding was en dat een aantrekkende kracht zonder verbindende touwen of stangen niet denkbaar was, moest hij zich wegens dit gebrek aan begrip menige spotternij laten welgevallen.

En toch had hij niet zoo heelemaal ongelijk; mettertijd lieten zich steeds meer stemmen hooren, die er op wezen, dat het woord "kracht" toch eigenlijk niets is dan een woord, dat juist van pas komt, als men iets niet weet te verklaren. Wanneer wij de oorzaak van het vallen van de steenen "zwaartekracht" noemen, weten wij er dan iets meer van dan te voren? Neen, het verschijnsel, dat een steen vanzelf naar de aarde valt, is er even geheimzinnig door gebleven. En wanneer wij met Newton de oorzaak van de planetenbeweging in een aantrekkingskracht zoeken, die dezelfde natuur heeft als de aardsche zwaartekracht, geven wij ons dan niet aan het zelfbedrog over, dat wij iets onbekends meenen te kunnen verklaren door iets, dat even onbekend is? Hadden dus, welbeschouwd, Leibniz en Huygens niet gelijk, toen zij vroegen, wat de wet van Newton hen nu eigenlijk in het begrijpen van de wereld verder gebracht had?

De tegenstrijdigheid tusschen zulke twijfelingen en de zekerheid, die wij desondanks gevoelen, dat wij in Newton's aantrekkingswet toch een verklaring van de hemelsche bewegingen bezitten, wordt opgelost door het inzicht, wat eigenlijk wetenschappelijk verklaren beteekent. In de laatste halve eeuw is dit inzicht in de kennisleer zooveel helderder geworden, dat nu voor geheimzinnigheid en mystiek in de leer der wetenschap geen plaats meer is.

Wetenschap doet niets anders, dan systeem en orde in de menschelijke ervaring brengen. De verwarrende veelheid der verschijnselen kan in onze hersens geen plaats vinden; daarom vatten wij datgene, wat telkens en overal terugkomt, het algemeene, het gemeenschappelijke in een groep van verschijnselen theoretisch in een begrip samen. "De wetenschap," aldus Mach, "heeft de ekonomische taak, ervaringen te sparen en de feiten met het kleinst mogelijke gebruik van gedachten weer te geven." "Het is de taak der mechanika," had Kirchhoff reeds vroeger gezegd, "om de bewegingen in de natuur zoo eenvoudig en volledig mogelijk te beschrijven." "De menschelijke geest," aldus Dietzgen, "is het orgaan van het algemeene; het wetenschappelijke oorzaakbegrip wil niets anders, dan het algemeene der verschijnselen uitdrukken." Zoo is in het begrip "zwaartekracht" het gemeenschappelijke samengevat van alle verschijnselen van vallende of voortgeworpen steenen, weggeschoten kogels, van een drijvende kurk en een opstijgendenluchtballon, een schommelenden slinger, van neervallenden regen, van golven op zee en stroomende rivieren. Al deze verschijnselen verschillen door de bijzondere omstandigheden en de verschillende eigenschappen der stoffen; wat hun echter gemeen is, wordt door het begrip en de wet van de zwaartekracht weergegeven. Wij behoeven nu niet meer elk bijzonder geval van een weggeworpen steen of een vallend lichaam te onthouden en evenmin al deze verschillende soorten van verschijnselen; in de "zwaartekracht" hebben wij ze alle als het ware in een korte formule samengevat; door de theorie, de wet der zwaartekracht weten wij precies wat in elk dergelijk geval van een beweging op aarde gebeurt.

Het is zinloos, daarbij nog naar een verborgen "wezen" der kracht te vragen. Wat alleen werkelijk voorhanden is, is de totaliteit van alle verschijnselen.Een zwaartekracht als iets aparts bestaat alleen in ons hoofd, als begrip, en nergens anders. De vraag naar het wezen der zwaartekracht is de vraag naar het wezen van alle abstrakte begrippen, en het antwoord luidt, dat zij het algemeene uit de konkrete verschijnselen uitdrukken. Maar daarmee is niet gezegd, dat er verder niets te vragen overblijft. Het begrip "zwaartekracht" is uit een bepaalde groep van verschijnselen gevormd; daarnaast bestaan tallooze andere verschijnselen — bv. het kaatsen van biljartballen, het op- en ondergaan van de zon, bliksem en donder, het lichtgeven van een kaars — die er niets mee te maken hebben. Gelukt het nu echter een samenhang met zulke verschijnselen te vinden, dus in deze veel grootere groep van verschijnselen iets gemeenschappelijks te vinden, dat dan nog algemeener is dan de zwaartekracht, zoodat de zwaartekracht als bijzonder geval, als uitvloeisel van dit nog algemeenere begrip optreedt, dan wordt de ekonomie van het denken nog hooger opgevoerd, de beschrijving van de wereld nog eenvoudiger gemaakt, ons inzicht in de wereld grooter en volkomener, onze wetenschap rijker en geslotener.

Het mooiste voorbeeld van zulk een vervolmaking der wetenschap is nu juist de theorie van Newton; en omgekeerd toont ons deze exkursie op het terrein der kennisleer, waarin de groote beteekenis van de leer van Newton ligt, die wij tot dusver slechts instinktief voelden. Vóór den tijd van Newton waren de bewegingen op aarde en de bewegingen in de wereldruimte twee geheel verschillende groepen van verschijnselen, die niets met elkaar te maken hadden. De eerste groep werd door Galilei's wetten der zwaartekracht, de tweede groep door Kepler's wetten der planetenbeweging samengevat. Newton vereenigde ze tot één geheel, door de planetenbeweging tot een algemeene aantrekkingskracht terug te brengen, waarvan de aardsche zwaartekracht slechts een bijzonder geval is. Meer nog: niet alleen de wetten van Kepler zelf, maar ook de afwijkingen van die wetten werden door zijn theorie weergegeven. De onregelmatigheden in de maanbeweging, de getijden in de oceanen, de zwakke aantrekking door aardsche gewichtblokken, de gedaante van het aardoppervlak, de verandering van den sterrenhemel door den teruggang der nachteveningen — al deze verschijnselen werden in het begrip "aantrekkingskracht" samengevat en door een eenvoudige wet uitgedrukt. Doordat zij gelijksoortig blijken te zijn met de ons van ouds bekende valverschijnselen op aarde, verliezen zij voor ons al wat er vreemd, onbekend en geheimzinnig aan was.In een paar eenvoudige stellingen wordt een onafzienbaar gebied van de meest verschillende verschijnselen, op aarde en aan den hemel, in verleden en toekomst, eenvoudig en volledig beschreven, in orde en systeem gebracht. Daarin ligt de buitengewone belangrijkheid van Newton's ontdekking.

Wanneer dus naar een verdere verklaring van het wezen of de oorzaak der aantrekkingskracht gevraagd wordt, komt dat meestal neer op een gebrek aan inzicht in het wezen van alle wetenschappelijke verklaring. In de 19deeeuw zijn een groot aantal "verklaringen" van de aantrekkingskracht uitgedacht, waarbij deze kracht nu eens uit het stooten van rondvliegende kleine deeltjes, dan weer uit de drukking van een de wereldruimte vullende vloeistof afgeleid werd. Voorzoover die verklaringen van de grondgedachte uitgaan, dat druk en stoot iets zonder meer natuurlijks en begrijpelijks, aantrekking iets vreemds en onbegrijpelijks is, berusten zij op een misvatting. Omgekeerd zijn er natuurkundigen geweest, die de verschijnselen van botsing en vloeistofdruk uit de werkingen van kleine stofdeeltjes afleidden, die elkaar niet onmiddellijk aanraken maar van op een afstand aantrekken ofafstooten. Voor het eene is evenveel te zeggen als voor het andere, in zooverre daarbij druk, stoot en aantrekking, die ons alle uit het dagelijksch leven bekend zijn, met elkaar in samenhang worden gebracht. Wanneer het gelukte, door samenvatting van de aantrekkingskracht en die andere groepen van verschijnselen een eenvoudiger beeld van dit geheele gebied te krijgen, dan zou men inderdaad van een "verklaring" van de aantrekkingskracht mogen spreken. Maar bij al deze theorieën zijn zooveel gekunstelde onderstellingen noodig, dat zij geen van alle aan dien eisch voldoen; een vereenvoudiging van ons wereldbeeld hebben zij niet gegeven.

Huygens had iets dergelijks gewild; maar voor hem lag de zaak nog eenigszins anders. Dat hij de aardsche zwaarte uit de wervelkringen zocht te verklaren, die de planeten rondsleepten, lag voor hem hierom zoo voor de hand, omdat hij uit geheel andere verschijnselen de overtuiging gekregen had, dat de wereldruimte niet ledig maar met een of andere stof,een wereldaethergevuld moest zijn. Naar de door hem opgesteldetheorie van het lichtbrengen de heete, lichtgevende voorwerpen dezen aether in fijne snelle trillingen, die zich dan als golvingen naar alle kanten met de bekende reusachtige snelheid van bijna 300000 KM. per sekonde uitbreiden en in ons oog treden. Newton had daartegenover de theorie opgesteld, dat het licht uit kleine deeltjes bestaat, die door de gloeiende voorwerpen weggeslingerd worden en met groote vaart door de ledige wereldruimte vliegen; en deze theorie vond in de 18deeeuw den meesten aanhang. In het begin van de 19deeeuw werden echter lichtverschijnselen ontdekt en nader onderzocht, die alleen uit golvingen en trillingen te verklaren waren; hier bleek Huygens dus gelijk te hebben gehad. En aan deze lichttheorie van Huygens knoopte in de 19deeeuw een nieuwe richting der wetenschap aan.

De stoot voor dezen ommekeer in de gronddenkbeelden der natuurkunde kwam weer uit Engeland. Terwijl Duitsche professoren de aantrekking uit de verte omgekeerd evenredig met het vierkant van den afstand tot filosofisch principe der natuur proklameerden, en haar tot verklaring der elektrische verschijnselen gebruikten, kwam een Engelsch onderzoeker, de apothekersbediendeMichael Faraday, door zich enkel door de proefnemingen zelf te laten leiden, tot geheel andere opvattingen. Zijngeestesoog zag tusschen de elektrisch geladen lichamen en stroomgeleiders een onzichtbare middenstof, die gespannen, gedrukt, getrokken en gedraaid werd en daardoor de bewegingen veroorzaakte, die zich aan ons als elektrische afstooting en aantrekking vertoonen. Zijn denkbeelden stonden zoo geheel vreemd tegenover de heerschende theoretische opvattingen, dat zij eerst veel later eenigermate begrepen werden, toen Maxwell ze in wiskundigen vorm uitdrukte. Toen vonden zij in de tweede helft der 19deeeuw, tegen de remmende macht der ingewortelde traditie, steeds meer bijval, eerst in Engeland, daarna op het vasteland. Want zij had op de oude theorieën dit voor, dat zij uit de wetten der elektriciteit tegelijk alle verschijnselen van het licht wist te verklaren, en aldus twee tot nog toe geheel gescheiden groepen van verschijnselen tot één theorie terugbracht. Die alom tegenwoordige substantie van Faraday, die door haar spanning en beweging de elektrische en magnetische verschijnselen bewerkt, is niets anders dan de wereldaether, dien Huygens voor de verklaring van het licht had aangenomen. De juistheid van de theorie van Maxwell, waarvan de draadlooze telegrafie een direkte toepassing is, wordt thans door iedereen erkend.

Het lag nu voor de hand om te beproeven, of ook de algemeene aantrekkingskracht niet evengoed als de elektrische krachten met behulp van deze overal aanwezige middenstof, den wereldaether, verklaard kon warden. Deze pogingen zijn echter niet gelukt; en het is naderhand gebleken, dat op deze wijze het probleem te beperkt gesteld was. Voor de wetenschap komt het er niet op aan, een antwoord juist in de richting te vinden, die men verwacht; haar doel wordt bereikt door de aantrekkingskracht op een of andere wijze in samenhang met de andere natuurverschijnselen te brengen, en zoo tot een dieper inzicht in haar wezen, tot een grootere eenheid in de natuurleer te komen. En in dezen zin is juist in de laatste jaren een belangrijke schrede op den weg der "verklaring" van de gravitatie gedaan.

Wij hebben in onze beschouwingen over beweging en rust uiteengezet, dat het onmogelijk is om in de wereldruimte van absolute beweging of rust te spreken. Alle lichamen bewegen zich ten opzichte van elkaar, en alleen deze relatieve bewegingen kunnen wij leeren kennen. Wij mogen voor het gemak, om deverschijnselen eenvoudig uit te drukken, nu eens de aarde, dan weer de zon als rustend aannemen; maar weten doen wij het niet. Of liever, er is in het geheel niet over te spreken, of een of ander punt in rust is, daar dit een zinledig woord is. Dit was de grondslag van de ontwikkeling der mechanika in de 17deeeuw. Maar gaat dat alles nu nog wel op? De natuurkunde van de 19deeeuw leert, dat de geheele wereldruimte gevuld is met den wereldaether, het voertuig der lichtverschijnselen. Het ligt nu voor de hand om alle bewegingen ten opzichte van dezen aether te beschouwen; en dan kan men wel van absolute beweging en rust spreken. In absolute rust is de wereldaether en elk ding, dat zich ten opzichte van den wereldaether niet beweegt.

Het was nu van belang om de beweging van de aarde in absoluten zin, dus t.o.v. den wereldaether te vinden. De aether doordringt alle stoffen, vult de tusschenruimte tusschen alle atomen, en wanneer dus de lichamen, waarmee wij werken, en hun atomen met groote snelheid (b.v. van 27 KM per sekonde, de snelheid van de aarde in haar baan) door den aether heen vliegen, moet dat in bepaalde optische en elektrische verschijnselen voor den dag komen. Men heeft deze proeven herhaaldelijk gedaan, maar de verwachte verschijnselen bleven uit. Van een invloed der snelle beweging van de aarde t.o.v. den aether was niets te bespeuren. Op alle vragen, die men haar omtrent onze absolute beweging stelde, bleef de natuur stom. Het was alsof ze zeide: uw vragen zijn zinloos. Men heeft allerlei onderstellingen gemaakt om het uitblijven van de verwachte verschijnselen te verklaren, totAlbert Einsteinin 1906 in zijnrelativiteitstheoriehet principe formuleerde, volgens hetwelk dit uitblijven natuurlijk en vanzelfsprekend was.Niet alleen de hemelsche bewegingen, maar ook alle natuurkundige verschijnselen, die wij waarnemen, vinden zóó plaats, dat daarbij van geen absolute maar alleen van relatieve bewegingen sprake is. Wij mogen in de wereld als rustend of bewegend aannemen, wat wij willen: alle wetten en verschijnselen moeten er dezelfde om blijven. Het is alsof er in het geheel geen wereldaether is, en vele natuurkundigen, ook Einstein zelf, laten de onderstelling dat er een wereldaether bestaat, als een soort stoffelijke substantie, die alle werkingen in de ruimtevoortplant, geheel vervallen. Daarvoor in plaats treedt dan echter het feit, dat de snelheid van het licht een bepalende rol in alle bewegingsverschijnselen speelt; want alle kennis, die een waarnemer van de gebeurtenissen in de wereld heeft, en die hij in wetten uitdrukt, wordt hem naar zijn rustend of beweeglijk gedachte standplaats overgebracht door voortplanting van lichtverschijnselen. De lichtsnelheid is de bovenste grens van alle mogelijke bewegingen. Niet alleen is het onmogelijk en zelfs ondenkbaar, dat ooit een voorwerp deze snelheid overtreft of zelfs bereikt, maar elke werkelijke beweging voelt ook het bestaan van die grens als het ware als een soort druk van boven, die haar wijzigt, zij het ook in een zoo geringe mate, als zij gering is in verhouding tot de lichtsnelheid.

Nu verschijnt de algemeene aantrekkingskracht ook in een nieuw licht. Zij is onder alle natuurkrachten een zeer bijzondere, of nog juister gezegd: alle andere (b.v. de elektrische) krachten zijn bijzonder en hangen van bijzondere toestanden af; maar de gravitatie is algemeen en wordt bepaald door dezelfde massa, die in alle bewegingen een rol speelt. Het is zelfs de vraag of men haar wel een aparte kracht mag noemen. Want men kan haar door wijziging van onze onderstellingen omtrent rust en beweging geheel laten verdwijnen. Wij hebben bij onze beschouwingen over de middelpuntvliedende kracht al gezien, hoe een bewegingstoestand zich als kracht kan openbaren. Was de aarde steeds met een ondoorzichtige wolkenlaag bedekt, zoodat de menschen nooit iets van de sterren hadden bemerkt, dus ook nooit op het idee van een aswenteling waren gekomen, dan zouden zij uit nauwkeurige waarnemingen gevonden hebben, dat de aantrekkingskracht op een bepaalde manier van de plaats op aarde afhangt, en zoo hadden ze alle bekende feiten evengoed weergegeven als wij door onze leer van de aswenteling doen. Een ander voorbeeld kunnen wij vinden in het projektiel, dat Jules Verne naar de maan liet schieten; de menschen daar binnen in konden niets van zwaarte ondervinden, omdat zij met alle voorwerpen om hen heen even snel als het projektiel zelf naar de aarde toe vielen (d.w.z. hun vaart naar boven in dezelfde mate vertraagden). In al hun bewegingen t.o.v. elkaar en de wanden was de zwaartekracht afwezig, opgeheven door hun gemeenschappelijke beweging. Wij kunnen onsnu in plaats van dit projectiel een kamer, duizenden malen grooter voorstellen, met dezelfde beweging; dan kunnen wij alle bewegingen en verschijnselen daar binnen t.o.v. de kamer voorstellen, alsof deze in rust is. Daar gelden alle wetten van de mechanika en de natuurkunde; er is geen aantrekkingskracht, alles is gewichtloos en heeft enkel massa, alle bewegingen vinden eenparig plaats, en een kogel, die er horizontaal doorheen vliegt, loopt volkomen rechtlijnig. Beschouwen wij echter alles t.o.v. de vaste aarde beneden, dan gelden ook nu nog dezelfde natuurwetten alle, maar nu zijn de bewegingen naar beneden versneld, de kogel beschrijft een gekromde baan, de voorwerpen oefenen een druk naar beneden uit, en wij zeggen, dat er een aantrekkingskracht werkt.

Nu zou men kunnen opmerken, dat de laatste manier van beschouwen dan toch de meer natuurlijke en juiste is, terwijl de eerste alleen maar een oogenblik als gefantaseerd geval gedacht wordt. Maar volgens het beginsel van de relativiteit zijn beide manieren van opvatting even goed en even juist; men kan alleen dit onderscheid maken, dat de een voor ons praktischer en doelmatiger kan zijn dan de andere, omdat ze eenvoudiger formules geeft of ruimer gebieden omvat. Maar daaraan, wat voor ons doelmatig is, kan de natuur zich niet storen; zij mag niet van onze willekeur afhankelijk zijn, en de natuurwetten moeten in beide gevallen op dezelfde manier gelden. De natuurwetten mogen dus nooit zóó geformuleerd worden, dat er een onderstelling in ligt omtrent rust of absolute beweging; want dan zijn ze zeker niet precies goed. Nu zijn uit de waarnemingsgegevens dikwijls eenvoudige natuurwetten afgeleid, waarvan nu blijkt, dat ze niet aan dezen eisch voldoen van onveranderd te blijven gelden, wat wij ook over onze beweging of rust willen aannemen. Zij moeten dus eenigszins gewijzigd worden, maar daar dit maar uiterst weinig is — omdat de snelheden ten opzichte van de lichtsnelheid uiterst klein zijn — zal het verschil in de praktijk meestal absoluut onmerkbaar zijn. Ook de eenvoudige aantrekkingswet, die Newton had afgeleid, kan nu niet meer precies goed zijn; de gravitatie moet nog op zeer ingewikkelde wijze van de snelheden af hangen. Bij zijn berekeningen bleek het in 1915 aan Einstein, dat de wijzigingen, die daardoor in de planetenbeweging ontstaan, zoo klein zijn, dat zij voor onze beste waarnemingen geheel onmerkbaarblijven — met één uitzondering: de groote as van de Mercuriusbaan moet door dezen invloed 43 sekonden per eeuw van richting veranderen. Nu was echter juist (zieblz. 275) het eenige punt, waarin de waarnemingen en de berekening volgens de wet van Newton niet overeenstemden, dat de groote as van de Mercurius-baan per eeuw 43 seconden te veel draaide. Zonder dat dus eenige verdere onderstelling noodig was, gaf de relativiteitstheorie ineens een ongezochte verklaring van het eenige feit in de planetenbeweging, dat door de zuivere wet van Newton niet verklaard kon worden. Dit was een triomf van de nieuwe theorie, die bewees, dat het door Einstein vooropgestelde relativiteitsbeginsel geen theoretische fantasie was, maar in de werkelijkheid van de natuur wortelt.

In het voorbeeld van Jules Verne's projektiel bleek, dat de verschijnselen daar binnenin op twee manieren beschouwd en verklaard konden worden: de eene plaats vindende in een ruimte zonder gravitatie, de andere in een ruimte met gravitatie. Deze beide manieren van beschouwing verschillen alleen, doordat de ruimten in beide gevallen op een bepaalde manier ten opzichte van elkaar bewegen; de gravitatie is dus geheel gelijkwaardig met betrekkingen tusschen de eene ruimte en de andere, die niets met lichamen, maar alleen met meetkundige eigenschappen van de ruimte en met tijd te maken hebben. De gravitatie is niet een bijzondere kracht, die op een lichaam werkt, dat zich ergens in de ruimte bevindt; zij is een eigenschap van die ruimte zelf; zij is als het ware een verandering, een vervorming van de meetkundige eigenschappen van de ruimte (en daarbij ingesloten de tijd) waarin zij werkt, en dit maakt, dat de beweging van de lichamen daarin niet meer eenparig rechtlijnig kan zijn. Een eeuw geleden hadden Laplace en Poisson de gravitatie ook al, in plaats van als kracht tusschen twee lichamen, opgevat als een grootheid, die op elk punt van de ruimte een bepaalde waarde heeft, bepaald door de naaste (ledige of met stof gevulde) omgeving, en die zich dus van plaats tot plaats voortplanten moet; deze grootheid bepaalt, wat er met de beweging van een lichaam gebeurt, dat zich in dat punt bevindt. Wat voor hen een wiskundige grootheid was geweest, alleen ten dienste van de berekeningen, heeft nu echter een dieperen zin gekregen.Want de relativiteitstheorie, die de gravitatie tot een meetkundige eigenschap van de ruimte maakt, brengt vanzelf mee, dat alle natuurkundige verschijnselen in deze ruimte daarvan den invloed ondervinden, d.w.z. naar het ons voorkomt, onderworpen zijn aan de aantrekkingskracht. Evenals een voortgeschoten kogel loopt ook een horizontale lichtstraal door onze bovenonderstelde projektielkamer rechtlijnig voort. Maar dan moet ten opzichte van de aarde deze lichtstraal evengoed als de kogel een gebogen baan beschrijven. Een lichtstraal — dat volgt dus uit het relativiteitsbeginsel — is aan de zwaarte onderworpen en gedraagt zich als een voorwerp, dat met een snelheid van 300000 K.M. per sekonde voortvliegt. Ook deze gevolgtrekking heeft men op de proef kunnen stellen. Een lichtstraal, die van een ster achter de zon komt en langs haar rand strijkt, zal door de aantrekking van de zon 13/4sekonde van haar richting worden afgebogen; de fotografieën, die bij de totale zoneklips van 29 Mei 1919 werden opgenomen, hebben deze voorspelling geheel bevestigd.

Zoo heeft de leer van de gravitatie in de 20steeeuw een grooten sprong voorwaarts gedaan — de grootste vooruitgang sinds Newton — maar in geheel andere richting dan in de 19eeeuw verwacht werd. Men had gehoopt, de aantrekkingskracht uit haar isolement te kunnen bevrijden door haar terug te brengen tot denzelfden wereldaether, die de natuurkunde als drager van alle elektrische verschijnselen en van de voortplanting van het licht had opgesteld. Maar de samenhang van deze verschillende gebieden is omgekeerd tot stand gebracht door alle natuurkundige verschijnselen aan de gravitatie te onderwerpen. En deze gravitatie zelf staat onaantastbaarder en geheimzinniger voor ons door haar identiteit met de meest fundamenteele meetkundige eigenschappen van ruimte en tijd. Men had gehoopt, de hypothesen, die Newton niet had willen verzinnen, en die de aantrekking uit bekende en begrijpelijke inwerkingen van lichamen op elkaar moest verklaren, te kunnen vinden door tot de grondgedachte van Huygens terug te keeren, in modernen, hooger ontwikkelden vorm, door den toestand op elk punt van de ruimte aan een overal tegenwoordige substantie met bepaalde eigenschappen toe te schrijven. Maar op het voetspoor van Newton maakt Einstein de ruimte weer ledig, vraagt niet hoe men zich de werkingen moet voorstellen, doch beperkt zich tothet opstellen van formules, waarmee de verschijnselen juist berekend kunnen worden. Als men dan let op de fundamenteele beteekenis van de lichtsnelheid, waarmee zich de werkingen door de wereldruimte voortplanten, dan is het duidelijk, dat deze onderzoekingen van Einstein de ontwikkeling van de leer der gravitatie tot een steeds grootere eenheid in het wetenschappelijk natuurbeeld niet afgesloten, maar haar veeleer nieuwe banen geopend hebben.


Back to IndexNext