Meines Erachtens spielen hier auch die Volumänderungen, mit denen der chemische Umsatz verbunden ist, eine Rolle. Das aus 1 Gramm Blei oder Bleisuperoxyd entstandene Bleisulfat nimmt einen größeren Raum ein als das Blei oder Bleisuperoxyd. Während der Entladung werden sich daher die vorhandenen Poren verengen und mit Bleisulfat ganz ausfüllen. Wird mit schwachem Strom entladen, so verengt sich die Pore in den verschiedenen Querschnitten nahezu gleichmäßig; bei großer Stromdichte aber wird sie hauptsächlich an der dem Elektrolyten zugewendeten Seite enger oder verstopft sich; die Säurediffusion wird sehr erschwert und hört bald auf. Bei der Ladung verringert sich das Volumen der aktiven Masse, und die Poren erweitern sich. Nach dieser Erklärung müßte dieAufnahmefähigkeit[53]bei der Ladung (Ladungskapazität) weniger von der Stromdichte abhängig sein als die Kapazität bei der Entladung. Die Erfahrung zeigt, daß dies in der Tat der Fall ist.
Meines Erachtens spielen hier auch die Volumänderungen, mit denen der chemische Umsatz verbunden ist, eine Rolle. Das aus 1 Gramm Blei oder Bleisuperoxyd entstandene Bleisulfat nimmt einen größeren Raum ein als das Blei oder Bleisuperoxyd. Während der Entladung werden sich daher die vorhandenen Poren verengen und mit Bleisulfat ganz ausfüllen. Wird mit schwachem Strom entladen, so verengt sich die Pore in den verschiedenen Querschnitten nahezu gleichmäßig; bei großer Stromdichte aber wird sie hauptsächlich an der dem Elektrolyten zugewendeten Seite enger oder verstopft sich; die Säurediffusion wird sehr erschwert und hört bald auf. Bei der Ladung verringert sich das Volumen der aktiven Masse, und die Poren erweitern sich. Nach dieser Erklärung müßte dieAufnahmefähigkeit[53]bei der Ladung (Ladungskapazität) weniger von der Stromdichte abhängig sein als die Kapazität bei der Entladung. Die Erfahrung zeigt, daß dies in der Tat der Fall ist.
Ferner muß man schließen, daß dieKapazität der Negativen in höherem Maße von der Entladezeitoder von der Stromdichte bei der Entladungabhängig istals die Kapazität der Positiven.
Denn der Unterschied im Volumen einer bestimmten Menge (z. B. 3,85 Gramm) Blei und des daraus gebildeten Bleisulfates ist größer als die Differenz des Volumens der äquivalenten Menge Bleisuperoxyd (z. B. 4,46 Gramm) und des aus diesem entstandenen Bleisulfats.Durch eingehende Untersuchung gelangt auchE. Siegzu diesem Resultate (l. c. S. 83), er findet nämlich, „daß die Bleischwammplatten (und zwar Großoberflächen- und gepastete Platten) bei genau gleicher „absoluter‟ Kapazität, d. h. derjenigen Kapazität, die von den Platten geleistet werden kann, wenn die Entladestromstärke sehr klein gewählt wird, gegen Erhöhung der Beanspruchung empfindlicher sind als Superoxydplatten‟. Daraus würde sich dann der Schluß ergeben, daß bei Akkumulatoren, die mit großer Stromdichte entladen werden sollen, die absolute Kapazität der negativen Platten größer zu wählen ist als diejenige der positiven.Dolezalekfolgert aus dem Umstande, daß die Konzentrationsänderungen an der Superoxydelektrode erheblich größer sind als an der Bleischwammelektrode (weil an ersterer auch Wasser gebildet wird), daß die Kapazität der Superoxydelektrode geringer sein muß als die einer aus gleicher Paste formierten Bleischwammplatte (l. c. S. 86). Wenn demnach die Konzentrationsänderungen allein maßgebend wären, so müßte die positive Platte die empfindlichere sein.
Denn der Unterschied im Volumen einer bestimmten Menge (z. B. 3,85 Gramm) Blei und des daraus gebildeten Bleisulfates ist größer als die Differenz des Volumens der äquivalenten Menge Bleisuperoxyd (z. B. 4,46 Gramm) und des aus diesem entstandenen Bleisulfats.
Durch eingehende Untersuchung gelangt auchE. Siegzu diesem Resultate (l. c. S. 83), er findet nämlich, „daß die Bleischwammplatten (und zwar Großoberflächen- und gepastete Platten) bei genau gleicher „absoluter‟ Kapazität, d. h. derjenigen Kapazität, die von den Platten geleistet werden kann, wenn die Entladestromstärke sehr klein gewählt wird, gegen Erhöhung der Beanspruchung empfindlicher sind als Superoxydplatten‟. Daraus würde sich dann der Schluß ergeben, daß bei Akkumulatoren, die mit großer Stromdichte entladen werden sollen, die absolute Kapazität der negativen Platten größer zu wählen ist als diejenige der positiven.
Dolezalekfolgert aus dem Umstande, daß die Konzentrationsänderungen an der Superoxydelektrode erheblich größer sind als an der Bleischwammelektrode (weil an ersterer auch Wasser gebildet wird), daß die Kapazität der Superoxydelektrode geringer sein muß als die einer aus gleicher Paste formierten Bleischwammplatte (l. c. S. 86). Wenn demnach die Konzentrationsänderungen allein maßgebend wären, so müßte die positive Platte die empfindlichere sein.
Man kann weiter schließen, daß die Kapazität von der Porosität der aktiven Masse abhängig sein wird, besonders bei Entladungen mit großer Stromdichte. Auch die Dicke der Schicht, in der sich der chemische Umsatz vollzieht, spielt eine Rolle.
Da ferner bei der Ladung die Substanzen gebildet werden, die sich bei der Entladung in Bleisulfat umwandeln, so ist es selbstverständlich, daß die Art der vorhergegangenen Ladung auf die Kapazität einen Einfluß ausübt. Je geringer die Stromdichte bei dieser Ladung war, um so mehr Bleischwamm ist auf der negativen Platte vorhanden und um so mehr PbO2auf der positiven.
Bei stationären Akkumulatoren (Beleuchtungsanlagen) geht man in der Regel nicht unter dreistündige Entladezeit herab. Nennt man die Kapazität bei dreistündiger Entladung c3und die bei zehnstündiger c10, so gilt meistens mit großer Annäherung die Beziehung c3: c10= 26:35 oder ungefähr = 3:4.
Schröder[54]gelangte auf Grund von Untersuchungen an Akkumulatoren der Akkum.-Fabrik Akt.-Ges. Hagen i. W. zu der FormelK · ∛J2= m,wo K die Kapazität in Amperstunden, J die Entladestromstärke und m eine für den betreffenden Akkumulator charakteristische Konstante ist. Für die meistens in der Praxis vorkommenden Intervalle von J liefert die Formel hinreichend genaue Werte. — C.Liebenowfand, daß für schwache EntladungenK =m1 + c . J(m und c sind Konstante).NachPeukert[55]istJn.t = const.,wo J die Entladestromstärke, t die Entladedauer, n einen durch das Experiment zu bestimmenden Faktor bedeutet; n lag bei den untersuchten Typen zwischen 1,35 und 1,72.
Schröder[54]gelangte auf Grund von Untersuchungen an Akkumulatoren der Akkum.-Fabrik Akt.-Ges. Hagen i. W. zu der Formel
K · ∛J2= m,
wo K die Kapazität in Amperstunden, J die Entladestromstärke und m eine für den betreffenden Akkumulator charakteristische Konstante ist. Für die meistens in der Praxis vorkommenden Intervalle von J liefert die Formel hinreichend genaue Werte. — C.Liebenowfand, daß für schwache Entladungen
K =m1 + c . J
(m und c sind Konstante).
NachPeukert[55]ist
Jn.t = const.,
wo J die Entladestromstärke, t die Entladedauer, n einen durch das Experiment zu bestimmenden Faktor bedeutet; n lag bei den untersuchten Typen zwischen 1,35 und 1,72.
Die gesamte Elektrizitätsmenge, die man einem Akkumulator entnehmen kann, ist, um es noch einmal zu wiederholen, durch das Gewicht des vorhandenen bezw. zugänglichen Bleischwammes und Bleisuperoxydes gegeben. Soll beispielsweise ein Akkumulator bei 10stündiger Entladung 100 Amperstunden abgeben, so müssen auf der negativen Elektrodemindestens385 Gramm Bleischwamm und auf der positiven mindestens 446 Gramm Bleisuperoxyd angehäuft sein (sieheS. 37). In Wirklichkeit müssen aber größere Mengen der wirksamen Massen vorhanden sein, da auch bei 10stündiger Entladung nicht alles Pb und nicht alles PbO2umgewandelt wird.
Eine vollständige Ausnutzung des vorhandenen aktiven Materials ist sogar theoretisch nicht möglich, weil PbSO4ein sehr schlechter Leiter ist. Nach Roloff werden bei 3stündiger Entladungbei den Positiven 45%, bei den Negativen 25% der anfänglich vorhandenen aktiven Masse ausgenutzt.
Eine vollständige Ausnutzung des vorhandenen aktiven Materials ist sogar theoretisch nicht möglich, weil PbSO4ein sehr schlechter Leiter ist. Nach Roloff werden bei 3stündiger Entladungbei den Positiven 45%, bei den Negativen 25% der anfänglich vorhandenen aktiven Masse ausgenutzt.
Natürlich mußten dem Akkumulator, wenn er 100 Amperstunden abgeben soll, bei der vorhergegangenen Ladung mindestens 100 Amperstunden zugeführt worden sein. Es ist allerdings denkbar, daß ein Akkumulatorein Malmehr Elektrizität abgibt, als man bei der Ladung in ihn hineingeschickt hat, indem nämlich Blei und Bleisuperoxyd, das bei der vorletzten Entladung nicht in Bleisulfat verwandelt wurde, jetzt verbraucht wird.
Da die Abhängigkeit der Kapazität von der Entladezeit im engsten Zusammenhange mit den Diffusionsvorgängen steht, so kann man voraussagen, daß die Änderungen für die verschiedenen Systeme nicht die gleichen sind; bei Großoberflächenplatten (s.Kap. 6) wird diese Abhängigkeit nicht so groß sein, wie bei pastierten Platten.
Außer von der Entladestromstärke hängt die Kapazität von der Dicke der aktiven Schicht, der Säuredichte und von der Temperatur ab. Ist das Bleisuperoxyd und ebenso der Bleischwamm als sehr dünner Überzug auf einer großen Oberfläche verteilt, so kann die für die Bleisulfatbildung nötige Säure leichter in das Innere eindringen, als wenn die wirksame Masse eine dickere Schicht mit kleinerer Oberfläche bildet.
Der Forderung möglichst dünne Platten zu Verwenden, stehen folgende Bedenken im Wege: Die Lebensdauer der Platten verringert sich, die Platten müssen eine gewisse mechanische Festigkeit haben, bei sehr dünnen Platten ist nicht genügend Raum für die Aufnahme der Paste vorhanden, der Widerstand der Platten wird größer.
Der Forderung möglichst dünne Platten zu Verwenden, stehen folgende Bedenken im Wege: Die Lebensdauer der Platten verringert sich, die Platten müssen eine gewisse mechanische Festigkeit haben, bei sehr dünnen Platten ist nicht genügend Raum für die Aufnahme der Paste vorhanden, der Widerstand der Platten wird größer.
Die Abhängigkeit der Kapazität von der Säuredichtehat zuerstHeim[56]näher untersucht.Er fand, daß die Kapazität, wenn man die Säuredichte vergrößert, zuerst steigt und dann wieder abnimmt; das Maximum lag bei einem spezifischen Gewichte von 1,1. NachEarleist die Kapazität am größten, wenn die Säuredichte etwa gleich 1,25 ist. Da bei dieser Dichte verdünnte Schwefelsäure (genauer bei 1,22) das Maximum der Leitfähigkeit besitzt, so darf man die Kapazität als eine Funktion des Leitungsvermögens des Elektrolyten ansehen, ein Schluß, der mit unseren früheren Überlegungen in Einklang steht. Die Stromlinien dringen eben um so tiefer in das Innere der aktiven Masse ein, die Umwandlung in Bleisulfat ist um so vollständiger, je besser die Säure leitet.
Der Einfluß der Temperatur auf die Kapazitätist ein nicht unerheblicher. Durch Messungen vonHeim[57]ergab sich, daß die Kapazität pro 1° Temperaturerhöhung innerhalb der Grenzen 14° und 45° um 2,6% des der Temperatur 19° entsprechenden Betrages stieg. Die Zunahme der Kapazität mit der Temperatur kann durch den rascheren Ausgleich der Konzentrationsänderungen (infolge größerer Beweglichkeit der Säure), sowie durch die Zunahme des Leitungsvermögens desElektrolyten[58]erklärt werden. In der Praxis kann man von der Kapazitätssteigerung durch Erwärmung der Säure schon aus dem Grunde keinen Gebrauch machen, weil sie eine vorzeitige Abnutzung der Platten zur Folge hat.
Zu bemerken ist noch, daß bei einem Akkumulator, der mit Ruhepausen entladen wird, die Kapazität eine andere ist, als bei einem Elemente, das mit gleicher Stromstärke ohne Unterbrechung beansprucht wird;sind die Ruhepausen nicht so groß, daß die Selbstentladung während derselben merkliche Verluste verursacht (sieheS. 106), so ist die Kapazität im ersteren Falle die größere.
B. Albrechtfand, daß bei Akkumulatoren mit positiven Großoberflächenplatten (s.Kap. 6) eine merkliche Zunahme der Kapazität infolge der Ruhepausen nicht stattfand. Wahrscheinlich ist dieser Umstand der Selbstentladung während der Ruhepausen zuzuschreiben. Bei den Masseplatten wurde eine ganz bedeutende Zunahme der Kapazität infolge der Unterbrechungen beobachtet, und zwar ist die prozentuale Zunahme um so bedeutender, je größer die Entladestromstärke ist. Die Untersuchungen wurden allerdings nur mit PlatteneinerFirma ausgeführt. (Näheres s. E. T. Z. 1907, S. 539.)
B. Albrechtfand, daß bei Akkumulatoren mit positiven Großoberflächenplatten (s.Kap. 6) eine merkliche Zunahme der Kapazität infolge der Ruhepausen nicht stattfand. Wahrscheinlich ist dieser Umstand der Selbstentladung während der Ruhepausen zuzuschreiben. Bei den Masseplatten wurde eine ganz bedeutende Zunahme der Kapazität infolge der Unterbrechungen beobachtet, und zwar ist die prozentuale Zunahme um so bedeutender, je größer die Entladestromstärke ist. Die Untersuchungen wurden allerdings nur mit PlatteneinerFirma ausgeführt. (Näheres s. E. T. Z. 1907, S. 539.)
Die Kapazität eines Akkumulators ändert sich im Laufe der Zeit. In der Regel nimmt sie zuerst zu, erreicht ein Maximum und sinkt dann. Hierbei ist zu beachten, daß verschiedene Fabriken die Platten in nicht fertig formiertem Zustande liefern, so daß in der ersten Zeit die Formation fortschreitet und die Aufnahmefähigkeit steigt. Auch bei Platten, die soweit als möglich in der Fabrik formiert wurden, kann die Kapazität wachsen; es gilt dies besonders von positiven Großoberflächenplatten (s. Planté-Formation). Andererseits kann die Kapazität im Gebrauche geringer werden, weil aktive Masse aus dem Gitter herausfällt oder abbröckelt.
Wenn man zwischen Kohlenelektroden verdünnte Schwefelsäure elektrolysiert, so findet man nach einiger Zeit auf dem Boden zahlreiche kleine Kohlenpartikelchen. Diese werden von den Gasblasen gleichsam abgerieben oder losgesprengt.
Wenn man zwischen Kohlenelektroden verdünnte Schwefelsäure elektrolysiert, so findet man nach einiger Zeit auf dem Boden zahlreiche kleine Kohlenpartikelchen. Diese werden von den Gasblasen gleichsam abgerieben oder losgesprengt.
Über die Kapazitätsabnahme infolge der Verbleiung sieheKap. 7. Auch die Sulfatation hat einen Rückgang der Kapazität zur Folge (s.Kap. 5).
Die Beschaffenheit der Elektroden übt, wie P.Schoop[59]sagt, einen schwer kontrollierbaren Einflußauf die Kapazität aus. Ist eine Batterie längere Zeit nicht benutzt worden, so ist die Kapazität geringer. Durch mehrmaliges Laden und Entladen muß man dann die Platten auffrischen.
EineKapazitätsprobewird bei der Abnahme einer gelieferten Batterie ausgeführt; auch empfiehlt es sich, eine solche vorzunehmen, wenn man über den Zustand der Batterie im Zweifel ist, besonders wenn sie längere Zeit nicht benutzt worden ist. Die Prüfung geschieht folgendermaßen: Die Batterie wird mit normaler Stromstärke (etwa der der fünfstündigen Ladung entsprechenden) geladen; kurze Zeit nach der Ladung soll die Entladung beginnen. Man reguliert die Stromstärke so, daß sie den für die betreffende Entladezeit (z. B. fünf Stunden) vorgeschriebenen Wert hat und hält sie tunlichst konstant. Kann man den Strom nicht ausnutzen (z. B. für den Betrieb von Motoren, oder für elektrolytische Zwecke), so schaltet man die Batterie auf einen regulierbaren Metall- oder Wasserwiderstand (der Gebrauch des letzteren ist ziemlich unbequem wegen der Schaumbildung, des Siedens der Flüssigkeit usw.). Am einfachsten bestimmt man die abgegebene Elektrizitätsmenge mittels eines Coulomb- oder Amperstundenzählers; benutzt man hierfür ein Amperemeter, so muß man in Zeitabschnitten von 10-15 Minuten die Stromstärke ablesen. Durch ein mit den Klemmen der Batterie verbundenes Voltmeter wird die Spannung gemessen. Der Versuch ist natürlich abzubrechen, wenn die untere Spannungsgrenze erreicht ist, d. h. wenn die Klemmenspannung um etwa 10% der anfänglichen gesunken ist. — Aus früheren Betrachtungen ergibt sich übrigens, daß man durch eine einmalige Entladung ein zuverlässiges Resultat nicht erhalten kann.
Hat man gefunden, daß die Kapazität eines Akkumulators zurückgegangen ist, so ist es von Wichtigkeit zu wissen, ob die Ursache an der positiven oder an der negativen Elektrode liegt. Um dies zu prüfen, bedient man sich derFuchsschen Methode; das Verdienst, diese in die Akkumulatorentechnik eingeführt zu haben, gebührt C.Liebenow[60].Man bedient sich bei dieser Methode einer sogen.Hilfselektrode, am einfachsten eines amalgamierten Zinkstäbchens oder am besten eines Kadmiumblechs; dieMeßelektrode[61]taucht man so in die Säure ein, daß sie von möglichst wenig Stromfäden getroffen wird. Sie bildet in verdünnter Schwefelsäure sowohl mit Bleisuperoxyd als auch mit dem Bleischwamm ein galvanisches Element. Die elektromotorischen Kräfte e1und e2betragen bei der gewöhnlichen Säuredichte bei Beginn der Entladung
e1- e2ist, wenn die Zelle keinen Strom abgibt, mit großer Annäherung die elektromotorische Kraft des Akkumulators. Entnimmt man der Zelle Strom, so ändern sich e1und e2etwas, und es ist jetzt ihre Differenz gleich der Klemmenspannung, wenn derinnere Widerstand des Elementes so klein ist, daß man das Produkt i · w vernachlässigen kann.
Man macht während der Entladung eine größere Reihe von Messungen und trägt die Werte von e1und e2sowie diejenigen für die Klemmenspannung auf Millimeterpapier nach der Zeit auf, d. h. man macht die Zeit zu Abszissen und die Spannungen zu Ordinaten. Man erhält so drei Kurven, die den Verlauf der Klemmenspannung und der elektromotorischen Kräfte der beiden Kombinationen
anzeigen. Die elektromotorischen Kräfte e1und e2müssen sich bei fortschreitender Entladung einander allmählich nähern, da die positive und die negative Platte einander ähnlich werden. Bei gleicher Kapazität der beiden Platten müssen offenbar die Kurven zur selben Zeit, nämlich wenn die Klemmenspannung anfängt abzufallen, stark umbiegen, die eine nach unten, die andere nach oben.
NachSiegsind die positiven Platten entladen, sobald sie gegen Kadmium unter 2 Volt anzeigen, die negativen, sobald sie gegen Kadmium über 0,2 Volt haben.
Liebenowgelangt auf Grund seiner Beobachtungen zu der Regel, daß die Fuchssche Methode dann eindeutige Resultate gibt, wenn sie klar eine wesentliche Verschiedenheit der Kapazität beider Plattensorten anzeigt. Wenden sich dagegen die beiden Kurven (e1und e2) beim Herabgehen der Klemmenspannung gleichzeitig, so können positive und negative Platten die gleiche Kapazität haben, es kann aber auch die der einen kleiner sein als die der anderen.
Wirkungsgrad[62].Nennt man die einem Elemente während der Ladung zugeführte Elektrizitätsmenge, ausgedrückt in Amperstunden (oder in Coulomb), Q1und die während der Entladung von der Zelle abgegebene Elektrizitätsmenge Q2, so ist
Q2Q1der Wirkungsgrad.
Multipliziert man den erhaltenen Bruch mit 100, so erhält man den Wirkungsgrad in Prozenten der hineingeladenen Elektrizitätsmenge.
Da Q1und Q2von der Stromdichte, also auch von der Dauer der Ladung und Entladung, abhängig sind, so empfiehlt es sich, mit derselben Stromdichte zu entladen, mit der geladen wurde (s.Kapazität).
Der Wirkungsgrad beträgt aus verschiedenen Gründen weniger als 100% (in der Praxis nimmt man 85-90% an). Stromverluste, die man bei Laboratoriumsversuchen auf 3-4% herunterdrücken kann, werden zum Teil durch eine schwache während der ganzen Ladung erfolgende Gasbildung verursacht. Je größer die Stromdichte bei der Ladung ist, um so größer ist die durchschnittliche Klemmenspannung, um so größer wird also auch der Bruchteil des Stromes, der für die Gasbildung nutzlos verwertet wird. Besonders während der „Überladung‟ (Ladung nach Beginn des „Kochens‟) werden größere Elektrizitätsmengen für die Abscheidung von Wasserstoff und Sauerstoff verbraucht, die bei der Entladung nicht wiedergewonnen werden. Bei einer Wirkungsgradbestimmung wird man daher von einer Überladung absehen.
Kleine Verluste können auch dadurch verursacht werden, daß während der Ladung Teilchen der aktiven Masse durch die Gase abgekratzt oder losgesprengt werden.
Läßt man das Element nach erfolgter Ladung unbenutzt stehen, so erfolgt Selbstentladung, die eine Verringerung von Q2zur Folge hat. Je länger also die zwischen Ladung und Entladung liegende Zeit ist, um so geringer wird der Wirkungsgrad.
Nutzeffekt[63].Man versteht darunter den Quotienten, den man erhält, wenn man die vom Akkumulator während der Entladung abgegebene Energie (gemessen in Wattstunden) durch die dem Akkumulator bei der vorhergegangenen Ladung zugeführte Energie (in Wattstunden) dividiert. Beispiel: Eine Zelle wurde mit 50 Amper 4 Stunden lang geladen; die mittlere Ladespannung war 2,3 Volt; die dem Akkumulator zugeführte Energie w1betrug
w1= 2,3 . 50.4 Wattstdn. = 460 Wattstdn.
Die Zelle wurde etwa1⁄2Stunde nach der Ladung mit 50 Amp. entladen; nach ungefähr 33⁄4Stunden war die Spannung auf 1,8 Volt gesunken. Da die mittlere Spannung, wie die Messungen ergaben, jetzt rund 1,9 Volt betrug, so belief sich die vom Akkumulator abgegebene Leistung w2auf
w2= 50 . 3,75 . 1,9 Wattstdn. = 356,25 Wattstdn.
Mithin war in diesem Falle der Nutzeffekt gleich
w2w1=356,25460= 0,77 oder 77%.
Im Laboratorium kann man, wenn man mit geringer Stromdichte lädt und entlädt, einen Nutzeffekt von 90%und noch mehr erzielen. Mit zunehmender Entladestromstärke nimmt der Quotient ab. In der Praxis rechnet man mit einem Nutzeffekte von 70-75%. [Auf die Rolle, die die zwischen Ladung und Entladung liegende Zeit spielt, ist schon aufmerksam gemacht worden.]
Man könnte der Ansicht sein, daß der Nutzeffekt deshalb mit wachsender Entladestromstärke sinkt, weil bei größerer Stromdichte der innere Widerstand des Akkumulators zunimmt. Daß sich dieser mit der Stromstärke und mit der Dauer der Zufuhr bezw. Entnahme von Elektrizität etwas ändert, soll später nachgewiesen werden. Einstweilen begnügen wir uns mit der Bemerkung, daß der innere Widerstand auch kleiner Zellen in den verschiedenen Stadien der Ladung und Entladung und daher auch der Spannungsverlust im Elemente (i · w) so klein ist, daß durch ihn der Nutzeffekt nur in geringem Maße beeinflußt wird. Die Gründe, weshalb der Nutzeffekt weit unter 100% liegt, sind schon früher dargelegt worden; diese sind die Konzentrationsänderungen und die Abhängigkeit der elektromotorischen Kraft von der Säuredichte.
Daß durch die Konzentrationsänderungen, die sich sowohl bei der Ladung wie bei der Entladung vollziehen, Arbeitsverluste verursacht werden, kann man sich auch folgendermaßen klar machen. Wenn man zwei Schwefelsäurelösungen verschiedener Konzentration mischt, so wird Wärme frei; sollen umgekehrt die beiden miteinander vermischten Säuren getrennt, soll also ein Konzentrationsunterschied hergestellt werden, so muß Arbeit aufgewendet werden. Da nun im Akkumulator durch den Strom ein Konzentrationsunterschied hergestellt und aufrecht erhalten wird, so muß hierfür elektrische Energie verbraucht werden.Dolezalekleitet eine Formel für die betreffenden Energieverluste ab, aus der sich ergibt, daß der Nutzeffekt abhängig ist von dem mechanischen Bau (Porosität) der Platten, von der Leitfähigkeit der Plattensäure, von der Stromstärke und von der Zeit. Beachtenswert ist, daß diese Energieverluste, ebenso wie die derJouleschen Wärme entsprechenden der Leitfähigkeit der Säure umgekehrt proportional sind. Da nun Säure vom spezifischen Gewicht 1,22 (ca. 30% Schwefelsäure) das Maximum der Leitfähigkeit besitzt, so ist der Nutzeffekt bei dieser Säuredichte am größten.
Daß durch die Konzentrationsänderungen, die sich sowohl bei der Ladung wie bei der Entladung vollziehen, Arbeitsverluste verursacht werden, kann man sich auch folgendermaßen klar machen. Wenn man zwei Schwefelsäurelösungen verschiedener Konzentration mischt, so wird Wärme frei; sollen umgekehrt die beiden miteinander vermischten Säuren getrennt, soll also ein Konzentrationsunterschied hergestellt werden, so muß Arbeit aufgewendet werden. Da nun im Akkumulator durch den Strom ein Konzentrationsunterschied hergestellt und aufrecht erhalten wird, so muß hierfür elektrische Energie verbraucht werden.Dolezalekleitet eine Formel für die betreffenden Energieverluste ab, aus der sich ergibt, daß der Nutzeffekt abhängig ist von dem mechanischen Bau (Porosität) der Platten, von der Leitfähigkeit der Plattensäure, von der Stromstärke und von der Zeit. Beachtenswert ist, daß diese Energieverluste, ebenso wie die derJouleschen Wärme entsprechenden der Leitfähigkeit der Säure umgekehrt proportional sind. Da nun Säure vom spezifischen Gewicht 1,22 (ca. 30% Schwefelsäure) das Maximum der Leitfähigkeit besitzt, so ist der Nutzeffekt bei dieser Säuredichte am größten.
Die Arbeitsverluste kann man graphisch bestimmen, wenn man die Lade- und Entladekurve aufgenommen hat. Wählt man nämlich für die beiden Kurven dieselben Koordinatenachsen (Zeiten als Abszissen, Spannungen als Ordinaten), so schließen dieselben eine Fläche ein, die ein Maß für die Energieverluste ist. Um dies zu beweisen, denken wir uns die Zeit in Abschnitte t1, t2... zerlegt, die so klein sind, daß man von der Änderung der Spannung während eines jeden Intervalls absehen kann. Nennen wir die zugehörigen Spannungen bei der Ladung E1, E2..., bei der Entladung e1, e2..., und bezeichnen wir die (konstante) Stromstärke, die bei der Ladung und Entladung die gleiche sein muß, mit J, so ist die
Der Energieverlust in der Zeit t1ist mithin (E1- e1) · J · t1oder proportional (E1- e1) · t1. Durch dieses Produkt wird aber das der Zeit t1entsprechende Stück der zwischen den beiden Kurven liegenden Fläche dargestellt usw.
Derinnere Widerstandeines Akkumulators, der bei Pufferbatterien (s.Kap. 9) eine wichtige Rolle spielt, kann in drei Summanden zerlegt werden, nämlich in den Widerstand, den der Strom in den verschiedenen Teilen der positiven Platte (bezw. Platten) findet (wp), denjenigen in der negativen Elektrode (wn) und denWiderstand in der Säure zwischen den Elektroden (ws). Zu wpund wnist auch derjenige Widerstand zu rechnen, den die Elektrizität in der in den Poren befindlichen Säure findet. Diese beiden Summanden, die unter sonst gleichen Umständen beiPlanté-Platten einen anderen Wert haben als beiFaure-Platten, ändern sich im Laufe der Ladung und Entladung. Je mehr Bleisulfat nämlich zwischen den Blei- bezw. Bleisuperoxydpartikelchen verteilt ist, um so größer werden wpund wn; ferner steigt bezw. sinkt die Konzentration der Säure in den Poren; endlich hat die Erzeugung von Joulescher Wärme eine Temperaturerhöhung zur Folge. Auch mit dem Alter der Platten ändern sich die beiden Widerstände (s.Lebensdauer).
wsist ebenfalls variabel, da die Dichte der Säure zwischen den Platten (der „äußeren‟ Säure) während der Ladung zunimmt und bei der Entladung sinkt; dies gilt besonders von denjenigen Schichten der Säure, die an die Oberflächen der Platten grenzen; auch können Gase, die sich gegen Ende der Entladung entwickeln, eine Vergrößerung von wsverursachen.
Die Leitfähigkeit einer Schwefelsäurelösung ändert sich mit dem spezifischen Gewichte. Setzt man einer bestimmten Menge Wasser Schwefelsäure in kleineren Quantitäten nach und nach zu, so findet man, daß das Leitungsvermögen zuerst schnell, dann langsam wächst, später aber wieder abnimmt; bei einer Säuredichte von 1,224 ist das Leitungsvermögen ein Maximum. Die betreffende Lösung enthält etwa 30,5 Gewichtsprozente Schwefelsäure; der spezifische Widerstand (Widerstand pro cm3) beträgt etwa 1,35Ohm[64].
Der Widerstand eines Akkumulators im stromlosen Zustande kann wie derjenige eines jeden anderen elektrolytischen Apparates bestimmt werden. Bei der einfachen Brückenschaltung mit den von F.Kohlrauschangegebenen Modifikationen (Wechselströme, Telephon) erhält man besonders bei größeren Zellen (bei solchen ist der Widerstand kaum ein Tausendstel Ohm groß) wegen der Übergangswiderstände an den Klemmen keine genauen Resultate. Diese werden bei der Brückenschaltung vonMatthiesenundHockineliminiert.
Angenähert (der Größenordnung nach) kann man den inneren Widerstand folgendermaßen bestimmen. Man lädt das Element, dessen Widerstand man ermitteln will, aus zwei hintereinander geschalteten Akkumulatoren unter Einschaltung eines Kurbelrheostats. Die Klemmen der Ladebatterie seien k1und k2, die daran befestigten Drähte d1und d2. Legt man d1undd2an k1(oder an k2), so gibt das zu untersuchende Element Strom ab. Dieser Strom ist bei Beginn der Ladung nur wenig verschieden von dem Ladestrom. Bei einiger Übung kann man innerhalb eines Zeitraumes von einigen Sekunden laden, umschalten (also entladen) und die nötigen Ablesungen an einem mit den Klemmen des Elementes verbundenen Voltmeter vornehmen. Während der Ladung iste = E + i · w(e = Klemmenspannung, E = elektromotorische Kraft der Zelle)und während der Entladung iste′ = E - i · w.Die Differenz der beiden Klemmenspannungen ist also (angenähert) gleich 2wi.
Angenähert (der Größenordnung nach) kann man den inneren Widerstand folgendermaßen bestimmen. Man lädt das Element, dessen Widerstand man ermitteln will, aus zwei hintereinander geschalteten Akkumulatoren unter Einschaltung eines Kurbelrheostats. Die Klemmen der Ladebatterie seien k1und k2, die daran befestigten Drähte d1und d2. Legt man d1undd2an k1(oder an k2), so gibt das zu untersuchende Element Strom ab. Dieser Strom ist bei Beginn der Ladung nur wenig verschieden von dem Ladestrom. Bei einiger Übung kann man innerhalb eines Zeitraumes von einigen Sekunden laden, umschalten (also entladen) und die nötigen Ablesungen an einem mit den Klemmen des Elementes verbundenen Voltmeter vornehmen. Während der Ladung ist
e = E + i · w(e = Klemmenspannung, E = elektromotorische Kraft der Zelle)
und während der Entladung ist
e′ = E - i · w.
Die Differenz der beiden Klemmenspannungen ist also (angenähert) gleich 2wi.
Wenn die elektromotorische Kraft eines Akkumulators konstant wäre, so könnte man w leicht während der Ladung und Entladung bestimmen; denn dann wäre
w =e - Ei.
Es würde genügen, „den Stromkreis für kurze Zeit zu öffnen‟ und die Spannung, die das mit denKlemmen verbundene aperiodische Voltmeter anzeigt (E), abzulesen. Wie jedoch aus den Kurven im folgenden Kapitel hervorgeht, gehen die Änderungen der elektromotorischen Kraft schnell vor sich, so daß die Unterbrechungsmethode sehr unzuverlässig ist. Will man den Widerstand einer Zelle während des Stromdurchganges genau bestimmen, so kann man die Methode vonUppenborn[65]oder die vonNernstundHaagnangegebene benutzen. Letztere unterscheidet sich von der gewöhnlichen Brückenmethode dadurch, daß zwei Widerstände durch Kondensatoren ersetzt sind, außerdem wird noch ein Hilfskondensator eingeschaltet, der verhindert, daß die Zelle Strom in die Brückenanordnungsendet[66].(Eine ausführliche Beschreibung der verschiedenen Meßmethoden findet man in dem bekannten Werke von F.Kohlrausch, Leitfaden der Physik.)
Nach Messungen vonHaagnstieg der Widerstand einer kleinen Zelle während der etwa fünfstündigen Entladung von 0,018 bis 0,045 Ohm, während der Ladung fiel er von 0,04 auf 0,018 Ohm. Nach Messungen vonHäberleinverhält sich der Widerstand bei Beginn zu demjenigen am Ende der Ladung wie 17:24.Roloffgibt für die Type 3 × J1der Akkumulatoren-Fabrik Akt.-Ges. an, daß der Widerstand bei Beginn der Entladung 0,0012 Ohm und am Ende 0,0018 Ohm war.
Da die Konzentration der Säure in den Poren der wirksamen Masse von der Stromdichte abhängig ist, so folgt erstens, daß bei schneller Entladung (großer Stromdichte) der durchschnittliche (mittlere) Widerstand größer ist als bei langsamer Entladung und zweitens, daß der Spannungsabfall im Elemente (w · J) nicht linear mit der Stromdichte wächst, sondern in einem etwas stärkeren Verhältnisse.
Da die Konzentration der Säure in den Poren der wirksamen Masse von der Stromdichte abhängig ist, so folgt erstens, daß bei schneller Entladung (großer Stromdichte) der durchschnittliche (mittlere) Widerstand größer ist als bei langsamer Entladung und zweitens, daß der Spannungsabfall im Elemente (w · J) nicht linear mit der Stromdichte wächst, sondern in einem etwas stärkeren Verhältnisse.
Wenn man Zellen von verschiedener Kapazität, die aus Platten von derselben Konstruktion zusammengesetzt sind und Säure von derselben Dichte enthalten, mit gleicher Stromdichte beansprucht, so darf man das Produkt w · J als konstant ansehen; denn in dem Maße, in dem w bei den großen Zellen abnimmt, wächst J.
[52]Wenn man zwischen Platin- oder Kohlenelektroden verdünnte Schwefelsäure zersetzt, so steigen an den Außenseiten der Elektroden nur wenige Gasblasen empor. Bei der Ladung eines Akkumulators wird dementsprechend an der Außenseite der positiven und negativen Elektrode nur wenig Bleisuperoxyd bezw. Blei gebildet.[53]Diese müßte eigentlich als „Kapazität‟ schlechthin bezeichnet werden.[54]E. T. Z. 1904, S. 587.[55]E. T. Z. 1897, S. 287.[56]E. T. Z. 1889, S. 88.[57]E. T. Z. 1901, S. 811.[58]Wenn man einen Elektrolyten erwärmt, so wächst das Leitungsvermögen ziemlich stark.[59]P. Schoop, Die Sekundär-Elemente.[60]Zeitschr. f. Elektrochemie 1902, Nr. 44.[61]Liebenow empfiehlt als Meßelektrode eine kleine Zelle aus Ton (porös), in der sich Kadmiumamalgam und eine konzentrierte Lösung von Kadmiumsulfat in Akkumulatorensäure befindet. Ein durch einen Glasstab isolierter Draht geht bis zum Kadmiumamalgam. Man stellt die Zelle auf die Oberkante der Platten; ihr unteres Ende muß dann von der Säure benetzt werden. Die Anordnung entspricht einem Voltaschen Elemente, bei dem eine Elektrode in einer mit verdünnter Schwefelsäure angefüllten Tonzelle steht.[62]Was hier „Wirkungsgrad‟ genannt wird, wird von anderen Autoren als „Güteverhältnis‟ bezeichnet, während das Verhältnis der entnommenen Energie zu der bei der Ladung aufgewendeten Energie vielfach als Wirkungsgrad bezeichnet wird.[63]Man vergleiche dieFußnoteauf der vorigen Seite.[64]Man bezieht das Leitvermögen (und den spezifischen Widerstand) der Elektrolyte auf eine Säule von 1 cm Länge und 1 qcm Querschnitt, also kurz auf 1 ccm.[65]Näheres sieheUppenborn, Kalender für Elektrotechniker.[66]Zeitschr. f. Elektrochemie 1897, S. 421.
[52]Wenn man zwischen Platin- oder Kohlenelektroden verdünnte Schwefelsäure zersetzt, so steigen an den Außenseiten der Elektroden nur wenige Gasblasen empor. Bei der Ladung eines Akkumulators wird dementsprechend an der Außenseite der positiven und negativen Elektrode nur wenig Bleisuperoxyd bezw. Blei gebildet.
[53]Diese müßte eigentlich als „Kapazität‟ schlechthin bezeichnet werden.
[54]E. T. Z. 1904, S. 587.
[55]E. T. Z. 1897, S. 287.
[56]E. T. Z. 1889, S. 88.
[57]E. T. Z. 1901, S. 811.
[58]Wenn man einen Elektrolyten erwärmt, so wächst das Leitungsvermögen ziemlich stark.
[59]P. Schoop, Die Sekundär-Elemente.
[60]Zeitschr. f. Elektrochemie 1902, Nr. 44.
[61]Liebenow empfiehlt als Meßelektrode eine kleine Zelle aus Ton (porös), in der sich Kadmiumamalgam und eine konzentrierte Lösung von Kadmiumsulfat in Akkumulatorensäure befindet. Ein durch einen Glasstab isolierter Draht geht bis zum Kadmiumamalgam. Man stellt die Zelle auf die Oberkante der Platten; ihr unteres Ende muß dann von der Säure benetzt werden. Die Anordnung entspricht einem Voltaschen Elemente, bei dem eine Elektrode in einer mit verdünnter Schwefelsäure angefüllten Tonzelle steht.
[62]Was hier „Wirkungsgrad‟ genannt wird, wird von anderen Autoren als „Güteverhältnis‟ bezeichnet, während das Verhältnis der entnommenen Energie zu der bei der Ladung aufgewendeten Energie vielfach als Wirkungsgrad bezeichnet wird.
[63]Man vergleiche dieFußnoteauf der vorigen Seite.
[64]Man bezieht das Leitvermögen (und den spezifischen Widerstand) der Elektrolyte auf eine Säule von 1 cm Länge und 1 qcm Querschnitt, also kurz auf 1 ccm.
[65]Näheres sieheUppenborn, Kalender für Elektrotechniker.
[66]Zeitschr. f. Elektrochemie 1897, S. 421.
Wir wollen zunächst dasVerhaltendes Bleiakkumulators während der Ladung und Entladung betrachten.
1.Ladung. In den ersten Minuten nach Beginn der Ladung, für die das inFig. 2(s.S. 26) gegebene Schaltungsschema gilt, steigt die Klemmenspannung des Akkumulators ziemlich schnell auf 2,1 bis 2,18Volt[67].Oft beobachtet man, daß die Spannung im Anfange der Ladung zuerst steigt und dann wieder etwas abfällt, daß also das erste Stück der Spannungskurve einen kleinen Höcker aufweist. Während des größten Teiles der Ladung wächst die Spannung nur ganz langsam bis zu 2,2 Volt; gegen Ende der Ladung erfolgt ein schneller Anstieg der Kurve.
Bei etwa 2,3 Volt beginnt die Gasentwicklung; an den Anoden schon etwas früher; sie ist zuerst schwach, dann lebhaft; der Akkumulator „kocht‟. Die Klemmenspannung hängt besonders während der Gasbildung in hohem Maße von der Ladestromstärke ab (s.Fig. 7); hat der Strom noch den der vierstündigen Ladung entsprechendenWert, so steigt die Spannung bis zu etwa 2,7 Volt und ev. noch höher.
Fig. 7.Klemmspannung
Fig. 7.
Fig. 8.Klemmspannung
Fig. 8.
In denFig. 7und8ist der Verlauf der Klemmenspannung bei Beginn und gegen Ende der Ladunggraphisch dargestellt. Die Zelle bestand aus 5 Platten, 2 positiven und 3 negativen (10 cm × 14 cm); die ersteren waren Großoberflächenplatten. Die Stromdichte betrug zuerst etwa 0,6, später etwa 0,4 Amp. pro Quadratdezimeter, bezogen auf die positiven Platten.
Die Stromdichte war verhältnismäßig klein. NachHeim[68]ist bei dreistündiger Entladung die Stromdichte bei positiven Großoberflächenplatten 1,3-1 Amp. pro 1 dm2.
Vereinzelte Gasblasen sieht man während der ganzen Ladung emporsteigen. Die Gase, die sich entwickeln, sind die Elemente des Wassers, und zwar entweicht der Sauerstoff an den positiven, der Wasserstoff an den negativen Platten. Die stärkere Gasentwicklung ist ein Zeichen, daß der chemische Umsatz an den dem Strome zugänglichen Teilen der aktiven Masse nahezu vollendet ist. Hat man den Akkumulator mit der höchsten zulässigen Stromstärke geladen, so setzt man, sobald lebhafte Gasbildung erfolgt, den Strom auf die Hälfte bis ein Drittel seiner bisherigen Stärke herab.
Die Klemmenspannung e während der Ladung kann in zwei Summanden zerlegt werden; der eine Teil dient dazu, die Gegenspannung (die momentane elektromotorische Kraft) des Elementes E aufzuheben, der andere, den Ohmschen Widerstand w der Zelle zu überwinden:
e = E + i · w.
Man beobachtet oft, wie schon erwähnt wurde, daß kurze Zeit nach Beginn der Ladung die Potentialdifferenz der Klemmen etwas sinkt und dann wieder ansteigt. Diese Erscheinung ist nach Dolezalek auf eine Änderungdes Widerstandes zurückzuführen, den der Strom in den Platten findet. Während der der Ladung vorausgegangenen Ruhepause bedecken sich die Elektroden wahrscheinlich mit einer sehr dünnen Schicht von schlechtleitendem Bleisulfat (s.Sulfatierung). Dieses wird, wenn die Ladung beginnt, in kurzer Zeit gelöst. Im übrigen wird durch die Änderung des inneren Widerstandes während der Ladung die Klemmenspannung nur wenig beeinflußt. Das anfängliche schnelle und das spätere langsame Wachsen der Klemmenspannung ist auf die Änderung der Konzentration der Säure in den Poren der wirksamen Masse und der äußeren Säure zurückzuführen. Sobald die Stromzufuhr beginnt, wird in den Poren Säure frei, die Konzentration (und damit die elektromotorische Kraft) steigt so lange, bis in jedem Zeitteilchen gerade soviel Säure durch Diffusion nach außen gelangt, wie in den Poren durch den chemischen Umsatz erzeugt wird. Je größer die Ladestromstärke ist, um so größer wird der Unterschied der Konzentration der beiden Säuren, um so größer wird die Klemmenspannung. Die Differenz der beiden Konzentrationen können wir, wenn mit konstanter (nicht zu großer) Stromdichte geladen wird, als konstant ansehen; wächst also die Dichte der äußeren Säure, so nimmt auch diejenige der Säure in den Poren zu.
Gegen Ende der Ladung werden von den Platten Gase absorbiert, man spricht daher von einer „Gaspolarisation‟. Da die Okklusionsfähigkeit des Bleies nur eine geringe ist, so ist es sehr zweifelhaft, ob die Gaspolarisation überhaupt eine Rolle spielt. Übrigens kann man, wie wir gesehen haben, den starken Anstieg der Spannung gegen Ende der Ladung darauf zurückführen, daß der Elektrolyt an Bleisulfat verarmt und daher die Konzentration der Blei- undBleisuperoxydionen[69]eine sehr geringe wird (sieheTheorie vonLiebenow).
Verschiedene Firmen schreiben vor, daß die von ihnen gelieferten Akkumulatoren ab und zu nach Beginn der lebhaften Gasentwicklung noch längere Zeit, etwa 2-3 Stunden lang, weiter geladen werden sollen. Der Zweck derÜberladung, die im allgemeinen schädlich ist, weil durch die entweichenden Gase Teilchen der aktiven Masse abgerissen werden, die ferner eine nicht unwesentliche Verringerung des Nutzeffektes zur Folge hat, ist ein zweifacher. Es kommt zuweilen vor, daß einzelne Zellen einer Batterie aus irgend einem Grunde gegen die anderen „zurückbleiben‟. Bei diesen Zellen erfolgt die Umwandlung von Bleisulfat in Blei bezw. Bleisuperoxyd langsamer als bei den übrigen Elementen, die sich in normalem Zustande befinden. Während der Überladung geht nun die chemische Umwandlung in den kranken Zellen noch weiter vor sich, so daß ihnen Gelegenheit gegeben wird, sich zu erholen. Ferner werden durch die während der Überladung entweichenden Gasblasen Strömungen in der Säure hervorgerufen (die Säure wird aufgewühlt), die eine Vermischung der unteren, dichteren Schichten mit den oberen, weniger dichten zur Folge haben. Die Konzentrationsverschiebungen kommen dadurch zustande, daß während der Ladung konzentrierte Schwefelsäure zu Boden sinkt. (Die Konzentrationsunterschiede kann man leicht nachweisen, indem man mittels eines Hebers Säure aus den oberen und den unteren Schichten entnimmt und mittels des Aräometers die Dichte mißt.)
Die Stromdichte darf bei der Ladung einen gewissen oberen Grenzwert nicht überschreiten, weil sonst 1. die Umwandlung nur oder fast ausschließlich an der Oberfläche der Platten vor sich geht (s.Kapazität), 2. die Ladespannung einen zu hohen Wert hat (s.Nutzeffekt) und 3. infolge der schnellen, den chemischen Umsatz begleitenden Volumänderungen sich der Zusammenhang zwischen der aktiven Masse lockern kann (s. auchS. 14,Überschwefelsäure).
Die größte zulässige Stromdichte hängt von der wirksamen Oberfläche, von der Dicke der aktiven Schicht und von der Porosität der Platten ab. Gewöhnlich beträgtder maximale Ladestrom(wie er von den Fabriken angegeben wird) so viel Amper, wie der dritte Teil der Kapazität bei dreistündiger Entladung angibt. Ist z. B. die Kapazität bei dreistündiger Entladung 120 Amperstunden, so ist die maximale Ladestromstärke gleich 40 Amp.
Kennt man diemaximale Ladestromstärkenicht, so bestimme man die projizierte Oberfläche der Positiven; ist die Länge einer Platte a cm, die Breite b cm, so ist die Oberfläche einer Platte 2 a b cm2; pro Quadratdezimeter darf man 0,6 bis 0,7 Amp. rechnen.