Fußnoten:[30]Um vielfachen, an mich ergangenen Anfragen über die Bedeutung des Wortes Parenchym zu genügen, verweise ich aufGalenusde temperamentis Lib. II. cap. 3. viscerum propriam substantiam Erasistratus parenchyma vocat.[31]Man vergleiche für die Special-Behandlung der hierher gehörigen Fragen den Abschnitt über die örtlichen Störungen des Kreislaufes in dem von mir herausgegebenen Handbuche der speciellen Pathologie und Therapie. Erlangen, 1854. I. 95 ff.[32]Mein Archiv XXVII. S. 224.[33]Handbuch der spec. Path. I. 141.[34]Handbuch der spec. Pathol. u. Therapie. I. 122.[35]Handb. der spec. Pathol. u. Ther. I. 122, 129, 142, 173.[36]Würzburger Verhandl. 1854. IV. 248.[37]Gesammelte Abhandlungen zur wissenschaftlichen Medicin. 1856. S. 294, 337, 456.[38]Handbuch der speciellen Pathologie. I. 151, 247. Gesammelte Abhandl. S. 319.[39]Handb. der spec. Path. und Ther. I. 276.[40]Würzb. Verhandl. (1855). VII. 21.[41]Handb. der spec. Path. und Ther. I. 246.[42]Archiv für pathologische Anatomie und Physiologie. 1858. XV. 217. Geschwülste II. 476.
Fußnoten:
[30]Um vielfachen, an mich ergangenen Anfragen über die Bedeutung des Wortes Parenchym zu genügen, verweise ich aufGalenusde temperamentis Lib. II. cap. 3. viscerum propriam substantiam Erasistratus parenchyma vocat.
[30]Um vielfachen, an mich ergangenen Anfragen über die Bedeutung des Wortes Parenchym zu genügen, verweise ich aufGalenusde temperamentis Lib. II. cap. 3. viscerum propriam substantiam Erasistratus parenchyma vocat.
[31]Man vergleiche für die Special-Behandlung der hierher gehörigen Fragen den Abschnitt über die örtlichen Störungen des Kreislaufes in dem von mir herausgegebenen Handbuche der speciellen Pathologie und Therapie. Erlangen, 1854. I. 95 ff.
[31]Man vergleiche für die Special-Behandlung der hierher gehörigen Fragen den Abschnitt über die örtlichen Störungen des Kreislaufes in dem von mir herausgegebenen Handbuche der speciellen Pathologie und Therapie. Erlangen, 1854. I. 95 ff.
[32]Mein Archiv XXVII. S. 224.
[32]Mein Archiv XXVII. S. 224.
[33]Handbuch der spec. Path. I. 141.
[33]Handbuch der spec. Path. I. 141.
[34]Handbuch der spec. Pathol. u. Therapie. I. 122.
[34]Handbuch der spec. Pathol. u. Therapie. I. 122.
[35]Handb. der spec. Pathol. u. Ther. I. 122, 129, 142, 173.
[35]Handb. der spec. Pathol. u. Ther. I. 122, 129, 142, 173.
[36]Würzburger Verhandl. 1854. IV. 248.
[36]Würzburger Verhandl. 1854. IV. 248.
[37]Gesammelte Abhandlungen zur wissenschaftlichen Medicin. 1856. S. 294, 337, 456.
[37]Gesammelte Abhandlungen zur wissenschaftlichen Medicin. 1856. S. 294, 337, 456.
[38]Handbuch der speciellen Pathologie. I. 151, 247. Gesammelte Abhandl. S. 319.
[38]Handbuch der speciellen Pathologie. I. 151, 247. Gesammelte Abhandl. S. 319.
[39]Handb. der spec. Path. und Ther. I. 276.
[39]Handb. der spec. Path. und Ther. I. 276.
[40]Würzb. Verhandl. (1855). VII. 21.
[40]Würzb. Verhandl. (1855). VII. 21.
[41]Handb. der spec. Path. und Ther. I. 246.
[41]Handb. der spec. Path. und Ther. I. 246.
[42]Archiv für pathologische Anatomie und Physiologie. 1858. XV. 217. Geschwülste II. 476.
[42]Archiv für pathologische Anatomie und Physiologie. 1858. XV. 217. Geschwülste II. 476.
Morphologische (anatomische) und chemische Veränderungen des Blutes (Dyscrasien).
Faserstoff. Fibrillen desselben. Vergleich mit Schleim und Bindegewebe. Homogener gallertiger Zustand.
Rothe Blutkörperchen. Kern, Membran und Inhalt derselben. Gestalt bei den verschiedenen Wirbelthieren: diagnostische Schwierigkeiten. Zusammensetzung des Zellkörpers: Hämatin, Hämoglobin. Stroma. Veränderungen der Farbe und der Gestalt. Blutkrystalle (Hämatoidin, Hämin, Hämatokrystallin).
Farblose Blutkörperchen. Numerisches Verhältniss. Struktur. Vergleich mit Eiterkörperchen. Klebrigkeit und Agglutination derselben. Specifisches Gewicht. Crusta granulosa. Diagnose von Eiter- und farblosen Blutkörperchen. Die Lehren von der Eiterresorption und von der Lymphexsudation. Lebenseigenschaften der farblosen Körperchen: Bewegung, Aufnahme anderer Körper, Auswanderung. Bedeutung dieser Erfahrungen für die cellulare Doctrin.
Wenn man die verschiedenen krankhaften Veränderungen des Blutes (Dyscrasien) in Beziehung auf Werth und Quelle ansieht, so lassen sich von vornherein zwei grosse Kategorien von dyscrasischen Zuständen unterscheiden, je nachdem nehmlich abweichende morphologische Bestandtheile im Blute enthalten sind, oder die Abweichung eine mehr chemische ist und an den flüssigen Bestandtheilen sich findet. Dabei versteht es sich aber wohl von selbst, dass in der Regel die morphologischen (anatomischen) Dyscrasien nicht ohne chemische Dyscrasie verlaufen und umgekehrt: unsere Methoden der Blutuntersuchung sind aber noch so unvollkommen, dass wir uns in der Regel an die eine oder andere Möglichkeit halten müssen. Ebenso ist es klar, dass die morphologischen Veränderungen der Blutmischung entweder durch Veränderungen der natürlichen Elemente (Blutkörperchen) oder durch Hinzufügung fremder, der Blutmischung normal nicht zukommender Theile bedingt sein können.
Einer der flüssigen Stoffe des Blutes, der Faserstoff (Fibrin), hat häufig als ein morphologischer oder doch als ein fester Bestandtheil des Blutes gegolten, weil er vermöge seiner Gerinnbarkeit sehr bald, nachdem das Blut aus dem lebenden Körper entfernt ist, eine sichtbare Form annimmt. Diese Auffassung ist auch in der neueren Zeit noch vielfach in der Praxis festgehalten worden, wie sie denn traditionell in der Medicin seit langer Zeit bestanden hat, insofern man fibrinarmes Blut alsdissoluteszu bezeichnen und die Qualität des Blutes viel weniger nach den Blutkörperchen, als nach dem Fibringehalt zu schätzen pflegte. Eine solche Trennung des Faserstoffes von den flüssigen Bestandtheilen des Blutes hat insofern einen wirklichen Werth, als derselbe eben so, wie die Blutkörperchen, eine ganz eigenthümliche Erscheinung ist, so einzig und allein in dem Blute und den ihm zunächst stehenden Säften sich findet, dass man ihn in der That mehr mit den Blutkörperchen in Zusammenhang bringen kann, als mit dem Blutwasser (Serum). Betrachtet man das Blut in Beziehung auf seine eigentlich specifischen Theile, durch welche es Blut ist und durch welche es sich von anderen Flüssigkeiten unterscheidet, so kann man nicht umhin anzuerkennen, dass auf der einen Seite die rothen, hämatinhaltigen Körperchen, auf der anderen Seite das Fibrin der Intercellular-Flüssigkeit (Liquor sanguinis, Plasma) es sind, in welchen die Unterschiede am meisten hervortreten.
see captionFig. 59. Geronnenes Fibrin aus menschlichem Blute.aFeine,bgröbere und breitere Fibrillen;cin das Gerinnsel eingeschlossene rothe und farblose Blutkörperchen. Vergr. 280.
Fig. 59. Geronnenes Fibrin aus menschlichem Blute.aFeine,bgröbere und breitere Fibrillen;cin das Gerinnsel eingeschlossene rothe und farblose Blutkörperchen. Vergr. 280.
Betrachten wir daher zunächst diese specifischen Bestandtheile etwas näher. Die morphologische Schilderung des Faserstoffes ist verhältnissmässig schnell gemacht. Untersuchen wir ihn, wie er im Blutgerinnsel vorkommt, so finden wir ihn fast immer in der Form, wie ihnMalpighibeschrieben hat und von welcher er den Namen trägt, der fibrillären. Die geronnene Substanz zeigt wirkliche Fasern von etwas zackiger Gestalt, welche sich vielfach durchsetzen und dadurch äusserst feine Geflechte, zarte Maschennetze bilden. Die Fasern sind in den einzelnenFällen von sehr verschiedener Breite. Gewöhnlich sind sie sehr fein; zuweilen finden sich aber ungleich breitere, fast bandartige, welche viel glatter sind, sich aber im Uebrigen ziemlich auf dieselbe Weise durchsetzen und verschlingen. Es sind dies Eigenthümlichkeiten, über deren Bedeutung bis jetzt ein sicheres Urtheil noch nicht gewonnen ist. Ich finde solche Verschiedenheiten ziemlich häufig, bin jedoch nicht im Stande, die Bedingungen dafür anzugeben. Betrachtet man einen Blutstropfen während der Gerinnung, so sieht man überall, wie zwischen den Blutkörperchen feine Fibrin-Fäden anschiessen. In dem Coagulum finden sich daher die morphologischen Elemente in den Maschenräumen des entstandenen Netzwerkes (Fig. 59,c), rings umschlossen und zuweilen nicht wenig verdrückt durch die Fasern desselben.
In Beziehung auf die Natur dieser Fasern können wir hervorheben, dass es histologisch nur noch zweierlei Arten von Fasern gibt, welche mit ihnen eine nähere Aehnlichkeit darbieten[43]. Die eine Art kommt in einer Substanz vor, welche sonderbarer Weise eine gewisse Verbindung zwischen den ältesten kraseologischen Vorstellungen und den modernen bildet, nehmlich im Schleim (S. 65). In der hippokratischen Medicin fällt der Blutfaserstoff noch unter den Begriff desPhlegma(Mucus), und die antike Lehre von dem phlegmatischen Temperament würde in moderner Formel ganz wohl als fibrinöse Krase übersetzt werden können. In der That, wenn wir den Schleim mit dem Faserstoff vergleichen, so müssen wir zugestehen, dass eine grosse formelle Uebereinstimmung in ihrer Gerinnung besteht. Wie das Fibrin, bildet auch der Schleim, zumal bei Zusatz von Wasser oder organischen Säuren, Fasern und Häute, welche unter einander zu oft sehr sonderbaren Figuren zusammentreten. Dass auch in der Absonderung von Schleim und Faserstoff gewisse Beziehungen bestehen, werden wir später darlegen. — Die andere Substanz, welche hierher gehört, ist die Intercellularsubstauz des Bindegewebes, der leimgebende Stoff, das Collagen (Gluten der Früheren), und es ist gewiss interessant, sich daran zu erinnern, dass noch im vorigen Jahrhundert, ja hier und da noch in dem gegenwärtigen, die Speckhaut des Blutes als Gluten bezeichnet wurde. Die Fibrillen des Bindegewebes verhalten sich nur insofern anders, als die des Faserstoffes, als sie inder Regel nicht netzförmig, sondern parallel verlaufen; im Uebrigen sind sie den Fibrin-Fasern in hohem Maasse ähnlich. Die Intercellularsubstanz des Bindegewebes stimmt auch darin mit dem Faserstoff überein, dass ihr Verhalten gegen Reagentien sehr analog ist. Wenn wir diluirte Säuren, namentlich die gewöhnlichen Pflanzensäuren oder auch schwache Mineralsäuren darauf einwirken lassen, so quellen sie auf und unter den Augen verschwinden die Fasern, so dass wir nicht mehr sagen können, wo sie bleiben. Die Masse schwillt auf, es verschwindet jeder Zwischenraum, und es sieht aus, als ob die ganze Masse ein continuirliches, vollkommen homogenes Gewebsstück bildete. Waschen wir dasselbe langsam aus, entfernen wir die Säure wieder, so lässt sich, wenn die Einwirkung keine zu concentrirte war, wieder der faserige Zustand herstellen. Es ist dies Verhalten bis jetzt noch unerklärt, und gerade deshalb hatte die AnsichtReichert's, welche ich früher (S. 41,S. 141) erwähnte, etwas Bestechendes, dass die Substanz des Bindegewebes eigentlich homogen und die Fasern nur eine künstliche Bildung oder eine optische Täuschung seien, indessen isoliren sich beim Faserstoff noch viel deutlicher als beim Bindegewebe die einzelnen Fibrillen so vollständig, dass ich nicht umhin kann, zu sagen, dass ich die Trennung in einzelne Fäserchen für wirklich bestehend und nicht bloss für künstlich und eben so wenig für eine Täuschung des Beobachters halte.
Eine fernere Uebereinstimmung ist die, dass sowohl beim Fibrin, als beim Bindegewebe jedesmal vor dem Stadium des Fibrillären ein Stadium des Homogenen oder Gallertigen liegt. Betrachtet man die Gerinnung fibrinöser Flüssigkeiten, so sieht man nicht etwa von vornherein Fasern entstehen, sondern die ganze Flüssigkeit „gesteht“ zuerst zu einer ganz gleichmässigen Masse, welche zuweilen so fest ist, dass man sie in einem Stücke aufheben kann. Erst aus dieser homogenen Gallerte scheiden sich die Fasern aus, mit deren Bildung die Zusammenziehung des Gerinnsels, die eigentliche Coagulation auftritt[44]. In ähnlicher Weise erscheint auch die Intercellularsubstanz des Bindegewebes zuerst bei ihrer Bildung als homogene Intercellularsubstanz (Schleim); erst nach und nach sieht man sich Fibrillen, wenn ich mich soausdrücken darf, ausscheiden oder, wie man gewöhnlich sagt, differenziren. Die Bildung der Fasern, dieFibrillationlässt sich daher recht wohl mit der Krystallisation vergleichen, und in der That gibt es auch unter den anorganischen Stoffen gewisse Analogien. Manche Niederschläge von Kalksalzen oder Kieselsäure sind ursprünglich vollkommen gelatinös und amorph; nach und nach scheiden sich aus ihnen solide Körner und Krystalle aus.
Man kann also immerhin den Namen der Fibrillen für die gewöhnliche Erscheinungsform des Faserstoffes beibehalten, aber man muss sich dabei erinnern, dass diese Substanz ursprünglich in einem homogenen, amorphen, gallertartigen Zustande existirte, und wieder in denselben übergeführt werden kann. Diese Ueberführung geschieht nicht nur künstlich, sondern sie macht sich auch auf natürlichem Wege im Körper selbst, so dass an Stellen, wo vorher Fibrillen vorhanden waren, später der Faserstoff wieder homogen angetroffen wird. Die Coagula der Aneurysmen, manche Thromben der Venen werden allmählich in homogene, knorpelartig dichte Massen verwandelt. —
see captionFig. 60. Kernhaltige Blutkörperchen von einem menschlichen, sechs Wochen alten Fötus.aVerschieden grosse, homogene Zellen mit einfachen, relativ grossen Kernen, von denen einzelne leicht granulirt, die meisten mehr gleichmässig sind, bei * ein farbloses Körperchen.bZellen mit äusserst kleinen, aber scharfen Kernen und deutlich rothem Inhalte.cNach Behandlung mit Essigsäure sieht man die Kerne zum Theil geschrumpft und zackig, bei mehreren doppelt; bei * ein granulirtes Körperchen. Vergr. 280.
Fig. 60. Kernhaltige Blutkörperchen von einem menschlichen, sechs Wochen alten Fötus.aVerschieden grosse, homogene Zellen mit einfachen, relativ grossen Kernen, von denen einzelne leicht granulirt, die meisten mehr gleichmässig sind, bei * ein farbloses Körperchen.bZellen mit äusserst kleinen, aber scharfen Kernen und deutlich rothem Inhalte.cNach Behandlung mit Essigsäure sieht man die Kerne zum Theil geschrumpft und zackig, bei mehreren doppelt; bei * ein granulirtes Körperchen. Vergr. 280.
Was nun den zweiten specifischen Antheil des Blutes betrifft, dieBlutkörperchen, so habe ich schon hervorgehoben (S. 12), dass gegenwärtig ziemlich alle Histologen darüber einig sind, dass die farbigen Blutkörperchen des Menschen und der Säugethiere im erwachsenen Zustande keine Kerne besitzen. Ihre zellige Natur könnte daher in Zweifel gezogen werden, wenn wir nicht wüssten, dass sie zu gewissen Zeiten der embryonalen Entwickelung (Fig. 60) je einen Kern besitzen. Mehrere neuere Beobachter, namentlichBrücke, leugnen jedoch auch die Existenz einer Membran an ihnen, so dass man versucht ist, auf jene ältere Bezeichnung der Blutkörner zurückzukommen, welche auch aufblosse Concretionen chemischer oder mechanischer Art anwendbar ist. Indess erscheint im Bewusstsein der heutigen Zeit, wie wir sahen (S. 16), die Membranlosigkeit an sich als kein Grund, die zellige Natur eines organischen Elements in Abrede zu stellen, und da in den früheren Monaten des Embryolebens die rothen Blutkörperchen nicht nur genetisch aus unzweifelhaften Bildungszellen durch fortschreitende Umbildung hervorgehen, sondern auch unter Umständen eben solche Membranen zeigen (Fig. 60,au.c), wie sie an anderen Zellen nachweisbar sind, so wird man unbedenklich aussagen können, dass die rothen Blutkörperchen des Menschen sowohl in der späteren Zeit der fötalen Entwickelung, als namentlich in der Zeit nach der Geburt einfache kernlose Zellen sind.
see captionFig. 61. Menschliche Blutkörperchen vom Erwachsenen.adas gewöhnliche, scheibenförmige rothe,bdas farblose Blutkörperchen,crothe Körperchen, von der Seite und auf dem Rande stehend gesehen.drothe Körperchen in Geldrollenform zusammengeordnet.ezackige, durch Wasserverlust (Exosmose) geschrumpfte rothe Körper.fgeschrumpfte rothe Körper mit hügeligem Rand und einer kernartigen Erhebung auf der Fläche der Scheibe.gnoch dichtere Schrumpfung.hhöchster Grad der Schrumpfung (melanöse Körperchen). Vergr. 280.
Fig. 61. Menschliche Blutkörperchen vom Erwachsenen.adas gewöhnliche, scheibenförmige rothe,bdas farblose Blutkörperchen,crothe Körperchen, von der Seite und auf dem Rande stehend gesehen.drothe Körperchen in Geldrollenform zusammengeordnet.ezackige, durch Wasserverlust (Exosmose) geschrumpfte rothe Körper.fgeschrumpfte rothe Körper mit hügeligem Rand und einer kernartigen Erhebung auf der Fläche der Scheibe.gnoch dichtere Schrumpfung.hhöchster Grad der Schrumpfung (melanöse Körperchen). Vergr. 280.
Ganz abweichend von allen anderen Zellen ist die Gestalt derselben beim Menschen und den Säugethieren. Sie stellen nehmlich platte, scheiben- oder tellerförmige Bildungen mit zweiseitiger centraler Depression dar. Der dickere Rand erscheint daher als ein dunkler gefärbter Ring, die dünnere Mitte als eine ganz schwach gefärbte Fläche. Bei Vögeln, Amphibien und Fischen, bei welchen sich der kernhaltige Zustand während des ganzen Lebens erhält, findet sich zugleich eine ovale Gestalt, die übrigens merkwürdigerweise auch bei dem Lama und Kameel vorkommt. Der allerniederste Fisch, der Amphioxus, hat überhaupt keine Blutkörperchen und beim Leptocephalus bleiben sie ungefärbt. Bei keinem anderen Gewebe sind die Verschiedenheiten der Elemente bei verschiedenen Thieren so gross, wie gerade bei den rothen Blutkörperchen, und man sollte daher ungemein vorsichtig sein, aus Erfahrungen, welche nur für die Blutkörperchen einer Gattung Gültigkeit haben, allgemeine Formeln abzuleiten. Andererseits sind nur ausnahmsweise die Blutkörperchen einer Gattung mit so charakteristischenEigenthümlichkeiten ausgestattet, dass man daraus diagnostische Unterschiede abzuleiten vermöchte. Namentlich vom gerichtsärztlichen Standpunkte aus wäre es im höchsten Grade erwünscht, wenn ein sicheres Merkmal nachgewiesen würde, wodurch die Blutkörperchen des Menschen von denen der Säugethiere unterschieden werden könnten. Allein alle Versuche, ein solches zu finden, sind bis jetzt fruchtlos gewesen. Das einzige, an sich nicht einmal durchgreifende Merkmal, dass die Blutkörperchen des Menschen etwas grösser sind, als die der meisten Säugethiere, ist in der Regel nicht verwerthbar, da man es in forensischen Fällen meist mit altem und häufig sogar mit getrocknetem Blute zu thun hat.
Der eigentliche Zellkörper der rothen Blutkörperchen besteht aus einer ziemlich zähen Masse, an welcher die Farbe haftet. Letztere erscheint unter dem Mikroskope bei den einzelnen Körperchen als eine mehr gelbliche, sogar leicht ins Grünliche spielende. Gewöhnlich bezeichnet man in der Kürze die gefärbte Substanz alsHämatin, Blutfarbstoff. Allein der rothe Zellkörper ist keine einfache chemische Substanz, und das, was man Hämatin nennt, bildet eben nur einen Theil davon; einen wie grossen Theil, lässt sich bis jetzt noch gar nicht ermitteln. Was sonst noch innerhalb des Blutkörperchens enthalten ist, das gehört wesentlich der chemischen Untersuchung an, und diese ergiebt in den verschiedenen Wirbelthierklassen und Gattungen ebenso gut chemische, wie morphologische Verschiedenheiten. Beim Menschen nahm man früher neben dem Hämatin gewöhnlich noch eine besondere Substanz, das Globulin an; gegenwärtig betrachtet man als die Hauptmasse des rothen Zellkörpers dasHämoglobin, aus welchem erst durch Zersetzung das Hämatin selbst und verschiedene andere, namentlich eiweissartige Stoffe entstehen. Dieses Hämoglobin ist nach der AnnahmeRollett's in einem schwammigenStromaenthalten, welches möglicherweise noch wieder aus verschiedenen stickstoffhaltigen Stoffen besteht. Man beobachtet dasselbe an gefrorenem Blute, bei welchem das Hämoglobin die Blutkörperchen verlässt und an das Serum tritt. Ob wirkliches Protoplasma und damit eine wahre Contraktilität an den rothen Körperchen vorhanden ist, lässt sich nach den heutigen Erfahrungen noch nicht mit Sicherheit aussagen.
Was wir direkt beobachten können, sind gewisseVeränderungen der Farbe und Gestalt, welche durch äussereAgentien hervorgerufen werden. Da das Hämoglobin Sauerstoff, Kohlenoxyd und Stickoxyd absorbirt, wahrscheinlich auch Kohlensäure aufnimmt, so ist es leicht begreiflich, dass dadurch die Farbe der Blutkörperchen und damit die des Blutes im Ganzen geändert wird. Noch viel auffälliger ist die Farbenveränderung durch stärkere chemische Körper, namentlich die intensiv grüne durch Schwefelwasserstoff und die schwärzliche oder bräunliche (atrabiläre) durch organische und mineralische Säuren und Alkalien. Manche dieser Farbenveränderungen erfolgen ohne erhebliche Gestaltveränderungen; andere, wie die der stärkeren chemischen Körper, unter schneller Zerstörung der Blutkörperchen. Dabei ist es jedoch, namentlich auch für forensische Untersuchungen, von grosser Wichtigkeit, dass gerade kaustische Alkalien (Natron, Kali),concentrirtangewendet, die Blutkörperchen erhalten, während, diluirt angewendet, sie dieselben schnell zerstören. — Die meisten Gestaltveränderungen erfolgen unter der Einwirkung von chemischen Lösungen, welche den Blutkörperchen Wasser entziehen; in Folge davon schrumpfen sie und erleiden sie eigenthümliche Gestaltsveränderungen, die sehr leicht Irrthümer herbeiführen können. Dies sind nicht unwichtige Verhältnisse, auf die ich deshalb noch mit ein paar Worten eingehen will.
Wenn ein rothes Blutkörperchen dadurch einem Wasserverluste ausgesetzt ist, dass eine stärker concentrirte Flüssigkeit auf dasselbe einwirkt, so bemerkt man zuerst, dass in dem Maasse, als Flüssigkeit exosmotisch austritt, an der Oberfläche des Körperchens kleine Hervorragungen entstehen, welche anfangs sehr zerstreut liegen, sich bald an dem Rande, bald auf der Fläche finden und im letzteren Falle zuweilen täuschend einem Kerne ähnlich sehen (Fig. 61,e,f). Dies ist die Quelle für die irrthümliche Annahme von Kernen, welche man so viel beschrieben hat. Beobachtet man ein Blutkörperchen unter Einwirkung concentrirter Medien längere Zeit, so treten immer mehr Höcker hervor und das Körperchen wird in seinem Flächendurchmesser kleiner. Dabei bilden sich immer deutlicher kleine Falten und Höcker an der Oberfläche: das Körperchen wird zackig, sternförmig, eckig (Fig. 61,g). Solche zackigen Körper sieht man jeden Augenblick, wenn man Blut untersucht, welches eine Zeit lang an der Luft gewesen ist. Denn schon die blosse Verdunstung erzeugt diese Veränderung. Sehr schnell können wir sie hervorbringen, wenn wir dieMischung des Serums durch Zusatz von Salz oder Zucker ändern. Dauert die Wasser-Entziehung fort, so verkleinert sich das Körperchen noch mehr; endlich wird es wieder rund und glatt (Fig. 61,h), vollkommen sphärisch, und zugleich erscheint seine Farbe viel saturirter; der Inhalt sieht ganz dunkel schwarzroth aus. Es lässt sich daraus eine nicht uninteressante Thatsache erschliessen, nehmlich die, dass die Exosmose wesentlich eine Wasser-Entziehung ist, wobei vielleicht dieser oder jener andere Stoff, z. B. Salz, mit austritt, wobei aber die wesentlichen Bestandtheile zurückbleiben können. Das Hämoglobin insbesondere folgt dem Wasser nicht; das Blutkörperchen hält dasselbe zurück, so dass in dem Maasse, als viel Flüssigkeit verloren geht, natürlich das Hämoglobin im Innern dichter werden muss.
Umgekehrt verhält es sich, wenn wir diluirte Flüssigkeiten anwenden. Je mehr die Flüssigkeit verdünnt wird, um so mehr vergrössert sich das Blutkörperchen: es quillt auf und wird blasser. Behandeln wir die unter der Einwirkung concentrirter Flüssigkeiten verkleinerten Blutkörperchen mit gewöhnlichem Wasser, so sehen wir, wie die kuglige Form wieder in die eckige und diese in die scheibenförmige zurückgeht, wie das Blutkörperchen sich sodann immer mehr wölbt, sich oft ganz sonderbar gestaltet, und wieder blasser wird. Diese Einwirkung kann man, wenn man die Verdünnung des Blutes recht vorsichtig eintreten lässt, so weit treiben, dass die Blutkörperchen kaum noch gefärbt erscheinen, während sie doch noch sichtbar bleiben. In den gewöhnlichen Fällen, wo man viel Flüssigkeit auf einmal zusetzt, wird in der Einrichtung des Blutkörperchens eine so grosse Revolution hervorgebracht, dass alsbald ein Entweichen des Hämoglobins aus dem Körperchen stattfindet. Wir bekommen dann ausserhalb der Blutkörperchen eine rothe Lösung, in welcher die Farbe frei an der Flüssigkeit haftet. Ich hebe diese Eigenthümlichkeit deshalb hervor, weil sie bei mikroskopischen Untersuchungen immerfort vorkommt, und weil sie eine der merkwürdigsten Erscheinungen bei der Bildung pathologischer Pigmentirungen erklärt, wo wir ein ganz ähnliches Entweichen des gefärbten Inhaltes aus den Blutkörperchen antreffen (Fig. 63,a). Gewöhnlich drückt man sich so aus, das Blutkörperchen werde aufgelöst, allein es ist eine schon längst bekannte Thatsache, welche zuerst vonCarl Heinrich Schultzerkannt wurde, dass, wenn auch scheinbar garkeine Blutkörperchen mehr in der Flüssigkeit vorhanden sind, man durch Zufügen von Jodwasser die Membranen wieder deutlich machen kann. Aus dieser Erfahrung geht hervor, dass nur der Grad der Aufblähung und die ausserordentliche Verdünnung der Häute das Sichtbarwerden der Blutkörperchen gehindert hat. Es bedarf schon sehr stürmischer Einwirkungen durch chemisch differente Stoffe, um ein wirkliches Zugrundegehen der Blutkörperchen zu Stande zu bringen. Setzt man unmittelbar, nachdem man die Blutkörperchen mit ganz concentrirter Salzlösung behandelt hat, Wasser in grosser Menge hinzu, so kann man es dahin bringen, dass man den Blutkörperchen, ohne dass sie aufquellen, den Inhalt entzieht, und dass die Membranen oder die Stromata sichtbar zurückbleiben. Dies ist der Grund gewesen, weshalbDenisundLecanudavon gesprochen haben, dass die Blutkörper Fibrin enthielten; sie haben geglaubt, indem sie die Körper erst mit Salz und dann mit Wasser behandelten, Fibrin aus ihnen darstellen zu können. Dieses sogenannte Fibrin ist aber, wie ich gezeigt habe[45], nichts Anderes, als eine Zusammenhäufung von Membranen oder, wie man jetzt sagen würde, von Stromata der Blutkörperchen, aber allerdings bestehen dieselben aus einer Substanz, die den eiweissartigen Stoffen verwandt ist und daher, wenn sie in grossen Haufen gewonnen wird, Erscheinungen darbieten kann, die an Fibrin erinnern. Ob im Uebrigen die rothen Blutkörperchen, wie neuerlich wiederHeynsiusgefunden zu haben glaubt, wirkliches coagulables Fibrin enthalten, ist eine andere Frage, da sie sich nicht an die Rückstände zersetzter Blutkörperchen anknüpft.
Was nun die Inhaltssubstanzen der Blutkörperchen anbetrifft, so haben gerade sie in der neueren Zeit ein erhöhtes Interesse gewonnen durch die mehr morphologischen Produkte, welche aus ihnen hervorgehen, und welche in die ganze Anschauung von der Natur der organischen Stoffe eine Art von Umwälzung gebracht haben. Es handelt sich hier namentlich um eigenthümliche gefärbte Krystalle, die unter gewissen Verhältnissen aus dem Blutfarbstoffe entstehen, und durch deren Beobachtung zuerst die Ansicht von der Nichtkrystallisirbarkeit der eiweissartigen Stoffe widerlegtworden ist. Sie besitzen übrigens nicht bloss ein grosses chemisches, sondern auch ein sehr erhebliches praktisches Interesse. Wir kennen bis jetzt schon drei verschiedene Arten von gefärbtenKrystallen, für welche das Hämoglobin gemeinschaftliche Quelle ist.
see captionFig. 62. Hämatoidin-Krystalle in verschiedenen Formen (Archiv f. path. Anat. Bd. I. Taf. III. Fig. 11). Vergr. 300.
Fig. 62. Hämatoidin-Krystalle in verschiedenen Formen (Archiv f. path. Anat. Bd. I. Taf. III. Fig. 11). Vergr. 300.
Der ersten Form, welche ich zuerst genauer kennen lehrte, habe ich den NamenHämatoidingegeben[46]. Es ist dies eins der häufigsten Umwandlungs-Produkte, welches innerhalb des Körpers spontan aus Hämatin entsteht, und zwar oft so massenhaft, dass man es mit blossem Auge wahrnehmen kann. Seine Krystalle erscheinen in ihrer ausgebildeten Form als schiefe rhombische Säulen von schön gelbrother, bei dickeren Stücken von intensiv rubinrother Farbe; sie stellen eine der schönsten Krystallformen dar, die wir überhaupt kennen. Auch in kleinen Tafeln finden sie sich nicht selten, manchmal ziemlich ähnlich den Formen der Harnsäure. In der Mehrzahl der Fälle sind die Krystalle sehr klein, nicht bloss makroskopisch unerkennbar, sondern selbst für die mikroskopische Betrachtung etwas difficil. Man muss ein scharfer Beobachter oder speciell darauf vorbereitet sein, sonst bemerkt man häufig nichts weiter an den Stellen, wo dieses feine Hämatoidin liegt, als eckige Körner oder kleine Striche oder scheinbar gestaltlose Klümpchen. Erst wenn man genauer zusieht, lösen sich die Körner oder Striche in kurze rhombische Säulen, die Klümpchen in Aggregate von Krystallen auf.
Das Hämatoidin kann als das regelmässige typische Endglied der Umbildungen des Hämatins an Stellen des Körpers betrachtet werden, wo grössere Mengen von Blut liegen bleiben (stagniren). Ein apoplectischer Heerd des Gehirns heilt in der Regel so, dass ein grosser Theil des Blutes in diese Krystallisation übergeht, und wenn wir vielleicht 10 Jahre nachher bei der Autopsie eine gefärbte Narbe an dieser Stelle finden, so können wir fast mit Gewissheit darauf rechnen, dass die Farbe von Hämatoidin abhängt. Wenn eine junge Dame menstruirt und die Höhle des GraafschenFollikels, aus welchem das Ei ausgetreten ist, sich mit coagulirtem Blute füllt, so geht das Hämatin allmählich in Hämatoidin über, und wir treffen später an der Stelle, wo das Ei gelegen war, einen mennig- oder zinnoberfarbenen Fleck, als letztes Denkmal des Ereignisses. Auf diese Weise können wir rückwärts die Zahl der apoplectischen Anfälle zählen, oder berechnen, wie oft ein junges Mädchen menstruirt war. Jede Extravasation kann ihr kleines Contingent von Hämatoidin-Krystallen zurücklassen, und diese, wenn sie einmal gebildet sind, bleiben als vollständig widerstandsfähige, compacte Körper im Innern der Organe beliebig lange Zeit liegen.
see captionFig. 63. Pigment aus einer apoplectischen Narbe des Gehirns (Archiv Bd. I. S. 401. 454. Taf. III. Fig. 7).ain der Entfärbung begriffene, körnig gewordene Blutkörperchen.bZellen der Neuroglia, zum Theil mit körnigem und krystallinischem Pigment versehen.cPigmentkörner.dHämatoidin-Krystalle.fverödetes Gefäss, sein altes Lumen mit körnigem und krystallinischem rothen Pigment erfüllt. Vergr. 300.
Fig. 63. Pigment aus einer apoplectischen Narbe des Gehirns (Archiv Bd. I. S. 401. 454. Taf. III. Fig. 7).ain der Entfärbung begriffene, körnig gewordene Blutkörperchen.bZellen der Neuroglia, zum Theil mit körnigem und krystallinischem Pigment versehen.cPigmentkörner.dHämatoidin-Krystalle.fverödetes Gefäss, sein altes Lumen mit körnigem und krystallinischem rothen Pigment erfüllt. Vergr. 300.
Theoretisch besitzt das Hämatoidin noch ein besonderes Interesse dadurch, dass es eine Reihe von Eigenschaften darbietet, welche es als den einzigen, bis jetzt bekannten, mit dem Gallenfarbstoffe (Cholepyrrhin, Bilirubin) verwandten Stoff im Körper erscheinen lassen. Durch direkte Behandlung mit Mineralsäuren oder nach vorherigem Behandeln und Aufschliessen desselben vermittelst Alkalien bekommt man dieselbe oder eine ganz ähnliche Reihe der schönsten Farben-Veränderungen, wie man sie durch Behandlung mit Salpetersäure an dem Gallenfarbstoff erzielt. Andererseits lässt sich durch Chloroform aus der Galle ein krystallisirbarer Farbstoff extrahiren, welcher die grösste Uebereinstimmungmit dem Hämatoidin darbietet. Man kann daher nicht zweifeln, dass das letztere mit Gallenfarbstoff sehr nahe verwandt ist. Da man auch aus anderen Gründen vermuthen muss, dass die gefärbten Theile der Galle Umsetzungsprodukte des Blutroths sind, so ist mit dem von mir nachgewiesenen pathologischen Vorgange zugleich eine wichtige Aufklärung für einen der bedeutendsten Secretionsvorgänge des Körpers geliefert, und manche dunkle Beobachtung der Vorzeit in ein neues Licht gestellt. Wenn im Innern von Extravasaten eine gelblich-rothe Substanz entsteht, welche man wirklich als eine neugebildete Art von Gallenfarbstoff bezeichnen kann, so versteht man leicht jene sonderbaren Farbenhöfe um gequetschte und ekchymotische Stellen, jene eigenthümlichen gelblichen und bräunlichen Färbungen alter Blutmassen, welche den Grund zu der antiken Lehre von derAtra bilisund denmelancholischenProcessen abgegeben haben.
see captionFig. 64. Hämin-Krystalle, künstlich aus menschlichem Blute dargestellt. Vergr. 300.
Fig. 64. Hämin-Krystalle, künstlich aus menschlichem Blute dargestellt. Vergr. 300.
Die zweite Art von Krystallen, welche aus Hämoglobin hervorgehen, wurde später entdeckt; sie sind denen des Hämatoidins sehr ähnlich, unterscheiden sich aber dadurch, dass sie nicht als spontanes Produkt im Körper vorkommen, sondern künstlich dargestellt werden müssen. Sie haben eine mehr dunkel bräunliche Farbe, stellen gewöhnlich platte rhombische Tafeln mit spitzeren Winkeln dar, sind gegen Reagentien ausserordentlich widerstandsfähig und zeigen bei der Einwirkung der Mineralsäuren den eigenthümlichen Farbenwechsel nicht, welcher das Hämatoidin charakterisirt. Sie haben von ihrem Entdecker,Teichmann, den Namen desHämin's bekommen, doch ist er in der neuesten Zeit selbst darüber zweifelhaft geworden, ob es nicht eine Art von Hämatin selbst (salzsaures Hämatin)sei. Pathologisch hat das Hämin bis jetzt gar kein Interesse, dagegen hat es eine sehr grosse Bedeutung gewonnen für die gerichtliche Medicin dadurch, dass die Herstellung seiner Krystalle in der letzten Zeit als eines der sichersten Mittel für die Erkennung von Blutflecken angewendet worden ist. Ich selbst bin in forensischen Fällen in der Lage gewesen, solche Proben mit sehr entscheidendem Erfolge zu machen. Zu diesem Zwecke mengt man am besten getrocknetes Blut in möglichst dichtem Zustande mit trockenem, krystallisirtem und gepulvertem Kochsalz, bringt dann auf diese trockene Mischung Eisessig (Acetum glaciale) und dampft bei Kochhitze ab. Ist dies geschehen, so findet man da, wo vorher die Blutreste oder die zweifelhafte hämatinhaltige Substanz waren, die Häminkrystalle. Es ist dies eine Reaction, die mit zu den sichersten und zuverlässigsten gehört, die wir überhaupt kennen. Denn es ist keine andere Substanz bekannt, welche eine solche Umbildung erleidet, als das Hämatin. Diese Probe ist ferner deshalb ausserordentlich wichtig, weil sie auch auf ganz minimale Mengen anwendbar ist; nur darf die Menge nicht über eine zu grosse Fläche verbreitet sein. Die Probe würde also nur schwer anwendbar sein, wenn es sich um ein Tuch handelte, welches in eine dünne, wässerige, mit Blut gefärbte Flüssigkeit getaucht war. Aber ich habe an dem Rocke eines Ermordeten, an dessen Aermel Blut gespritzt war, und wo einzelne Blutstropfen nur eine Linie im Durchmesser hatten, aus solchen Flecken noch zahllose Häminkrystalle darstellen können, natürlich mikroskopische[47]. In Fällen, wo die gewöhnliche chemische Probe wegen der geringen Menge absolut fehlschlagen müsste, sind wir noch im Stande, Hämin zu gewinnen. Bei so wenig Masse ist die Grösse der Krystalle freilich auch nur sehr geringfügig; wir finden dann, wie beim Hämatoidin, kleine, mit spitzen Winkeln versehene, intensiv braun gefärbte Nadeln.
Die dritte Substanz, welche in diese Reihe hineingehört, ist das früher sogenannteHämatokrystallin, über dessen Entdeckung die Gelehrten streiten, weil es eben stückweis gefunden worden ist. Die erste Beobachtung darüber ist vonReichertan Extravasaten im Uterus des Meerschweinchens gemacht, in einem Präparate, das, wie ich denke, schon in Spiritus gelegenhatte. Seine Beobachtung wurde besonders dadurch bedeutungsvoll, dass er an diesen Krystallen nachwies, dass sie sich in gewisser Beziehung wie gewöhnliche eiweissartige Substanzen verhielten, indem sie unter der Wirkung gewisser Agentien grösser, unter der anderer kleiner würden, ohne dabei ihre Form zu verändern, — eine Erscheinung, welche man bis dahin an Krystallen noch nicht kannte. Später sind diese Krystalle wieder entdeckt worden vonKölliker;Funke,Kundeund namentlichLehmannhaben sie genauer untersucht. Es hat sich herausgestellt, dass bei verschiedenen Thierklassen dieselben sehr verschieden sind, indessen hat sich bis jetzt ein bestimmter Grund dafür und eine Ansicht über die Constanz ihrer Zusammensetzung nicht gewinnen lassen. Beim Menschen sind es ziemlich grosse Krystalle. Man hat anfangs geglaubt, sie kämen nur an dem Blute gewisser Organe, namentlich der Milz, vor, allein es hat sich ergeben, dass sie aus jedem Blute, nur in gewissen Krankheits-Prozessen leichter, gewonnen werden können. In einzelnen sehr seltenen Fällen kommt es vor, dass man sie im Blut von Thier-Leichen schon gebildet findet. Diese Krystalle sind sehr leicht zerstörbar; sowohl wenn sie eintrocknen, als wenn sie feucht oder durch irgend ein flüssiges Medium berührt werden, gehen sie zu Grunde; man beobachtet sie daher nur in gewissen Uebergangsstadien, welche gerade getroffen werden müssen, bei der Zerstörung von Blutkörperchen. Die gut ausgebildeten Formen beim Menschen bilden vollkommen rechtwinklige Tafeln oder Säulen; aber sehr oft sind sie äusserst klein und man sieht nur einfache Spiesse, welche in grossen Massen an gewissen Stellen in das Object hineinschiessen. Dabei haben sie die Eigenthümlichkeit, dass sie sich immer noch verhalten, wie das Hämatin selbst, indem sie durch Sauerstoff hellroth, durch Kohlensäure dunkelroth werden. Lange stritt man darüber, ob die ganze Masse der Krystalle aus Farbstoff bestehe, oder ob der Farbstoff nur eine Tränkung an sich farbloser Krystalle bilde; gegenwärtig ist man darin übereingekommen, das Hämatokrystallin als identisch mit dem Hämoglobin anzuerkennen. Es versteht sich demnach für die Beurtheilung der Krystalle von selbst, dass die Farbe durchaus charakteristisch ist, und dass sie mit der gewöhnlichen Blutfarbe unmittelbar zusammenfällt.
see captionFig. 65. Farblose Blutkörperchen aus einer Vena arachnoidealis eines Geisteskranken.A. Frisch,ain ihrer natürlichen Flüssigkeit,bin Wasser untersucht.B. Nach Behandlung mit Essigsäure:a–ceinkernige, mit immer grösserem, granulirtem und schliesslich nucleolirtem Kern.deinfache Kerntheilung.eweitere Kerntheilung.f–hDreitheilung des Kerns in allmähligem Fortschreiten.i–kvier und mehr Kerne. Vergr. 280.
Fig. 65. Farblose Blutkörperchen aus einer Vena arachnoidealis eines Geisteskranken.A. Frisch,ain ihrer natürlichen Flüssigkeit,bin Wasser untersucht.B. Nach Behandlung mit Essigsäure:a–ceinkernige, mit immer grösserem, granulirtem und schliesslich nucleolirtem Kern.deinfache Kerntheilung.eweitere Kerntheilung.f–hDreitheilung des Kerns in allmähligem Fortschreiten.i–kvier und mehr Kerne. Vergr. 280.
Kehren wir jetzt zu den natürlichen morphologischen Elementendes Blutes zurück, so treffen wir als ferneren Bestandtheil diefarblosen Körperchen[Lymphkörperchen des Blutes, LeukocytenRobin's][48]. Sie kommen im Blute des gesunden Menschen in verhältnissmässig kleiner Zahl vor. Man rechnet ungefähr auf 300 rothe Körperchen 1 farbloses. Wie sie sich gewöhnlich im Blute finden, stellen sie sphärische Körperchen dar, welche in der Regel etwas grösser, zuweilen etwas kleiner oder auch eben so gross, wie die rothen Blutkörperchen sind, von denen sie sich aber auffallend durch den Mangel jeder Färbung und durch ihre vollkommen kugelige Gestalt unterscheiden. In einem Blutstropfen, der zur Ruhe gelangt, pflegen sich die rothen Körperchen in Reihen von der bekannten Form der Geldrollen, mit ihren flachen Scheiben an einander, zusammenzulegen (Fig. 61,d); in den Zwischenräumen derselben bemerkt man hier und da ein blasses sphärisches Gebilde, an dem man zunächst, wenn das Blut ganz frisch ist, nichts weiter erkennen kann, als eine leicht höckerig oder uneben aussehende Oberfläche. Lässt man Wasser hinzutreten, so sieht man, dass das Körperchen aufquillt; in dem Maasse, als es mehr Wasser aufnimmt, erscheint zuerst deutlich eine Membran, dann sieht man einen allmählich klarer hervortretenden körnigen Inhalt und zuletzt einen oder mehrere Kerne. Die scheinbar homogene Kugel verwandelt sich auf diese Art nach und nach in ein zartwandiges, oft so brüchiges Gebilde, dass bei unvorsichtiger Einwirkung des Wassers die äusseren Theile anfangen zu zerfallen oder geradezu bersten und im Innern ein leicht körniger Inhalt erkennbar wird, welcher sich mehr und mehr lockert und innerhalb dessen ein einziger, gewöhnlich in der Theilung begriffener oder mehrere Kerne erscheinen. Das Sichtbarwerden der letzteren ist viel schneller zu erlangen, wenn man das Object mit Essigsäure behandelt,welche die Membran durchscheinend macht, den trüben Inhalt klärt und den Kern gerinnen und schrumpfen lässt. Die Kerne erscheinen dann als scharf und dunkel contourirte Körper, seltener einfach, meist mehrfach, je nach den Umständen. Kurz, wir bekommen in der Mehrzahl der Fälle auf diese Weise ein Object zu sehen, wie esGüterbockzuerst als die gewöhnliche Erscheinung der Eiterkörperchen kennen gelehrt hat.
see captionFig. 66. Farblose Blutkörperchen bei variolöser Leukocytose.afreie oder nackte Kerne.b,bfarblose Zellen mit kleinen, einfachen Kernen.cgrössere, farblose Zellen mit grossen Kernen und Kernkörperchen. Vergr. 300.
Fig. 66. Farblose Blutkörperchen bei variolöser Leukocytose.afreie oder nackte Kerne.b,bfarblose Zellen mit kleinen, einfachen Kernen.cgrössere, farblose Zellen mit grossen Kernen und Kernkörperchen. Vergr. 300.
Die Frage von der Aehnlichkeit oder Unähnlichkeit der farblosen Blutkörperchen mit den Eiterkörperchen beschäftigt noch immerfort die Beobachter, und die Ansichten über die Beziehung der farblosen Blutkörperchen zu der Pyämie und zu der Pyogenesis werden wahrscheinlich noch eine Reihe von Jahren gebrauchen, ehe sie so weit geklärt sind, dass nicht immer wieder einseitige Rückfälle eintreten. Es ist nehmlich allerdings sehr trügerisch, dass man in manchem Blut Körperchen findet, welche nur einen einzigen, und zwar grossen, nicht selten mit einem Kernkörperchen versehenen Kern haben, während man in anderem Blut nur mehrkernige Körperchen antrifft. Da nun diese letzteren die grösste Aehnlichkeit mit Eiterkörperchen haben, so ist es solchen Beobachtern, welche durch Zufall früher im normalen Blut nur einkernige Körperchen getroffen hatten, nicht zu verdenken, wenn sie in einem neuen Falle, wo sie mehrkernige sehen, glauben, sie hätten etwas wesentlich Anderes vor sich, nehmlich Eiterkörperchen im Blute, und es handle sich um Pyämie. Allein sonderbarer Weise bilden die einkernigen die Ausnahme und man kann lange suchen, ehe man ein Blut findet, wo alle Körperchen nur einen Kern besitzen. Das nebenstehende Object (Fig. 66) ist von einem Blute, in welchem fast lauter einkernige Elemente und zwar in überaus grosser Menge existirten; es fand sich bei einem Manne, welcher an den Blattern gestorben war, und bei welchem zugleich eine höchst auffällige acute Hyperplasie der Bronchialdrüsen bestand.
Nun könnte man glauben, dass dies wesentlich verschiedene Qualitäten von Blut seien. Dagegen muss bemerkt werden, dass allerdings in den Fällen, wo die eine oder andere Art von farblosenZellen massenhaft existirt, man eine pathologische Erscheinung vor sich hat, während bei geringer Zahl derselben nur ein früheres oder späteres Entwickelungsstadium der Elemente vorliegt. Denn ein und dasselbe Blutkörperchen kann im Verlaufe seiner Lebensgeschichte einen und mehrere Kerne haben, indem der einfache in ein früheres, die mehrfachen in ein späteres Lebensstadium fallen. Bei demselben Individuum sieht man in kurzer Zeit, oft schon in Stunden den Wechsel eintreten, so dass in einem Blute, welches vorher nur einkernige Körperchen hatte, sich später mehrkernige finden, — ein Beweis von der raschen Veränderung, welcher diese Gebilde unterworfen sind[49]. —