Figure 34.Figure 34.—An exhibit of gravity apparatusat the Smithsonian Institution. Suspended on the wall, from left to right, are the invariable pendulums of Mendenhall (1/2-second), Peirce (1873-1874), and Peirce (1881-1882); the double pendulum of Edward Kübel (see fig.15, p.319), and the reversible pendulum of Peirce. On the display counter, from left to right, are the vacuum chamber, telescope and flash apparatus for the Mendenhall 1/4-second apparatus. Shown below these are the four pendulums used with the Mendenhall apparatus, the one on the right having a thermometer attached. At bottom, right, is the Gulf apparatus (cover removed) mentioned in the text, shown with one quartz pendulum.
Figure 34.—An exhibit of gravity apparatusat the Smithsonian Institution. Suspended on the wall, from left to right, are the invariable pendulums of Mendenhall (1/2-second), Peirce (1873-1874), and Peirce (1881-1882); the double pendulum of Edward Kübel (see fig.15, p.319), and the reversible pendulum of Peirce. On the display counter, from left to right, are the vacuum chamber, telescope and flash apparatus for the Mendenhall 1/4-second apparatus. Shown below these are the four pendulums used with the Mendenhall apparatus, the one on the right having a thermometer attached. At bottom, right, is the Gulf apparatus (cover removed) mentioned in the text, shown with one quartz pendulum.
Early in the 19th century a systematic series of observations began to be conducted in order to determine the intensity of gravity at stations all over the world. Kater invariable pendulums, of which 13 examples have been mentioned in the literature, were used in surveys of gravity by Kater, Sabine, Goldingham, and other British pendulum swingers. As has been noted previously, a Kater invariable pendulum was used by Adm. Lütke of Russia on a trip around the world. The French also sent out expeditions to determine values of gravity. After several decades of relative inactivity, Capts. Basevi and Heaviside of the Indian Survey carried out an important series of observations from 1865 to 1873 with Kater invariable pendulums and the Russian Repsold-Bessel pendulums. In 1881-1882 Maj. J. Herschel swung Kater invariable pendulums nos. 4, 6 (1821), and 11 at stations in England and then brought them to the United States in order to make observations which would connect American and English base stations.[109]
The extensive sets of observations of gravity provided the basis of calculations of the ellipticity of the earth. Col. A. R. Clarke in hisGeodesy(London, 1880) calculated the ellipticity from the results of gravity surveys to be1/(292.2 ± 1.5). Of interest is the calculation by Charles S. Peirce, who used only determinations made with Kater invariable pendulums and corrected for elevation, atmospheric effect, and expansion of the pendulum through temperature.[110]He calculated the ellipticity of the earth to be1/(291.5 ± 0.9).
The 19th century witnessed the culmination of the ellipsoidal era of geodesy, but the rapid accumulation of data made possible a better approximation to the figure of the earth by the geoid. The geoid is defined as the average level of the sea, which is thought of as extended through the continents. The basis of geodetic calculations, however, is an ellipsoid of reference for which a gravity formula expresses the value of normal gravity at a point on the ellipsoid as a function of gravity at sea level at the equator, and of latitude. The general assembly of the International Union of Geodesy and Geophysics, which was founded after World War I to continue the work ofDie Internationale Erdmessung, adopted in 1924 an international reference ellipsoid,[111]of which the ellipticity, or flattening, is Hayford’s value 1/297. In 1930, the general assembly adopted a correlated International Gravity Formula of the form γ = γE(1 + β(sin2φ) + ε(sin22φ))where γ is normal gravity at latitude φ, γEis the value of gravity at sea level at the equator, β is a parameter which is computed on the basis of Clairaut’s theorem from the flattening value of the meridian, and ε is a constant which is derived theoretically. The plumb line is perpendicular to the geoid, and the components of angle between the perpendiculars to geoid and reference ellipsoid are deflections of the vertical. The geoid is above the ellipsoid of reference under mountains and it is below the ellipsoid on the oceans, where the geoid coincides with mean sea level. In physical geodesy, gravimetric data are used for the determination of the geoid and components of deflections of the vertical. For this purpose, one must reduce observed values of gravity to sea level by various reductions, such as free-air, Bouguer, isostatic reductions. Ifg0is observed gravity reduced to sea level and γ is normal gravity obtained from the International Gravity Formula, then Δg=g0- γis the gravity anomaly.[112]
In 1849, Stokes derived a theorem whereby the distanceNof the geoid from the ellipsoid of reference can be obtained from an integration of gravity anomalies over the surface of the earth. Vening Meinesz further derived formulae for the calculation of components of the deflection of the vertical.
Geometrical geodesy, which was based on astronomical-geodetic methods, could give information only concerning the external form of the figure of the earth. The gravimetricmethodsof physical geodesy, in conjunction with methods such as those of seismology, enable scientists to test hypotheses concerning the internal structure of the earth. Heiskanen and Vening Meinesz summarize the present-day achievements of the gravimetric method ofphysical geodesy by stating[113]that it alone can give:
1. The flattening of the reference ellipsoid.2. The undulationsNof the geoid.3. The components of the deflection of the vertical ζ and η at any point, oceans and islands included.4. The conversion of existing geodetic systems to the same world geodetic system.5. The reduction of triangulation base lines from the geoid to the reference ellipsoid.6. The correction of errors in triangulation in mountainous regions due to the effect of the deflections of the vertical.7. Geophysical applications of gravity measurements, e.g., the isostatic study of the earth’s interior and the exploration of oil fields and ore deposits.
1. The flattening of the reference ellipsoid.
2. The undulationsNof the geoid.
3. The components of the deflection of the vertical ζ and η at any point, oceans and islands included.
4. The conversion of existing geodetic systems to the same world geodetic system.
5. The reduction of triangulation base lines from the geoid to the reference ellipsoid.
6. The correction of errors in triangulation in mountainous regions due to the effect of the deflections of the vertical.
7. Geophysical applications of gravity measurements, e.g., the isostatic study of the earth’s interior and the exploration of oil fields and ore deposits.
With astronomical observations or with existing triangulations, the gravimetric method can accomplish further results. Heiskanen and Vening Meinesz state:
It is the firm conviction of the authors that the gravimetric method is by far the best of the existing methods for solving the main problems of geodesy, i.e., to determine the shape of the geoid on the continents as well as at sea and to convert the existing geodetic systems to the world geodetic system. It can also give invaluable help in the computation of the reference ellipsoid.[114]
It is the firm conviction of the authors that the gravimetric method is by far the best of the existing methods for solving the main problems of geodesy, i.e., to determine the shape of the geoid on the continents as well as at sea and to convert the existing geodetic systems to the world geodetic system. It can also give invaluable help in the computation of the reference ellipsoid.[114]
Since the creation of classical mechanics in the 17th century, the pendulum has been a basic instrument for the determination of the intensity of gravity, which is expressed as the acceleration of a freely falling body. Basis of theory is the simple pendulum, whose time of swing under gravity is proportional to the square root of the length divided by the acceleration due to gravity. Since the length of a simple pendulum divided by the square of its time of swing is equal to the length of a pendulum that beats seconds, the intensity of gravity also has been expressed in terms of the length of the seconds pendulum. The reversible compound pendulum has served for the absolute determination of gravity by means of a theory developed by Huygens. Invariable compound pendulums with single axes also have been used to determine relative values of gravity by comparative times of swing.
The history of gravity pendulums begins with the ball or “simple” pendulum of Galileo as an approximation to the ideal simple pendulum. Determinations of the length of the seconds pendulum by French scientists culminated in a historic determination at Paris by Borda and Cassini, from the corrected observations with a long ball pendulum. In the 19th century, Bessel found the length of the seconds pendulum at Königsberg and Berlin by observations with a ball pendulum and by original theoretical considerations. During the century, however, the compound pendulum came to be preferred for absolute and relative determinations.
Capt. Henry Kater, at London, constructed the first convertible compound for an absolute determination of gravity, and then he designed an invariable compound pendulum, examples of which were used for relative determinations at various stations in Europe and elsewhere. Bessel demonstrated theoretically the advantages of a reversible compound pendulum which is symmetrical in form and is hung by interchangeable knives. The firm of A. Repsold and Sons in Hamburg constructed pendulums from the specifications of Bessel for European gravity surveys.
Charles S. Peirce in 1875 received delivery in Hamburg of a Repsold-Bessel pendulum for the U.S. Coast Survey and observed with it in Geneva, Paris, Berlin, and London. Upon an initial stimulation from Baeyer, founder ofDie Europäische Gradmessung, Peirce demonstrated by experiment and theory that results previously obtained with the Repsold apparatus required correction, because of the flexure of the stand under oscillations of the pendulum. At the Stuttgart conference of the geodetic association in 1877, Hervé Faye proposed to solve the problem of flexure by swinging two similar pendulums from the same support with equal amplitudes and in opposite phases. Peirce, in 1879, demonstrated theoretically the soundness of the method and presented a design for its application, but the “double pendulum” was rejected at that time. Peirce also designed and had constructed four examples of a new type of invariable, reversible pendulum of cylindrical form which made possible the experimental study of Stokes’ theory of the resistance to motion of a pendulum in a viscous fluid. Commandant Defforges, of France, also designed and used cylindrical reversible pendulums, but of different length so that the effect of flexure was eliminated in the reduction of observations. Maj. Robert von Sterneck, of Austria-Hungary, initiated a new era in gravity research by the invention of an apparatus with a short pendulum for relative determinations of gravity. Stands were then constructed in Europe onwhich two or four pendulums were hung at the same time. Finally, early in the present century, Vening Meinesz found that the Faye-Peirce method of swinging pendulums hung on a Stückrath four-pendulum stand solved the problem of instability due to the mobility of the soil in Holland.
The 20th century has witnessed increasing activity in the determination of absolute and relative values of gravity. Gravimeters have been perfected and have been widely used for rapid relative determinations, but the compound pendulums remain as indispensable instruments. Mendenhall’s replacement of knives by planes attached to nonreversible pendulums has been used also for reversible ones. The Geodetic Institute at Potsdam is presently applying the Faye-Peirce method to the reversible pendulum.[115]Pendulums have been constructed of new materials, such as invar, fused silica, and fused quartz. Minimum pendulums for precise relative determinations have been constructed and used. Reversible pendulums have been made with “I” cross sections for better stiffness. With all these modifications, however, the foundations of the present designs of compound pendulum apparatus were created in the 19th century.
FOOTNOTES:[1]The basic historical documents have been collected, with a bibliography of works and memoirs published from 1629 to the end of 1885, inCollection de mémoires relatifs a la physique, publiés par la Sociétéfrançaisede Physique[hereinafter referred to asCollection de mémoires]: vol. 4,Mémoires sur le pendule, précédés d’une bibliographie(Paris: Gauthier-Villars, 1889); and vol. 5,Mémoires sur le pendule, part 2 (Paris: Gauthier-Villars, 1891). Important secondary sources are:C. Wolf, “Introduction historique,” pp. 1-42 in vol. 4, above; andGeorge Biddell Airy, “Figure of the Earth,” pp. 165-240 in vol. 5 ofEncyclopaedia metropolitana(London, 1845).[2]Galileo Galilei’s principal statements concerning the pendulum occur in hisDiscourses Concerning Two New Sciences, transl. from Italian and Latin into English by Henry Crew and Alfonso de Salvio (Evanston: Northwestern University Press, 1939), pp. 95-97, 170-172.[3]P. Marin Mersenne,Cogitataphysico-mathematica(Paris, 1644), p. 44.[4]Christiaan Huygens,Horologium oscillatorium, sive de motu pendulorum ad horologia adaptato demonstrationes geometricae(Paris, 1673), proposition 20.[5]The historical events reported in the present section are fromAiry, “Figure of the Earth.”[6]Abbé Jean Picard,La Mesure de la terre(Paris, 1671).John W. Olmsted, “The ‘Application’ of Telescopes to Astronomical Instruments, 1667-1669,”Isis(1949), vol. 40, p. 213.[7]The toise as a unit of length was 6 Paris feet or about 1,949 millimeters.[8]Jean Richer,Observations astronomiques et physiques faites en l’isle de Caïenne(Paris, 1679).John W. Olmsted, “The Expedition of Jean Richer to Cayenne 1672-1673,”Isis(1942), vol. 34, pp. 117-128.[9]The Paris foot was 1.066 English feet, and there were 12 lines to the inch.[10]Christiaan Huygens, “De la cause de la pesanteur,”Divers ouvrages de mathematiques et de physique par MM. de l’AcadémieRoyaledes Sciences(Paris, 1693), p. 305.[11]Isaac Newton,Philosophiae naturalis principia mathematica(London, 1687), vol. 3, propositions 18-20.[12]Pierre Bouguer,La figure de la terre, déterminée par les observations de Messieurs Bouguer et de La Condamine, envoyés par ordre du Roy auPérou, pour observeraux environs de l’equateur(Paris, 1749).[13]P. L. Moreau de Maupertuis,La figure de la terre déterminée par les observations de Messieurs de Maupertuis, Clairaut, Camus, Le Monnier, l’Abbé Outhier et Celsius, faites par ordre du Roy au cercle polaire(Paris, 1738).[14]Paris, 1743.[15]George Gabriel Stokes, “On Attraction and on Clairaut’s Theorem,”Cambridge and Dublin Mathematical Journal(1849), vol. 4, p. 194.[16]SeeCollection de mémoires, vol. 4, p. B-34, andJ. H. PoyntingandSir J. J. Thomson,Properties of Matter(London, 1927), p. 24.[17]PoyntingandThomson, ibid., p. 22.[18]Charles M. de la Condamine, “De la mesure du pendule à Saint Domingue,”Collection de mémoires, vol. 4, pp. 3-16.[19]Père R. J. Boscovich,Opera pertinentia ad Opticam etAstronomiam(Bassani, 1785), vol. 5, no. 3.[20]J. C. BordaandJ. D. Cassini de Thury, “Expériences pourconnaître la longueurdu pendule qui bat les secondes à Paris,”Collection de mémoires, vol. 4, pp. 17-64.[21]F. W. Bessel, “Untersuchungen über die Länge des einfachen Secundenpendels,”Abhandlungen derKöniglichenAkademie der Wissenschaften zu Berlin, 1826(Berlin, 1828).[22]Bessel used as a standard of length a toise which had been made by Fortin in Paris and had been compared with the original of the “toise de Peru” by Arago.[23]L. G. du Buat,Principes d’hydraulique(Paris, 1786). See excerpts inCollection de mémoires, pp. B-64 to B-67.[24]Capt. Henry Kater, “An Account of Experiments for Determining the Length of the Pendulum Vibrating Seconds in the Latitude of London,”Philosophical Transactions of the Royal Society of London(1818), vol. 108, p. 33. [Hereinafter abbreviatedPhil. Trans.][25]M. G. de Prony, “Méthode pour déterminer lalongueurdu pendule simple qui bat les secondes,”Collection de mémoires, vol. 4, pp. 65-76.[26]Collection de mémoires, vol. 4, p. B-74.[27]Phil. Trans.(1819), vol. 109, p. 337.[28]John Herschel, “Notes for a History of the Use of Invariable Pendulums,”The Great Trigonometrical Survey of India(Calcutta, 1879), vol. 5.[29]Capt. Edward Sabine, “An Account of Experiments to Determine the Figure of the Earth,”Phil. Trans.(1828), vol. 118, p. 76.[30]John Goldingham, “Observations for Ascertaining the Length of the Pendulum at Madras in the East Indies,”Phil. Trans.(1822), vol. 112, p. 127.[31]Basil Hall, “Letter to Captain Kater Communicating the Details of Experiments made by him and Mr. Henry Foster with an Invariable Pendulum,”Phil. Trans.(1823), vol. 113, p. 211.[32]SeeCollection de mémoires, vol. 4, p. B-103.[33]Ibid., p. B-88.[34]Ibid., p. B-94.[35]Francis Baily, “On the Correction of a Pendulum for the Reduction to a Vacuum, Together with Remarks on Some Anomalies Observed in Pendulum Experiments,”Phil. Trans.(1832), vol. 122, pp. 399-492. See alsoCollection de mémoires, vol. 4, pp. B-105, B-112, B-115, B-116, and B-117.[36]One was of case brass and the other of rolled iron, 68 in. long, 2 in. wide, and 1/2 in. thick. Triangular knife edges 2 in. long were inserted through triangular apertures 19.7 in. from the center towards each end. These pendulums seem not to have survived. There is, however, in the collection of the U.S. National Museum, a similar brass pendulum, 37-5/8 in. long (fig.15) stamped with the name of Edward Kübel (1820-96), who maintained an instrument business in Washington, D.C., from about 1849. The history of this instrument is unknown.[37]See Baily’s remarks in theMonthly Notices of the Royal Astronomical Society(1839), vol. 4, pp. 141-143. See also letters mentioned in footnote38.[38]This document, together with certain manuscript notes on the pendulum experiments and six letters between Wilkes and Baily, is in the U.S. National Archives, Navy Records Gp. 37. These were the source materials for the information presented here on the Expedition. We are indebted to Miss Doris Ann Esch and Mr. Joseph Rudmann of the staff of the U.S. National Museum for calling our attention to this early American pendulum work.[39]G. B. Airy, “Account of Experiments Undertaken in the Harton Colliery, for the Purpose of Determining the Mean Density of the Earth,”Phil. Trans.(1856), vol. 146, p. 297.[40]T. C. Mendenhall, “Measurements of the Force of Gravity at Tokyo, and on the Summit of Fujiyama,”Memoirs of the Science Department, University of Tokyo(1881), no. 5.[41]J. T. Walker,Account of Operations of The Great TrigonometricalSurveyof India(Calcutta, 1879), vol. 5, app. no. 2.[42]Bessel, op. cit. (footnote21), article 31.[43]C. A. F. Peters,Briefwechsel zwischen C. F. Gauss und H. C. Schumacher(Altona, Germany, 1860),Band2, p. 3. The correction required if the times of swing are not exactly the same is said to have been given also by Bohnenberger.[44]F. W. Bessel, “Construction eines symmetrisch geformten Pendels mit reciproken Axen, von Bessel,”Astronomische Nachrichten(1849), vol. 30, p. 1.[45]E. Plantamour, “Expériences faites à Genève avec le pendule à réversion,”Mémoires de la Société de Physique etd’histoirenaturelle de Genève, 1865(Geneva, 1866), vol. 18, p. 309.[46]Ibid., pp. 309-416.[47]C. Cellérier, “Note sur la Mesure de la Pesanteur par le Pendule,”Mémoires de la Société de Physique etd’histoirenaturelle de Genève, 1865(Geneva, 1866), vol. 18, pp. 197-218.[48]A. Sawitsch, “Les variations de la pesanteur dans les provinces occidentales de l’Empire russe,”Memoirs of the Royal Astronomical Society(1872), vol. 39, p. 19.[49]J. J. Baeyer,Über dieGrösseund Figur der Erde(Berlin, 1861).[50]Comptes-rendus de la Conférence Géodésique Internationale réunie à Berlin du 15-22 Octobre 1864(Neuchâtel, 1865).[51]Ibid., part III, subpart E.[52]Bericht über die Verhandlungen der vom 30 September bis 7 October 1867 zu Berlin abgehaltenen allgemeinen Conferenz der Europäischen Gradmessung(Berlin, 1868). See report of fourth session, October 3, 1867.[53]C. BruhnsandAlbrecht, “Bestimmung derLängedes Secundenpendels in Bonn, Leiden und Mannheim,”Astronomisch-Geodätische Arbeiten im Jahre 1870(Leipzig: Veröffentlichungen desKöniglichenPreussischen Geodätischen Instituts, 1871).[54]Bericht über die Verhandlungen der vom 23 bis 28 September 1874 in Dresden abgehaltenen vierten allgemeinen Conferenz der Europäischen Gradmessung(Berlin, 1875). See report of second session, September 24, 1874.[55]Carolyn Eisele, “Charles S. Peirce—Nineteenth-Century Man of Science,”Scripta Mathematica(1959), vol 24, p. 305. For the account of the work of Peirce, the authors are greatly indebted to this pioneer paper on Peirce’s work on gravity. It is worth noting that the history of pendulum work in North America goes back to the celebrated Mason and Dixon, who made observations of “the going rate of a clock” at “the forks of the river Brandiwine in Pennsylvania,” in 1766-67. These observations were published inPhil. Trans.(1768), vol. 58, pp.329-335.[56]The pendulums with conical bobs are described and illustrated inE. D. Preston, “Determinations of Gravity and the Magnetic Elements in Connection with the United States Scientific Expedition to the West Coast of Africa, 1889-90,”Report of the Superintendent of the Coast and Geodetic Survey for 1889-90(Washington, 1891), app. no. 12.[57]Eisele, op. cit. (footnote55), p. 311.[58]The record of Peirce’s observations in Europe during 1875-76 is given inC. S. Peirce, “Measurements of Gravity at Initial Stations in America and Europe,”Report of the Superintendent of the Coast Survey for 1875-76(Washington, 1879), pp. 202-337 and 410-416. Peirce’s report is dated December 13, 1878, by which time the name of the Survey had been changed to U.S. Coast and Geodetic Survey.[59]Verhandlungen der vom 20 bis 29 September 1875 in Paris Vereinigten Permanenten Commission der Europäischen Gradmessung(Berlin, 1876).[60]Ibid. See report for fifth session, September 25, 1875.[61]The experiments at the Stevens Institute, Hoboken, were reported by Peirce to the Permanent Commission which met in Hamburg, September 4-8, 1878, and his report was published in the generalBerichtfor 1878 in theVerhandlungen der vom 4 bis 8 September 1878 in Hamburg Vereinigten Permanenten Commission der Europäischen Gradmessung(Berlin, 1879), pp. 116-120. Assistant J. E. Hilgard attended for the U.S. Coast and Geodetic Survey. The experiments are described in detail inC. S. Peirce, “On the Flexure of Pendulum Supports,”Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1880-81(Washington, 1883), app. no. 14, pp. 359-441.[62]Verhandlungen der vom 5 bis 10 Oktober 1876 in Brussels Vereinigten Permanenten Commission der Europäischen Gradmessung(Berlin, 1877). See report of third session, October 7, 1876.[63]Verhandlungen der vom 27 September bis 2 Oktober 1877 zu Stuttgart abgehaltenen fünften allgemeinen Conferenz der Europäischen Gradmessung(Berlin, 1878).[64]Verhandlung der vom 16 bis 20 September 1879 in Genf Vereinigten Permanenten Commission der Europäischen Gradmessung(Berlin, 1880).[65]Assistants’ Reports, U.S. Coast and Geodetic Survey, 1879-80.Peirce’s paper was published in theAmerican Journal of Science(1879), vol. 18, p. 112.[66]Comptes-rendus del’Académiedes Sciences(Paris, 1879), vol. 89, p. 462.[67]Verhandlungen der vom 13 bis 16 September 1880 zu München abgehaltenen sechsten allgemeinen Conferenz der Europäischen Gradmessung(Berlin, 1881).[68]Ibid., app. 2.[69]Ibid., app. 2a.[70]Verhandlungen der vom 11 bis zum 15 September 1882 im Haag Vereinigten Permanenten Commission der Europäischen Gradmessung(Berlin, 1883).[71]Verhandlungen der vom 15 bis 24 Oktober 1883 zu Rom abgehaltenen siebenten allgemeinen Conferenz der Europäischen Gradmessung(Berlin, 1884). Gen. Cutts attended for the U.S. Coast and Geodetic Survey.[72]Ibid., app. 6. See also,Zeitschrift für Instrumentenkunde(1884), vol. 4, pp. 303 and 379.[73]Op. cit. (footnote67).[74]Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1880-81(Washington, 1883), p. 26.[75]Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1889-90(Washington, 1891), app. no. 12.[76]Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1881-82(Washington, 1883).[77]Transactions of the Cambridge Philosophical Society(1856), vol. 9, part 2, p. 8. Also published inMathematical and Physical Papers(Cambridge, 1901), vol. 3, p. 1.[78]Peirce’s comparison of theory and experiment is discussed in a report on the Peirce memoir byWilliam Ferrel, dated October 19, 1890, Martinsburg, West Virginia.U.S. Coast and Geodetic Survey, Special Reports, 1887-1891(MS, National Archives, Washington).[79]The stations at which observations were conducted with the Peirce pendulums are recorded in the reports of the Superintendent of the U.S. Coast and Geodetic Survey from 1881 to 1890.[80]Comptes-rendus de l’Académie des Sciences(Paris, 1880), vol. 90, p. 1401.Hervé Faye’s report, dated June 21, 1880, is in the sameComptes-rendus, p. 1463.[81]Commandant C. Defforges, “Surl’Intensitéabsolue de la pesanteur,”Journal de Physique(1888), vol. 17, pp. 239, 347, 455. See also,Defforges, “Observations du pendule,”Mémorial du Dépôt général de la Guerre(Paris, 1894), vol. 15. In the latter work, Defforges described a pendulum “reversible inversable,” which he declared to be truly invariable and therefore appropriate for relative determinations. The knives remained fixed to the pendulums, and the effect of interchanging knives was obtained by interchanging weights within the pendulum tube.[82]Papers byMaj. von SterneckinMitteilungen des K. u. K. Militär-geographischen Instituts, Wien, 1882-87; see, in particular, vol. 7 (1887).[83]T. C. Mendenhall, “Determinations of Gravity with the New Half-Second Pendulum ...,”Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1890-91(Washington, 1892), part 2, pp. 503-564.[84]W. H. Burger, “The Measurement of the Flexure of Pendulum Supports with the Interferometer,”Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1909-10(Washington, 1911), app. no. 6.[85]E. J. Brown,A Determination of the Relative Values of Gravity at Potsdam and Washington(Special Publication No. 204, U.S. Coast and Geodetic Survey; Washington, 1936).[86]M. Haid, “Neues Pendelstativ,”Zeitschrift für Instrumentenkunde(July 1896), vol. 16, p. 193.[87]Dr. R. Schumann, “Über eine Methode, das Mitschwingen bei relativen Schweremessungen zu bestimmen,”Zeitschrift für Instrumentenkunde(January 1897), vol. 17, p. 7. The design for the stand is similar to that of Peirce’s of 1879.[88]Dr. R. Schumann, “Über die Verwendung zweier Pendel auf gemeinsamer Unterlage zur Bestimmung der Mitschwingung,”Zeitschrift für Mathematik und Physik(1899), vol. 44, p. 44.[89]P. Furtwängler, “Über die Schwingungen zweier Pendel mit annähernd gleicher Schwingungsdauer auf gemeinsamer Unterlage,”Sitzungsberichte derKöniglicherPreussischen Akademie der Wissenschaften zu Berlin(Berlin, 1902) pp. 245-253. Peirce investigated the plan of swinging two pendulums on the same stand (Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1880-81, Washington, 1883, p. 26; also inCharles Sanders Peirce,Collected Papers, 6.273). At a conference on gravity held in Washington during May 1882, Peirce again advanced the method of eliminating flexure by hanging two pendulums on one support and oscillating them in antiphase (“Report of a conference on gravity determinations held in Washington, D.C., in May, 1882,”Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1881-82, Washington, 1883, app. no. 22, pp. 503-516).[90]F. A. Vening Meinesz,Observations de pendule dans les Pays-Bas(Delft, 1923).[91]A. Berroth, “Schweremessungen mit zwei und vier gleichzeitig auf demselben Stativ schwingenden Pendeln,”Zeitschrift für Geophysik, vol. 1 (1924-25), no. 3, p. 93.[92]“Pendulum Apparatus for Gravity Determinations,”Engineering(1926), vol. 122, pp. 271-272.[93]Malcolm W. Gay, “Relative Gravity Measurements Using Precision Pendulum Equipment,”Geophysics(1940), vol. 5, pp. 176-191.[94]L. G. D. Thompson, “An Improved Bronze Pendulum Apparatus for Relative Gravity Determinations,” [published by]Dominion Observatory(Ottawa, 1959), vol. 21, no. 3, pp. 145-176.[95]W. A. HeiskanenandF. A. Vening Meinesz,The Earth and its Gravity Field(McGraw: New York, 1958).[96]F. KühnenandP. Furtwängler,Bestimmung der Absoluten Grösze der Schwerkraft zu Potsdam mit Reversionspendeln(Berlin: Veröffentlichungen des Königlichen Preussischen Geodätischen Instituts, 1906), new ser., no. 27.[97]Reported by Dr. F. Kühnen to the fifth session, October 9, 1895, of the Eleventh General Conference,Die Internationale Erdmessung, held in Berlin from September 25 to October 12, 1895. A footnote states that Assistant O. H. Tittmann, who represented the United States, subsequently reported Peirce’s prior discovery of the influence of the flexure of the pendulum itself upon the period (Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1883-84, Washington, 1885, app. 16, pp. 483-485).[98]Assistants’ Reports, U.S. Coast and Geodetic Survey, 1883-84(MS, National Archives, Washington).[99]C. S. Peirce, “Effect of the Flexure of a Pendulum Upon its Period of Oscillation,”Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1883-84(Washington, 1885), app. no. 16.[100]F. R. Helmert,Beiträge zur Theorie des Reversionspendels(Potsdam: Veröffentlichungendes KöniglichenPreussischen Geodätischen Instituts, 1898).[101]J. A. Duerksen,Pendulum Gravity Data in the United States(Special Publication No. 244, U.S. Coast and Geodetic Survey; Washington, 1949).[102]Ibid., p. 2. See also,E. J. Brown, loc. cit. (footnote85).[103]Paul R. HeylandGuy S. Cook, “The Value of Gravity at Washington,”Journal of Research, National Bureau of Standards(1936), vol. 17, p. 805.[104]Sir Harold Jeffreys, “The Absolute Value of Gravity,”Monthly Notices of the Royal Astronomical Society, Geophysical Supplement(London, 1949), vol. 5, p. 398.[105]J. S. Clark, “The Acceleration Due to Gravity,”Phil. Trans.(1939), vol. 238, p. 65.[106]Hugh L. Dryden, “A Reexamination of the Potsdam Absolute Determination of Gravity,”Journal of Research, National Bureau of Standards(1942), vol. 29, p. 303; andA. Berroth, “Das Fundamentalsystem der Schwere im Lichte neuer Reversionspendelmessungen,”Bulletin Géodésique(1949), no. 12, pp. 183-204.[107]T. C. Mendenhall, op. cit. (footnote83), p. 522.[108]A. H. Cook, “Recent Developments in the Absolute Measurement of Gravity,”Bulletin Géodésique(June 1, 1957), no. 44, pp. 34-59.[109]See footnote89.[110]C. S. Peirce, “On the Deduction of the Ellipticity of the Earth, from Pendulum Experiments,”Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1880-81(Washington, 1883), app. no. 15, pp. 442-456.[111]HeiskanenandVening Meinesz, op. cit. (footnote95), p. 74.[112]Ibid., p. 76.[113]Ibid., p. 309.[114]Ibid., p. 310.[115]K. Reicheneder, “Method of the New Measurements at Potsdam by Means of the Reversible Pendulum,”Bulletin Géodésique(March 1, 1959), no. 51, p.72.
[1]The basic historical documents have been collected, with a bibliography of works and memoirs published from 1629 to the end of 1885, inCollection de mémoires relatifs a la physique, publiés par la Sociétéfrançaisede Physique[hereinafter referred to asCollection de mémoires]: vol. 4,Mémoires sur le pendule, précédés d’une bibliographie(Paris: Gauthier-Villars, 1889); and vol. 5,Mémoires sur le pendule, part 2 (Paris: Gauthier-Villars, 1891). Important secondary sources are:C. Wolf, “Introduction historique,” pp. 1-42 in vol. 4, above; andGeorge Biddell Airy, “Figure of the Earth,” pp. 165-240 in vol. 5 ofEncyclopaedia metropolitana(London, 1845).
[1]The basic historical documents have been collected, with a bibliography of works and memoirs published from 1629 to the end of 1885, inCollection de mémoires relatifs a la physique, publiés par la Sociétéfrançaisede Physique[hereinafter referred to asCollection de mémoires]: vol. 4,Mémoires sur le pendule, précédés d’une bibliographie(Paris: Gauthier-Villars, 1889); and vol. 5,Mémoires sur le pendule, part 2 (Paris: Gauthier-Villars, 1891). Important secondary sources are:C. Wolf, “Introduction historique,” pp. 1-42 in vol. 4, above; andGeorge Biddell Airy, “Figure of the Earth,” pp. 165-240 in vol. 5 ofEncyclopaedia metropolitana(London, 1845).
[2]Galileo Galilei’s principal statements concerning the pendulum occur in hisDiscourses Concerning Two New Sciences, transl. from Italian and Latin into English by Henry Crew and Alfonso de Salvio (Evanston: Northwestern University Press, 1939), pp. 95-97, 170-172.
[2]Galileo Galilei’s principal statements concerning the pendulum occur in hisDiscourses Concerning Two New Sciences, transl. from Italian and Latin into English by Henry Crew and Alfonso de Salvio (Evanston: Northwestern University Press, 1939), pp. 95-97, 170-172.
[3]P. Marin Mersenne,Cogitataphysico-mathematica(Paris, 1644), p. 44.
[3]P. Marin Mersenne,Cogitataphysico-mathematica(Paris, 1644), p. 44.
[4]Christiaan Huygens,Horologium oscillatorium, sive de motu pendulorum ad horologia adaptato demonstrationes geometricae(Paris, 1673), proposition 20.
[4]Christiaan Huygens,Horologium oscillatorium, sive de motu pendulorum ad horologia adaptato demonstrationes geometricae(Paris, 1673), proposition 20.
[5]The historical events reported in the present section are fromAiry, “Figure of the Earth.”
[5]The historical events reported in the present section are fromAiry, “Figure of the Earth.”
[6]Abbé Jean Picard,La Mesure de la terre(Paris, 1671).John W. Olmsted, “The ‘Application’ of Telescopes to Astronomical Instruments, 1667-1669,”Isis(1949), vol. 40, p. 213.
[6]Abbé Jean Picard,La Mesure de la terre(Paris, 1671).John W. Olmsted, “The ‘Application’ of Telescopes to Astronomical Instruments, 1667-1669,”Isis(1949), vol. 40, p. 213.
[7]The toise as a unit of length was 6 Paris feet or about 1,949 millimeters.
[7]The toise as a unit of length was 6 Paris feet or about 1,949 millimeters.
[8]Jean Richer,Observations astronomiques et physiques faites en l’isle de Caïenne(Paris, 1679).John W. Olmsted, “The Expedition of Jean Richer to Cayenne 1672-1673,”Isis(1942), vol. 34, pp. 117-128.
[8]Jean Richer,Observations astronomiques et physiques faites en l’isle de Caïenne(Paris, 1679).John W. Olmsted, “The Expedition of Jean Richer to Cayenne 1672-1673,”Isis(1942), vol. 34, pp. 117-128.
[9]The Paris foot was 1.066 English feet, and there were 12 lines to the inch.
[9]The Paris foot was 1.066 English feet, and there were 12 lines to the inch.
[10]Christiaan Huygens, “De la cause de la pesanteur,”Divers ouvrages de mathematiques et de physique par MM. de l’AcadémieRoyaledes Sciences(Paris, 1693), p. 305.
[10]Christiaan Huygens, “De la cause de la pesanteur,”Divers ouvrages de mathematiques et de physique par MM. de l’AcadémieRoyaledes Sciences(Paris, 1693), p. 305.
[11]Isaac Newton,Philosophiae naturalis principia mathematica(London, 1687), vol. 3, propositions 18-20.
[11]Isaac Newton,Philosophiae naturalis principia mathematica(London, 1687), vol. 3, propositions 18-20.
[12]Pierre Bouguer,La figure de la terre, déterminée par les observations de Messieurs Bouguer et de La Condamine, envoyés par ordre du Roy auPérou, pour observeraux environs de l’equateur(Paris, 1749).
[12]Pierre Bouguer,La figure de la terre, déterminée par les observations de Messieurs Bouguer et de La Condamine, envoyés par ordre du Roy auPérou, pour observeraux environs de l’equateur(Paris, 1749).
[13]P. L. Moreau de Maupertuis,La figure de la terre déterminée par les observations de Messieurs de Maupertuis, Clairaut, Camus, Le Monnier, l’Abbé Outhier et Celsius, faites par ordre du Roy au cercle polaire(Paris, 1738).
[13]P. L. Moreau de Maupertuis,La figure de la terre déterminée par les observations de Messieurs de Maupertuis, Clairaut, Camus, Le Monnier, l’Abbé Outhier et Celsius, faites par ordre du Roy au cercle polaire(Paris, 1738).
[14]Paris, 1743.
[14]Paris, 1743.
[15]George Gabriel Stokes, “On Attraction and on Clairaut’s Theorem,”Cambridge and Dublin Mathematical Journal(1849), vol. 4, p. 194.
[15]George Gabriel Stokes, “On Attraction and on Clairaut’s Theorem,”Cambridge and Dublin Mathematical Journal(1849), vol. 4, p. 194.
[16]SeeCollection de mémoires, vol. 4, p. B-34, andJ. H. PoyntingandSir J. J. Thomson,Properties of Matter(London, 1927), p. 24.
[16]SeeCollection de mémoires, vol. 4, p. B-34, andJ. H. PoyntingandSir J. J. Thomson,Properties of Matter(London, 1927), p. 24.
[17]PoyntingandThomson, ibid., p. 22.
[17]PoyntingandThomson, ibid., p. 22.
[18]Charles M. de la Condamine, “De la mesure du pendule à Saint Domingue,”Collection de mémoires, vol. 4, pp. 3-16.
[18]Charles M. de la Condamine, “De la mesure du pendule à Saint Domingue,”Collection de mémoires, vol. 4, pp. 3-16.
[19]Père R. J. Boscovich,Opera pertinentia ad Opticam etAstronomiam(Bassani, 1785), vol. 5, no. 3.
[19]Père R. J. Boscovich,Opera pertinentia ad Opticam etAstronomiam(Bassani, 1785), vol. 5, no. 3.
[20]J. C. BordaandJ. D. Cassini de Thury, “Expériences pourconnaître la longueurdu pendule qui bat les secondes à Paris,”Collection de mémoires, vol. 4, pp. 17-64.
[20]J. C. BordaandJ. D. Cassini de Thury, “Expériences pourconnaître la longueurdu pendule qui bat les secondes à Paris,”Collection de mémoires, vol. 4, pp. 17-64.
[21]F. W. Bessel, “Untersuchungen über die Länge des einfachen Secundenpendels,”Abhandlungen derKöniglichenAkademie der Wissenschaften zu Berlin, 1826(Berlin, 1828).
[21]F. W. Bessel, “Untersuchungen über die Länge des einfachen Secundenpendels,”Abhandlungen derKöniglichenAkademie der Wissenschaften zu Berlin, 1826(Berlin, 1828).
[22]Bessel used as a standard of length a toise which had been made by Fortin in Paris and had been compared with the original of the “toise de Peru” by Arago.
[22]Bessel used as a standard of length a toise which had been made by Fortin in Paris and had been compared with the original of the “toise de Peru” by Arago.
[23]L. G. du Buat,Principes d’hydraulique(Paris, 1786). See excerpts inCollection de mémoires, pp. B-64 to B-67.
[23]L. G. du Buat,Principes d’hydraulique(Paris, 1786). See excerpts inCollection de mémoires, pp. B-64 to B-67.
[24]Capt. Henry Kater, “An Account of Experiments for Determining the Length of the Pendulum Vibrating Seconds in the Latitude of London,”Philosophical Transactions of the Royal Society of London(1818), vol. 108, p. 33. [Hereinafter abbreviatedPhil. Trans.]
[24]Capt. Henry Kater, “An Account of Experiments for Determining the Length of the Pendulum Vibrating Seconds in the Latitude of London,”Philosophical Transactions of the Royal Society of London(1818), vol. 108, p. 33. [Hereinafter abbreviatedPhil. Trans.]
[25]M. G. de Prony, “Méthode pour déterminer lalongueurdu pendule simple qui bat les secondes,”Collection de mémoires, vol. 4, pp. 65-76.
[25]M. G. de Prony, “Méthode pour déterminer lalongueurdu pendule simple qui bat les secondes,”Collection de mémoires, vol. 4, pp. 65-76.
[26]Collection de mémoires, vol. 4, p. B-74.
[26]Collection de mémoires, vol. 4, p. B-74.
[27]Phil. Trans.(1819), vol. 109, p. 337.
[27]Phil. Trans.(1819), vol. 109, p. 337.
[28]John Herschel, “Notes for a History of the Use of Invariable Pendulums,”The Great Trigonometrical Survey of India(Calcutta, 1879), vol. 5.
[28]John Herschel, “Notes for a History of the Use of Invariable Pendulums,”The Great Trigonometrical Survey of India(Calcutta, 1879), vol. 5.
[29]Capt. Edward Sabine, “An Account of Experiments to Determine the Figure of the Earth,”Phil. Trans.(1828), vol. 118, p. 76.
[29]Capt. Edward Sabine, “An Account of Experiments to Determine the Figure of the Earth,”Phil. Trans.(1828), vol. 118, p. 76.
[30]John Goldingham, “Observations for Ascertaining the Length of the Pendulum at Madras in the East Indies,”Phil. Trans.(1822), vol. 112, p. 127.
[30]John Goldingham, “Observations for Ascertaining the Length of the Pendulum at Madras in the East Indies,”Phil. Trans.(1822), vol. 112, p. 127.
[31]Basil Hall, “Letter to Captain Kater Communicating the Details of Experiments made by him and Mr. Henry Foster with an Invariable Pendulum,”Phil. Trans.(1823), vol. 113, p. 211.
[31]Basil Hall, “Letter to Captain Kater Communicating the Details of Experiments made by him and Mr. Henry Foster with an Invariable Pendulum,”Phil. Trans.(1823), vol. 113, p. 211.
[32]SeeCollection de mémoires, vol. 4, p. B-103.
[32]SeeCollection de mémoires, vol. 4, p. B-103.
[33]Ibid., p. B-88.
[33]Ibid., p. B-88.
[34]Ibid., p. B-94.
[34]Ibid., p. B-94.
[35]Francis Baily, “On the Correction of a Pendulum for the Reduction to a Vacuum, Together with Remarks on Some Anomalies Observed in Pendulum Experiments,”Phil. Trans.(1832), vol. 122, pp. 399-492. See alsoCollection de mémoires, vol. 4, pp. B-105, B-112, B-115, B-116, and B-117.
[35]Francis Baily, “On the Correction of a Pendulum for the Reduction to a Vacuum, Together with Remarks on Some Anomalies Observed in Pendulum Experiments,”Phil. Trans.(1832), vol. 122, pp. 399-492. See alsoCollection de mémoires, vol. 4, pp. B-105, B-112, B-115, B-116, and B-117.
[36]One was of case brass and the other of rolled iron, 68 in. long, 2 in. wide, and 1/2 in. thick. Triangular knife edges 2 in. long were inserted through triangular apertures 19.7 in. from the center towards each end. These pendulums seem not to have survived. There is, however, in the collection of the U.S. National Museum, a similar brass pendulum, 37-5/8 in. long (fig.15) stamped with the name of Edward Kübel (1820-96), who maintained an instrument business in Washington, D.C., from about 1849. The history of this instrument is unknown.
[36]One was of case brass and the other of rolled iron, 68 in. long, 2 in. wide, and 1/2 in. thick. Triangular knife edges 2 in. long were inserted through triangular apertures 19.7 in. from the center towards each end. These pendulums seem not to have survived. There is, however, in the collection of the U.S. National Museum, a similar brass pendulum, 37-5/8 in. long (fig.15) stamped with the name of Edward Kübel (1820-96), who maintained an instrument business in Washington, D.C., from about 1849. The history of this instrument is unknown.
[37]See Baily’s remarks in theMonthly Notices of the Royal Astronomical Society(1839), vol. 4, pp. 141-143. See also letters mentioned in footnote38.
[37]See Baily’s remarks in theMonthly Notices of the Royal Astronomical Society(1839), vol. 4, pp. 141-143. See also letters mentioned in footnote38.
[38]This document, together with certain manuscript notes on the pendulum experiments and six letters between Wilkes and Baily, is in the U.S. National Archives, Navy Records Gp. 37. These were the source materials for the information presented here on the Expedition. We are indebted to Miss Doris Ann Esch and Mr. Joseph Rudmann of the staff of the U.S. National Museum for calling our attention to this early American pendulum work.
[38]This document, together with certain manuscript notes on the pendulum experiments and six letters between Wilkes and Baily, is in the U.S. National Archives, Navy Records Gp. 37. These were the source materials for the information presented here on the Expedition. We are indebted to Miss Doris Ann Esch and Mr. Joseph Rudmann of the staff of the U.S. National Museum for calling our attention to this early American pendulum work.
[39]G. B. Airy, “Account of Experiments Undertaken in the Harton Colliery, for the Purpose of Determining the Mean Density of the Earth,”Phil. Trans.(1856), vol. 146, p. 297.
[39]G. B. Airy, “Account of Experiments Undertaken in the Harton Colliery, for the Purpose of Determining the Mean Density of the Earth,”Phil. Trans.(1856), vol. 146, p. 297.
[40]T. C. Mendenhall, “Measurements of the Force of Gravity at Tokyo, and on the Summit of Fujiyama,”Memoirs of the Science Department, University of Tokyo(1881), no. 5.
[40]T. C. Mendenhall, “Measurements of the Force of Gravity at Tokyo, and on the Summit of Fujiyama,”Memoirs of the Science Department, University of Tokyo(1881), no. 5.
[41]J. T. Walker,Account of Operations of The Great TrigonometricalSurveyof India(Calcutta, 1879), vol. 5, app. no. 2.
[41]J. T. Walker,Account of Operations of The Great TrigonometricalSurveyof India(Calcutta, 1879), vol. 5, app. no. 2.
[42]Bessel, op. cit. (footnote21), article 31.
[42]Bessel, op. cit. (footnote21), article 31.
[43]C. A. F. Peters,Briefwechsel zwischen C. F. Gauss und H. C. Schumacher(Altona, Germany, 1860),Band2, p. 3. The correction required if the times of swing are not exactly the same is said to have been given also by Bohnenberger.
[43]C. A. F. Peters,Briefwechsel zwischen C. F. Gauss und H. C. Schumacher(Altona, Germany, 1860),Band2, p. 3. The correction required if the times of swing are not exactly the same is said to have been given also by Bohnenberger.
[44]F. W. Bessel, “Construction eines symmetrisch geformten Pendels mit reciproken Axen, von Bessel,”Astronomische Nachrichten(1849), vol. 30, p. 1.
[44]F. W. Bessel, “Construction eines symmetrisch geformten Pendels mit reciproken Axen, von Bessel,”Astronomische Nachrichten(1849), vol. 30, p. 1.
[45]E. Plantamour, “Expériences faites à Genève avec le pendule à réversion,”Mémoires de la Société de Physique etd’histoirenaturelle de Genève, 1865(Geneva, 1866), vol. 18, p. 309.
[45]E. Plantamour, “Expériences faites à Genève avec le pendule à réversion,”Mémoires de la Société de Physique etd’histoirenaturelle de Genève, 1865(Geneva, 1866), vol. 18, p. 309.
[46]Ibid., pp. 309-416.
[46]Ibid., pp. 309-416.
[47]C. Cellérier, “Note sur la Mesure de la Pesanteur par le Pendule,”Mémoires de la Société de Physique etd’histoirenaturelle de Genève, 1865(Geneva, 1866), vol. 18, pp. 197-218.
[47]C. Cellérier, “Note sur la Mesure de la Pesanteur par le Pendule,”Mémoires de la Société de Physique etd’histoirenaturelle de Genève, 1865(Geneva, 1866), vol. 18, pp. 197-218.
[48]A. Sawitsch, “Les variations de la pesanteur dans les provinces occidentales de l’Empire russe,”Memoirs of the Royal Astronomical Society(1872), vol. 39, p. 19.
[48]A. Sawitsch, “Les variations de la pesanteur dans les provinces occidentales de l’Empire russe,”Memoirs of the Royal Astronomical Society(1872), vol. 39, p. 19.
[49]J. J. Baeyer,Über dieGrösseund Figur der Erde(Berlin, 1861).
[49]J. J. Baeyer,Über dieGrösseund Figur der Erde(Berlin, 1861).
[50]Comptes-rendus de la Conférence Géodésique Internationale réunie à Berlin du 15-22 Octobre 1864(Neuchâtel, 1865).
[50]Comptes-rendus de la Conférence Géodésique Internationale réunie à Berlin du 15-22 Octobre 1864(Neuchâtel, 1865).
[51]Ibid., part III, subpart E.
[51]Ibid., part III, subpart E.
[52]Bericht über die Verhandlungen der vom 30 September bis 7 October 1867 zu Berlin abgehaltenen allgemeinen Conferenz der Europäischen Gradmessung(Berlin, 1868). See report of fourth session, October 3, 1867.
[52]Bericht über die Verhandlungen der vom 30 September bis 7 October 1867 zu Berlin abgehaltenen allgemeinen Conferenz der Europäischen Gradmessung(Berlin, 1868). See report of fourth session, October 3, 1867.
[53]C. BruhnsandAlbrecht, “Bestimmung derLängedes Secundenpendels in Bonn, Leiden und Mannheim,”Astronomisch-Geodätische Arbeiten im Jahre 1870(Leipzig: Veröffentlichungen desKöniglichenPreussischen Geodätischen Instituts, 1871).
[53]C. BruhnsandAlbrecht, “Bestimmung derLängedes Secundenpendels in Bonn, Leiden und Mannheim,”Astronomisch-Geodätische Arbeiten im Jahre 1870(Leipzig: Veröffentlichungen desKöniglichenPreussischen Geodätischen Instituts, 1871).
[54]Bericht über die Verhandlungen der vom 23 bis 28 September 1874 in Dresden abgehaltenen vierten allgemeinen Conferenz der Europäischen Gradmessung(Berlin, 1875). See report of second session, September 24, 1874.
[54]Bericht über die Verhandlungen der vom 23 bis 28 September 1874 in Dresden abgehaltenen vierten allgemeinen Conferenz der Europäischen Gradmessung(Berlin, 1875). See report of second session, September 24, 1874.
[55]Carolyn Eisele, “Charles S. Peirce—Nineteenth-Century Man of Science,”Scripta Mathematica(1959), vol 24, p. 305. For the account of the work of Peirce, the authors are greatly indebted to this pioneer paper on Peirce’s work on gravity. It is worth noting that the history of pendulum work in North America goes back to the celebrated Mason and Dixon, who made observations of “the going rate of a clock” at “the forks of the river Brandiwine in Pennsylvania,” in 1766-67. These observations were published inPhil. Trans.(1768), vol. 58, pp.329-335.
[55]Carolyn Eisele, “Charles S. Peirce—Nineteenth-Century Man of Science,”Scripta Mathematica(1959), vol 24, p. 305. For the account of the work of Peirce, the authors are greatly indebted to this pioneer paper on Peirce’s work on gravity. It is worth noting that the history of pendulum work in North America goes back to the celebrated Mason and Dixon, who made observations of “the going rate of a clock” at “the forks of the river Brandiwine in Pennsylvania,” in 1766-67. These observations were published inPhil. Trans.(1768), vol. 58, pp.329-335.
[56]The pendulums with conical bobs are described and illustrated inE. D. Preston, “Determinations of Gravity and the Magnetic Elements in Connection with the United States Scientific Expedition to the West Coast of Africa, 1889-90,”Report of the Superintendent of the Coast and Geodetic Survey for 1889-90(Washington, 1891), app. no. 12.
[56]The pendulums with conical bobs are described and illustrated inE. D. Preston, “Determinations of Gravity and the Magnetic Elements in Connection with the United States Scientific Expedition to the West Coast of Africa, 1889-90,”Report of the Superintendent of the Coast and Geodetic Survey for 1889-90(Washington, 1891), app. no. 12.
[57]Eisele, op. cit. (footnote55), p. 311.
[57]Eisele, op. cit. (footnote55), p. 311.
[58]The record of Peirce’s observations in Europe during 1875-76 is given inC. S. Peirce, “Measurements of Gravity at Initial Stations in America and Europe,”Report of the Superintendent of the Coast Survey for 1875-76(Washington, 1879), pp. 202-337 and 410-416. Peirce’s report is dated December 13, 1878, by which time the name of the Survey had been changed to U.S. Coast and Geodetic Survey.
[58]The record of Peirce’s observations in Europe during 1875-76 is given inC. S. Peirce, “Measurements of Gravity at Initial Stations in America and Europe,”Report of the Superintendent of the Coast Survey for 1875-76(Washington, 1879), pp. 202-337 and 410-416. Peirce’s report is dated December 13, 1878, by which time the name of the Survey had been changed to U.S. Coast and Geodetic Survey.
[59]Verhandlungen der vom 20 bis 29 September 1875 in Paris Vereinigten Permanenten Commission der Europäischen Gradmessung(Berlin, 1876).
[59]Verhandlungen der vom 20 bis 29 September 1875 in Paris Vereinigten Permanenten Commission der Europäischen Gradmessung(Berlin, 1876).
[60]Ibid. See report for fifth session, September 25, 1875.
[60]Ibid. See report for fifth session, September 25, 1875.
[61]The experiments at the Stevens Institute, Hoboken, were reported by Peirce to the Permanent Commission which met in Hamburg, September 4-8, 1878, and his report was published in the generalBerichtfor 1878 in theVerhandlungen der vom 4 bis 8 September 1878 in Hamburg Vereinigten Permanenten Commission der Europäischen Gradmessung(Berlin, 1879), pp. 116-120. Assistant J. E. Hilgard attended for the U.S. Coast and Geodetic Survey. The experiments are described in detail inC. S. Peirce, “On the Flexure of Pendulum Supports,”Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1880-81(Washington, 1883), app. no. 14, pp. 359-441.
[61]The experiments at the Stevens Institute, Hoboken, were reported by Peirce to the Permanent Commission which met in Hamburg, September 4-8, 1878, and his report was published in the generalBerichtfor 1878 in theVerhandlungen der vom 4 bis 8 September 1878 in Hamburg Vereinigten Permanenten Commission der Europäischen Gradmessung(Berlin, 1879), pp. 116-120. Assistant J. E. Hilgard attended for the U.S. Coast and Geodetic Survey. The experiments are described in detail inC. S. Peirce, “On the Flexure of Pendulum Supports,”Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1880-81(Washington, 1883), app. no. 14, pp. 359-441.
[62]Verhandlungen der vom 5 bis 10 Oktober 1876 in Brussels Vereinigten Permanenten Commission der Europäischen Gradmessung(Berlin, 1877). See report of third session, October 7, 1876.
[62]Verhandlungen der vom 5 bis 10 Oktober 1876 in Brussels Vereinigten Permanenten Commission der Europäischen Gradmessung(Berlin, 1877). See report of third session, October 7, 1876.
[63]Verhandlungen der vom 27 September bis 2 Oktober 1877 zu Stuttgart abgehaltenen fünften allgemeinen Conferenz der Europäischen Gradmessung(Berlin, 1878).
[63]Verhandlungen der vom 27 September bis 2 Oktober 1877 zu Stuttgart abgehaltenen fünften allgemeinen Conferenz der Europäischen Gradmessung(Berlin, 1878).
[64]Verhandlung der vom 16 bis 20 September 1879 in Genf Vereinigten Permanenten Commission der Europäischen Gradmessung(Berlin, 1880).
[64]Verhandlung der vom 16 bis 20 September 1879 in Genf Vereinigten Permanenten Commission der Europäischen Gradmessung(Berlin, 1880).
[65]Assistants’ Reports, U.S. Coast and Geodetic Survey, 1879-80.Peirce’s paper was published in theAmerican Journal of Science(1879), vol. 18, p. 112.
[65]Assistants’ Reports, U.S. Coast and Geodetic Survey, 1879-80.Peirce’s paper was published in theAmerican Journal of Science(1879), vol. 18, p. 112.
[66]Comptes-rendus del’Académiedes Sciences(Paris, 1879), vol. 89, p. 462.
[66]Comptes-rendus del’Académiedes Sciences(Paris, 1879), vol. 89, p. 462.
[67]Verhandlungen der vom 13 bis 16 September 1880 zu München abgehaltenen sechsten allgemeinen Conferenz der Europäischen Gradmessung(Berlin, 1881).
[67]Verhandlungen der vom 13 bis 16 September 1880 zu München abgehaltenen sechsten allgemeinen Conferenz der Europäischen Gradmessung(Berlin, 1881).
[68]Ibid., app. 2.
[68]Ibid., app. 2.
[69]Ibid., app. 2a.
[69]Ibid., app. 2a.
[70]Verhandlungen der vom 11 bis zum 15 September 1882 im Haag Vereinigten Permanenten Commission der Europäischen Gradmessung(Berlin, 1883).
[70]Verhandlungen der vom 11 bis zum 15 September 1882 im Haag Vereinigten Permanenten Commission der Europäischen Gradmessung(Berlin, 1883).
[71]Verhandlungen der vom 15 bis 24 Oktober 1883 zu Rom abgehaltenen siebenten allgemeinen Conferenz der Europäischen Gradmessung(Berlin, 1884). Gen. Cutts attended for the U.S. Coast and Geodetic Survey.
[71]Verhandlungen der vom 15 bis 24 Oktober 1883 zu Rom abgehaltenen siebenten allgemeinen Conferenz der Europäischen Gradmessung(Berlin, 1884). Gen. Cutts attended for the U.S. Coast and Geodetic Survey.
[72]Ibid., app. 6. See also,Zeitschrift für Instrumentenkunde(1884), vol. 4, pp. 303 and 379.
[72]Ibid., app. 6. See also,Zeitschrift für Instrumentenkunde(1884), vol. 4, pp. 303 and 379.
[73]Op. cit. (footnote67).
[73]Op. cit. (footnote67).
[74]Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1880-81(Washington, 1883), p. 26.
[74]Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1880-81(Washington, 1883), p. 26.
[75]Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1889-90(Washington, 1891), app. no. 12.
[75]Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1889-90(Washington, 1891), app. no. 12.
[76]Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1881-82(Washington, 1883).
[76]Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1881-82(Washington, 1883).
[77]Transactions of the Cambridge Philosophical Society(1856), vol. 9, part 2, p. 8. Also published inMathematical and Physical Papers(Cambridge, 1901), vol. 3, p. 1.
[77]Transactions of the Cambridge Philosophical Society(1856), vol. 9, part 2, p. 8. Also published inMathematical and Physical Papers(Cambridge, 1901), vol. 3, p. 1.
[78]Peirce’s comparison of theory and experiment is discussed in a report on the Peirce memoir byWilliam Ferrel, dated October 19, 1890, Martinsburg, West Virginia.U.S. Coast and Geodetic Survey, Special Reports, 1887-1891(MS, National Archives, Washington).
[78]Peirce’s comparison of theory and experiment is discussed in a report on the Peirce memoir byWilliam Ferrel, dated October 19, 1890, Martinsburg, West Virginia.U.S. Coast and Geodetic Survey, Special Reports, 1887-1891(MS, National Archives, Washington).
[79]The stations at which observations were conducted with the Peirce pendulums are recorded in the reports of the Superintendent of the U.S. Coast and Geodetic Survey from 1881 to 1890.
[79]The stations at which observations were conducted with the Peirce pendulums are recorded in the reports of the Superintendent of the U.S. Coast and Geodetic Survey from 1881 to 1890.
[80]Comptes-rendus de l’Académie des Sciences(Paris, 1880), vol. 90, p. 1401.Hervé Faye’s report, dated June 21, 1880, is in the sameComptes-rendus, p. 1463.
[80]Comptes-rendus de l’Académie des Sciences(Paris, 1880), vol. 90, p. 1401.Hervé Faye’s report, dated June 21, 1880, is in the sameComptes-rendus, p. 1463.
[81]Commandant C. Defforges, “Surl’Intensitéabsolue de la pesanteur,”Journal de Physique(1888), vol. 17, pp. 239, 347, 455. See also,Defforges, “Observations du pendule,”Mémorial du Dépôt général de la Guerre(Paris, 1894), vol. 15. In the latter work, Defforges described a pendulum “reversible inversable,” which he declared to be truly invariable and therefore appropriate for relative determinations. The knives remained fixed to the pendulums, and the effect of interchanging knives was obtained by interchanging weights within the pendulum tube.
[81]Commandant C. Defforges, “Surl’Intensitéabsolue de la pesanteur,”Journal de Physique(1888), vol. 17, pp. 239, 347, 455. See also,Defforges, “Observations du pendule,”Mémorial du Dépôt général de la Guerre(Paris, 1894), vol. 15. In the latter work, Defforges described a pendulum “reversible inversable,” which he declared to be truly invariable and therefore appropriate for relative determinations. The knives remained fixed to the pendulums, and the effect of interchanging knives was obtained by interchanging weights within the pendulum tube.
[82]Papers byMaj. von SterneckinMitteilungen des K. u. K. Militär-geographischen Instituts, Wien, 1882-87; see, in particular, vol. 7 (1887).
[82]Papers byMaj. von SterneckinMitteilungen des K. u. K. Militär-geographischen Instituts, Wien, 1882-87; see, in particular, vol. 7 (1887).
[83]T. C. Mendenhall, “Determinations of Gravity with the New Half-Second Pendulum ...,”Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1890-91(Washington, 1892), part 2, pp. 503-564.
[83]T. C. Mendenhall, “Determinations of Gravity with the New Half-Second Pendulum ...,”Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1890-91(Washington, 1892), part 2, pp. 503-564.
[84]W. H. Burger, “The Measurement of the Flexure of Pendulum Supports with the Interferometer,”Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1909-10(Washington, 1911), app. no. 6.
[84]W. H. Burger, “The Measurement of the Flexure of Pendulum Supports with the Interferometer,”Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1909-10(Washington, 1911), app. no. 6.
[85]E. J. Brown,A Determination of the Relative Values of Gravity at Potsdam and Washington(Special Publication No. 204, U.S. Coast and Geodetic Survey; Washington, 1936).
[85]E. J. Brown,A Determination of the Relative Values of Gravity at Potsdam and Washington(Special Publication No. 204, U.S. Coast and Geodetic Survey; Washington, 1936).
[86]M. Haid, “Neues Pendelstativ,”Zeitschrift für Instrumentenkunde(July 1896), vol. 16, p. 193.
[86]M. Haid, “Neues Pendelstativ,”Zeitschrift für Instrumentenkunde(July 1896), vol. 16, p. 193.
[87]Dr. R. Schumann, “Über eine Methode, das Mitschwingen bei relativen Schweremessungen zu bestimmen,”Zeitschrift für Instrumentenkunde(January 1897), vol. 17, p. 7. The design for the stand is similar to that of Peirce’s of 1879.
[87]Dr. R. Schumann, “Über eine Methode, das Mitschwingen bei relativen Schweremessungen zu bestimmen,”Zeitschrift für Instrumentenkunde(January 1897), vol. 17, p. 7. The design for the stand is similar to that of Peirce’s of 1879.
[88]Dr. R. Schumann, “Über die Verwendung zweier Pendel auf gemeinsamer Unterlage zur Bestimmung der Mitschwingung,”Zeitschrift für Mathematik und Physik(1899), vol. 44, p. 44.
[88]Dr. R. Schumann, “Über die Verwendung zweier Pendel auf gemeinsamer Unterlage zur Bestimmung der Mitschwingung,”Zeitschrift für Mathematik und Physik(1899), vol. 44, p. 44.
[89]P. Furtwängler, “Über die Schwingungen zweier Pendel mit annähernd gleicher Schwingungsdauer auf gemeinsamer Unterlage,”Sitzungsberichte derKöniglicherPreussischen Akademie der Wissenschaften zu Berlin(Berlin, 1902) pp. 245-253. Peirce investigated the plan of swinging two pendulums on the same stand (Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1880-81, Washington, 1883, p. 26; also inCharles Sanders Peirce,Collected Papers, 6.273). At a conference on gravity held in Washington during May 1882, Peirce again advanced the method of eliminating flexure by hanging two pendulums on one support and oscillating them in antiphase (“Report of a conference on gravity determinations held in Washington, D.C., in May, 1882,”Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1881-82, Washington, 1883, app. no. 22, pp. 503-516).
[89]P. Furtwängler, “Über die Schwingungen zweier Pendel mit annähernd gleicher Schwingungsdauer auf gemeinsamer Unterlage,”Sitzungsberichte derKöniglicherPreussischen Akademie der Wissenschaften zu Berlin(Berlin, 1902) pp. 245-253. Peirce investigated the plan of swinging two pendulums on the same stand (Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1880-81, Washington, 1883, p. 26; also inCharles Sanders Peirce,Collected Papers, 6.273). At a conference on gravity held in Washington during May 1882, Peirce again advanced the method of eliminating flexure by hanging two pendulums on one support and oscillating them in antiphase (“Report of a conference on gravity determinations held in Washington, D.C., in May, 1882,”Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1881-82, Washington, 1883, app. no. 22, pp. 503-516).
[90]F. A. Vening Meinesz,Observations de pendule dans les Pays-Bas(Delft, 1923).
[90]F. A. Vening Meinesz,Observations de pendule dans les Pays-Bas(Delft, 1923).
[91]A. Berroth, “Schweremessungen mit zwei und vier gleichzeitig auf demselben Stativ schwingenden Pendeln,”Zeitschrift für Geophysik, vol. 1 (1924-25), no. 3, p. 93.
[91]A. Berroth, “Schweremessungen mit zwei und vier gleichzeitig auf demselben Stativ schwingenden Pendeln,”Zeitschrift für Geophysik, vol. 1 (1924-25), no. 3, p. 93.
[92]“Pendulum Apparatus for Gravity Determinations,”Engineering(1926), vol. 122, pp. 271-272.
[92]“Pendulum Apparatus for Gravity Determinations,”Engineering(1926), vol. 122, pp. 271-272.
[93]Malcolm W. Gay, “Relative Gravity Measurements Using Precision Pendulum Equipment,”Geophysics(1940), vol. 5, pp. 176-191.
[93]Malcolm W. Gay, “Relative Gravity Measurements Using Precision Pendulum Equipment,”Geophysics(1940), vol. 5, pp. 176-191.
[94]L. G. D. Thompson, “An Improved Bronze Pendulum Apparatus for Relative Gravity Determinations,” [published by]Dominion Observatory(Ottawa, 1959), vol. 21, no. 3, pp. 145-176.
[94]L. G. D. Thompson, “An Improved Bronze Pendulum Apparatus for Relative Gravity Determinations,” [published by]Dominion Observatory(Ottawa, 1959), vol. 21, no. 3, pp. 145-176.
[95]W. A. HeiskanenandF. A. Vening Meinesz,The Earth and its Gravity Field(McGraw: New York, 1958).
[95]W. A. HeiskanenandF. A. Vening Meinesz,The Earth and its Gravity Field(McGraw: New York, 1958).
[96]F. KühnenandP. Furtwängler,Bestimmung der Absoluten Grösze der Schwerkraft zu Potsdam mit Reversionspendeln(Berlin: Veröffentlichungen des Königlichen Preussischen Geodätischen Instituts, 1906), new ser., no. 27.
[96]F. KühnenandP. Furtwängler,Bestimmung der Absoluten Grösze der Schwerkraft zu Potsdam mit Reversionspendeln(Berlin: Veröffentlichungen des Königlichen Preussischen Geodätischen Instituts, 1906), new ser., no. 27.
[97]Reported by Dr. F. Kühnen to the fifth session, October 9, 1895, of the Eleventh General Conference,Die Internationale Erdmessung, held in Berlin from September 25 to October 12, 1895. A footnote states that Assistant O. H. Tittmann, who represented the United States, subsequently reported Peirce’s prior discovery of the influence of the flexure of the pendulum itself upon the period (Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1883-84, Washington, 1885, app. 16, pp. 483-485).
[97]Reported by Dr. F. Kühnen to the fifth session, October 9, 1895, of the Eleventh General Conference,Die Internationale Erdmessung, held in Berlin from September 25 to October 12, 1895. A footnote states that Assistant O. H. Tittmann, who represented the United States, subsequently reported Peirce’s prior discovery of the influence of the flexure of the pendulum itself upon the period (Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1883-84, Washington, 1885, app. 16, pp. 483-485).
[98]Assistants’ Reports, U.S. Coast and Geodetic Survey, 1883-84(MS, National Archives, Washington).
[98]Assistants’ Reports, U.S. Coast and Geodetic Survey, 1883-84(MS, National Archives, Washington).
[99]C. S. Peirce, “Effect of the Flexure of a Pendulum Upon its Period of Oscillation,”Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1883-84(Washington, 1885), app. no. 16.
[99]C. S. Peirce, “Effect of the Flexure of a Pendulum Upon its Period of Oscillation,”Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1883-84(Washington, 1885), app. no. 16.
[100]F. R. Helmert,Beiträge zur Theorie des Reversionspendels(Potsdam: Veröffentlichungendes KöniglichenPreussischen Geodätischen Instituts, 1898).
[100]F. R. Helmert,Beiträge zur Theorie des Reversionspendels(Potsdam: Veröffentlichungendes KöniglichenPreussischen Geodätischen Instituts, 1898).
[101]J. A. Duerksen,Pendulum Gravity Data in the United States(Special Publication No. 244, U.S. Coast and Geodetic Survey; Washington, 1949).
[101]J. A. Duerksen,Pendulum Gravity Data in the United States(Special Publication No. 244, U.S. Coast and Geodetic Survey; Washington, 1949).
[102]Ibid., p. 2. See also,E. J. Brown, loc. cit. (footnote85).
[102]Ibid., p. 2. See also,E. J. Brown, loc. cit. (footnote85).
[103]Paul R. HeylandGuy S. Cook, “The Value of Gravity at Washington,”Journal of Research, National Bureau of Standards(1936), vol. 17, p. 805.
[103]Paul R. HeylandGuy S. Cook, “The Value of Gravity at Washington,”Journal of Research, National Bureau of Standards(1936), vol. 17, p. 805.
[104]Sir Harold Jeffreys, “The Absolute Value of Gravity,”Monthly Notices of the Royal Astronomical Society, Geophysical Supplement(London, 1949), vol. 5, p. 398.
[104]Sir Harold Jeffreys, “The Absolute Value of Gravity,”Monthly Notices of the Royal Astronomical Society, Geophysical Supplement(London, 1949), vol. 5, p. 398.
[105]J. S. Clark, “The Acceleration Due to Gravity,”Phil. Trans.(1939), vol. 238, p. 65.
[105]J. S. Clark, “The Acceleration Due to Gravity,”Phil. Trans.(1939), vol. 238, p. 65.
[106]Hugh L. Dryden, “A Reexamination of the Potsdam Absolute Determination of Gravity,”Journal of Research, National Bureau of Standards(1942), vol. 29, p. 303; andA. Berroth, “Das Fundamentalsystem der Schwere im Lichte neuer Reversionspendelmessungen,”Bulletin Géodésique(1949), no. 12, pp. 183-204.
[106]Hugh L. Dryden, “A Reexamination of the Potsdam Absolute Determination of Gravity,”Journal of Research, National Bureau of Standards(1942), vol. 29, p. 303; andA. Berroth, “Das Fundamentalsystem der Schwere im Lichte neuer Reversionspendelmessungen,”Bulletin Géodésique(1949), no. 12, pp. 183-204.
[107]T. C. Mendenhall, op. cit. (footnote83), p. 522.
[107]T. C. Mendenhall, op. cit. (footnote83), p. 522.
[108]A. H. Cook, “Recent Developments in the Absolute Measurement of Gravity,”Bulletin Géodésique(June 1, 1957), no. 44, pp. 34-59.
[108]A. H. Cook, “Recent Developments in the Absolute Measurement of Gravity,”Bulletin Géodésique(June 1, 1957), no. 44, pp. 34-59.
[109]See footnote89.
[109]See footnote89.
[110]C. S. Peirce, “On the Deduction of the Ellipticity of the Earth, from Pendulum Experiments,”Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1880-81(Washington, 1883), app. no. 15, pp. 442-456.
[110]C. S. Peirce, “On the Deduction of the Ellipticity of the Earth, from Pendulum Experiments,”Report of the Superintendent of the U.S. Coast and Geodetic Survey for 1880-81(Washington, 1883), app. no. 15, pp. 442-456.
[111]HeiskanenandVening Meinesz, op. cit. (footnote95), p. 74.
[111]HeiskanenandVening Meinesz, op. cit. (footnote95), p. 74.
[112]Ibid., p. 76.
[112]Ibid., p. 76.
[113]Ibid., p. 309.
[113]Ibid., p. 309.
[114]Ibid., p. 310.
[114]Ibid., p. 310.
[115]K. Reicheneder, “Method of the New Measurements at Potsdam by Means of the Reversible Pendulum,”Bulletin Géodésique(March 1, 1959), no. 51, p.72.
[115]K. Reicheneder, “Method of the New Measurements at Potsdam by Means of the Reversible Pendulum,”Bulletin Géodésique(March 1, 1959), no. 51, p.72.
U.S. GOVERNMENT PRINTING OFFICE: 1965For sale by the Superintendent of Documents, U.S. Government Printing OfficeWashington, D.C., 20402—Price 70 cents.
Airy, G. B.,319,324,332
Albrecht, Karl Theodore,322,338
Al-Mamun, seventh calif of Bagdad,306
Almansi, Emilio,339
Aristotle,306
Baeyer, J. J.,321,322,324,338,346
Baily, Francis,317
Basevi, James Palladio,345
Berroth, A.,342
Bessel, Friedrich Wilhelm,313,314,319,320,324,325,338,346
Biot, Jean Baptiste,325,329
Bohnenberger, Johann Gottlieb Friedrich,315
Borda, J. C.,311,312,315,325,329,346
Boscovitch, Père R. J.,310,311
Bouguer, Pierre,307,309,327,343,345
Brahe, Tycho,306
Brown, E. J.,334,339
Browne, Henry,304,314
Bruhns, C.,322,324,338
Brunner Brothers (Paris),329
Cassini, Giovanni-Domenico,306,307
Cassini, Jacques,306
Cassini de Thury, J. D.,311,312,315,325,329,346
Cellérier, Charles,320,321,325,326,329,336
Clairaut, Alexis Claude,308,309,343,345
Clark, J. S.,342
Clarke, A. R.,345
Colbert, Jean Baptiste,306
Cook, A. H.,342
Cook, Guy S.,339,342
Defforges, C.,314,329,346
De Freycinet, Louis Claude de Saulses,317
De la Hire, Gabriel Philippe,306
De Prony, M. G.,314
Dryden, Hugh L.,342
Du Buat, L. G.,314
Duperry, Capt. Louis Isidore,317
Eratosthenes,306,308,342
Eudoxus of Cnidus,306
Faye, Hervé,325,336,346,347
Fernel, Jean,306
Furtwängler, P.,337
Galilei, Galileo,304,305,346
Gauss, C. F.,320
Gautier, P.,339
Godin, Louis,307
Goldingham, John,316,345
Greely, A. W.,329
Gulf Oil and Development Company,338
Haid, M.,335
Hall, Basil,316
Heaviside, W. J.,321,345
Heiskanen, W. A.,338,345,346
Helmert, F. R.,338,339
Helmholtz, Hermann von,326
Herschel, John,319,328,345
Heyl, Paul R.,339,342
Hirsch, Adolph,322,324
Huygens, Christiaan,304,305,307,314,342,346