Chapter 6

Und doch, oder vielmehr grade daher sind diese Gegenstände nicht subjective Hirngespinnste. Es giebt nichts Objectiveres als die arithmetischen Gesetze.

§ 106. Werfen wir noch einen kurzen Rückblick auf den Gang unserer Untersuchung! Nachdem wir festgestellt hatten, dass die Zahl weder ein Haufe von Dingen noch eine Eigenschaft eines solchen, dass sie aber auch nicht subjectives Erzeugniss seelischer Vorgänge ist; sondern dass die Zahlangabe von einem Begriffe etwas Objectives aussage, versuchten wir zunächst die einzelnen Zahlen 0, 1 u. s. w. und das Fortschreiten in der Zahlenreihe zu definiren. Der erste Versuch misslang, weil wir nur jene Aussage vonBegriffen, nicht aber die 0, die 1 abgesondert definirt hatten, welche nur Theile von ihr sind. Dies hatte zur Folge, dass wir die Gleichheit von Zahlen nicht beweisen konnten. Es zeigte sich, dass die Zahl, mit der sich die Arithmetik beschäftigt, nicht als ein unselbständiges Attribut, sondern substantivisch gefasst werden muss125. Die Zahl erschien so als wiedererkennbarer Gegenstand, wenn auch nicht als physikalischer oder auch nur räumlicher noch als einer, von dem wir uns durch die Einbildungskraft ein Bild entwerfen können. Wir stellten nun den Grundsatz auf, dass die Bedeutung eines Wortes nicht vereinzelt, sondern im Zusammenhange eines Satzes zu erklären sei, durch dessen Befolgung allein, wie ich glaube, die physikalische Auffassung der Zahl vermieden werden kann, ohne in die psychologische zu verfallen. Es giebt nun eine Art von Sätzen, die für jeden Gegenstand einen Sinn haben müssen, das sind die Wiedererkennungsätze, bei den Zahlen Gleichungen genannt. Auch die Zahlangabe, sahen wir, ist als eine Gleichung aufzufassen. Es kam also darauf an, den Sinn einer Zahlengleichung festzustellen, ihn auszudrücken, ohne von den Zahlwörtern oder dem Worte »Zahl« Gebrauch zu machen. Die Möglichkeit die unter einen Begriff F fallenden Gegenstände, den unter einen Begriff G fallenden beiderseits eindeutig zuzuordnen, erkannten wir als Inhalt eines Wiedererkennungsurtheils von Zahlen. Unsere Definition musste also jene Möglichkeit als gleichbedeutend mit einer Zahlengleichung hinstellen. Wir erinnerten an ähnliche Fälle: die Definition der Richtung aus dem Parallelismus, der Gestalt aus der Aehnlichkeit u. s. w.

§ 107. Es erhob sich nun die Frage: wann ist man berechtigt, einen Inhalt als den eines Wiedererkennungsurtheils aufzufassen? Es muss dazu die Bedingung erfülltsein, dass in jedem Urtheile unbeschadet seiner Wahrheit die linke Seite der versuchsweise angenommenen Gleichung durch die rechte ersetzt werden könne. Nun ist uns, ohne dass weitere Definitionen hinzukommen, zunächst von der linken oder rechten Seite einer solchen Gleichung keine Aussage weiter bekannt als eben die der Gleichheit. Es brauchte also die Ersetzbarkeit nur in einer Gleichung nachgewiesen zu werden.

Aber es blieb noch ein Bedenken bestehen. Ein Wiedererkennungssatz muss nämlich immer einen Sinn haben. Wenn wir nun die Möglichkeit, die unter den Begriff F fallenden Gegenstände den unter den Begriff G fallenden beiderseits eindeutig zuzuordnen, als eine Gleichung auffassen, indem wir dafür sagen: »die Anzahl, welche dem Begriffe F zukommt, ist gleich der Anzahl, welche dem Begriffe G zukommt,« und hiermit den Ausdruck »die Anzahl, welche dem Begriffe F zukommt« einführen, so haben wir für die Gleichung nur dann einen Sinn, wenn beide Seiten die eben genannte Form haben. Wir könnten nach einer solchen Definition nicht beurtheilen, ob eine Gleichung wahr oder falsch ist, wenn nur die eine Seite diese Form hat. Das veranlasste uns zu der Definition:

Die Anzahl, welche dem Begriffe F zukommt, ist der Umfang des Begriffes »Begriff gleichzahlig dem Begriffe F«, indem wir einen Begriff F gleichzahlig einem Begriffe G nannten, wenn jene Möglichkeit der beiderseits eindeutigen Zuordnung besteht.

Hierbei setzten wir den Sinn des Ausdruckes »Umfang des Begriffes« als bekannt voraus. Diese Weise, die Schwierigkeit zu überwinden, wird wohl nicht überall Beifall finden, und Manche werden vorziehn, jenes Bedenken in andrer Weise zu beseitigen. Ich lege auch auf die Heranziehung des Umfangs eines Begriffes kein entscheidendes Gewicht.

§ 108. Es blieb nun noch übrig die beiderseits eindeutige Zuordnung zu erklären; wir führten sie auf reinlogische Verhältnisse zurück. Nachdem wir nun den Beweis des Satzes angedeutet hatten: die Zahl, welche dem Begriffe F zukommt, ist gleich der, welche dem Begriffe G zukommt, wenn der Begriff F dem Begriffe G gleichzahlig ist, definirten wir die 0, den Ausdruck »n folgt in der natürlichen Zahlenreihe unmittelbar auf m« und die Zahl 1 und zeigten, dass 1 in der natürlichen Zahlenreihe unmittelbar auf 0 folgt. Wir führten einige Sätze an, die sich an dieser Stelle leicht beweisen lassen, und gingen dann etwas näher auf folgenden ein, der die Unendlichkeit der Zahlenreihe erkennen lässt:

Auf jede Zahl folgt in der natürlichen Zahlenreihe eine Zahl.

Wir wurden hierdurch auf den Begriff »der mit n endenden natürlichen Zahlenreihe angehörend« geführt, von dem wir zeigen wollten, dass die ihm zukommende Anzahl auf n in der natürlichen Zahlenreihe unmittelbar folge. Wir definirten ihn zunächst mittels des Folgens eines Gegenstandes y auf einen Gegenstand x in einer allgemeinen φ-Reihe. Auch der Sinn dieses Ausdruckes wurde auf rein logische Verhältnisse zurückgeführt. Und dadurch gelang es, die Schlussweise von n auf (n + 1), welche gewöhnlich für eine eigenthümlich mathematische gehalten wird, als auf den allgemeinen logischen Schlussweisen beruhend nachzuweisen.

Wir brauchten nun zum Beweise der Unendlichkeit der Zahlenreihe den Satz, dass keine endliche Zahl in der natürlichen Zahlenreihe auf sich selber folgt. Wir kamen so zu den Begriffen der endlichen und der unendlichen Zahl. Wir zeigten, dass der letztere im Grunde nicht weniger logisch gerechtfertigt als der erstere ist. Zum Vergleiche wurdenCantorsunendliche Anzahlen und dessen »Folgen in der Succession« herangezogen, wobei auf die Verschiedenheit im Ausdrucke hingewiesen wurde.

§ 109. Aus allem Vorangehenden ergab sich nun mit grosser Wahrscheinlichkeit die analytische und apriorische Natur der arithmetischen Wahrheiten; und wir gelangtenzu einer Verbesserung der Ansicht Kants. Wir sahen ferner, was noch fehlt, um jene Wahrscheinlichkeit zur Gewissheit zu erheben, und gaben den Weg an, der dahin führen muss.

Endlich benutzten wir unsere Ergebnisse zur Kritik einer formalen Theorie der negativen, gebrochenen, irrationalen und complexen Zahlen, durch welche deren Unzulänglichkeit offenbar wurde. Ihren Fehler erkannten wir darin, dass sie die Widerspruchslosigkeit eines Begriffes als bewiesen annahm, wenn sich kein Widerspruch gezeigt hatte, und dass die Widerspruchslosigkeit eines Begriffes schon als hinreichende Gewähr für seine Erfülltheit galt. Diese Theorie bildet sich ein, sie brauche nur Forderungen zu stellen; deren Erfüllung verstehe sich dann von selbst. Sie gebärdet sich wie ein Gott, der durch sein blosses Wort schaffen kann, wessen er bedarf. Es musste auch gerügt werden, wenn eine Anweisung zur Definition für diese selbst ausgegeben wurde, eine Anweisung, deren Befolgung Fremdartiges in die Arithmetik einführen würde, obwohl sie selbst im Ausdrucke sich davon frei zu halten vermag, aber nur weil sie blosse Anweisung bleibt.

So geräth jene formale Theorie in Gefahr, auf das Aposteriorische oder doch Synthetische zurückzufallen, wie sehr sie sich auch den Anschein giebt, in der Höhe der Abstractionen zu schweben.

Unsere frühere Betrachtung der positiven ganzen Zahlen zeigte uns nun die Möglichkeit, die Einmischung von äussern Dingen und geometrischen Anschauungen zu vermeiden, ohne doch in den Fehler jener formalen Theorie zu verfallen. Es kommt wie dort darauf an, den Inhalt eines Wiedererkennungsurtheils festzusetzen. Denken wir dies überall geschehen, so erscheinen die negativen, gebrochenen, irrationalen und complexen Zahlen nicht geheimnissvoller als die positiven ganzen Zahlen, diese nicht reeller, wirklicher, greifbarer als jene.


Back to IndexNext