§ 9. Die bisherigen Erwägungen machen es wahrscheinlich, dass die Zahlformeln allein aus den Definitionen der einzelnen Zahlen mittels einiger allgemeinen Gesetze ableitbar sind, dass diese Definitionen beobachtete Thatsachen weder behaupten noch zu ihrer Rechtmässigkeit voraussetzen. Es kommt also darauf an, die Natur jener Gesetze zu erkennen.
Mill17will zu seinem vorhin erwähnten Beweise der Formel 5 + 2 = 7 den Satz »was aus Theilen zusammengesetzt ist, ist aus Theilen von diesen Theilen zusammengesetzt« benutzen. Dies hält er für einen charakteristischern Ausdruck des sonst in der Form »die Summen von Gleichem sind gleich« bekannten Satzes. Er nennt ihn inductive Wahrheit und Naturgesetz von der höchsten Ordnung. Fürdie Ungenauigkeit seiner Darstellung ist es bezeichnend, dass er diesen Satz gar nicht an der Stelle des Beweises heranzieht, wo er nach seiner Meinung unentbehrlich ist; doch scheint es, dass seine inductive WahrheitLeibnizensAxiom vertreten soll: »wenn man Gleiches an die Stelle setzt, bleibt die Gleichung bestehen.« Aber um arithmetische Wahrheiten Naturgesetze nennen zu können, legtMilleinen Sinn hinein, den sie nicht haben. Er meint z. B.18die Gleichung 1 = 1 könne falsch sein, weil ein Pfundstück nicht immer genau das Gewicht eines andern habe. Aber das will der Satz 1 = 1 auch gar nicht behaupten.
Millversteht das + Zeichen so, dass dadurch die Beziehung der Theile eines physikalischen Körpers oder eines Haufens zu dem Ganzen ausgedrückt werde; aber das ist nicht der Sinn dieses Zeichens. 5 + 2 = 7 bedeutet nicht, dass wenn man zu 5 Raumtheilen Flüssigkeit 2 Raumtheile Flüssigkeit giesst, man 7 Raumtheile Flüssigkeit erhalte, sondern dies ist eine Anwendung jenes Satzes, die nur statthaft ist, wenn nicht infolge etwa einer chemischen Einwirkung eine Volumänderung eintritt.Millverwechselt immer Anwendungen, die man von einem arithmetischen Satze machen kann, welche oft physikalisch sind und beobachtete Thatsachen zur Voraussetzung haben, mit dem rein mathematischen Satze selber. Das Pluszeichen kann zwar in manchen Anwendungen einer Haufenbildung zu entsprechen scheinen; aber dies ist nicht seine Bedeutung; denn bei andern Anwendungen kann von Haufen, Aggregaten, dem Verhältnisse eines physikalischen Körpers zu seinen Theilen keine Rede sein, z. B. wenn man die Rechnung auf Ereignisse bezieht. Zwar kann man auch hier von Theilen sprechen; dann gebraucht man das Wort aber nicht im physikalischen oder geometrischen, sondern im logischen Sinne, wie wenn man die Ermordungen von Staatsoberhäuptern einen Theilder Morde überhaupt nennt. Hier hat man die logische Unterordnung. Und so entspricht auch die Addition im Allgemeinen nicht einem physikalischen Verhältnisse. Folglich können auch die allgemeinen Additionsgesetze nicht Naturgesetze sein.
§ 10. Aber sie könnten vielleicht dennoch inductive Wahrheiten sein. Wie wäre das zu denken? Von welchen Thatsachen soll man ausgehen, um sich zum Allgemeinen zu erheben? Dies können wohl nur die Zahlformeln sein. Damit verlören wir freilich den Vortheil wieder, den wir durch die Definitionen der einzelnen Zahlen gewonnen haben, und wir müssten uns nach einer andern Begründungsweise der Zahlformeln umsehen. Wenn wir uns nun auch über dies nicht ganz leichte Bedenken hinwegsetzen, so finden wir doch den Boden für die Induction ungünstig; denn hier fehlt jene Gleichförmigkeit, welche sonst diesem Verfahren eine grosse Zuverlässigkeit geben kann. SchonLeibniz19lässt dem Philalèthe auf seine Behauptung:
»Die verschiedenen Modi der Zahl sind keiner andern Verschiedenheit fähig, als des mehr oder weniger; daher sind es einfache Modi wie die des Raumes«
»Die verschiedenen Modi der Zahl sind keiner andern Verschiedenheit fähig, als des mehr oder weniger; daher sind es einfache Modi wie die des Raumes«
antworten:
»Das kann man von der Zeit und der geraden Linie sagen, aber keinesfalls von den Figuren und noch weniger von den Zahlen, die nicht blos an Grösse verschieden, sondern auch unähnlich sind. Eine gerade Zahl kann in zwei gleiche Theile getheilt werden und nicht eine ungerade; 3 und 6 sind trianguläre Zahlen, 4 und 9 sind Quadrate, 8 ist ein Cubus u. s. f.; und dies findet bei den Zahlen noch mehr statt als bei den Figuren; denn zwei ungleiche Figuren können einander vollkommen ähnlich sein, aber niemals zwei Zahlen.«
Wir haben uns zwar daran gewöhnt, die Zahlen invielen Beziehungen als gleichartig zu betrachten; das kommt aber nur daher, weil wir eine Menge allgemeiner Sätze kennen, die von allen Zahlen gelten. Hier müssen wir uns jedoch auf den Standpunkt stellen, wo noch keiner von diesen anerkannt ist. In der That möchte es schwer sein, ein Beispiel für einen Inductionsschluss zu finden, das unserem Falle entspräche. Sonst kommt uns oft der Satz zu statten, dass jeder Ort im Raume und jeder Zeitpunkt an und für sich so gut wie jeder andere ist. Ein Erfolg muss an einem andern Orte und zu einer andern Zeit ebensogut eintreten, wenn nur die Bedingungen dieselben sind. Das fällt hier hinweg, weil die Zahlen raum- und zeitlos sind. Die Stellen in der Zahlenreihe sind nicht gleichwerthig wie die Orte des Raumes.
Die Zahlen verhalten sich auch ganz anders als die Individuen etwa einer Thierart, da sie eine durch die Natur der Sache bestimmte Rangordnung haben, da jede auf eigne Weise gebildet ist und ihre Eigenart hat, die besonders bei der 0, der 1 und der 2 hervortritt. Wenn man sonst einen Satz in Bezug auf eine Gattung durch Induction begründet, hat man gewöhnlich schon eine ganze Reihe gemeinsamer Eigenschaften allein schon durch die Definition des Gattungsbegriffes. Hier hält es schwer, nur eine einzige zu finden, die nicht selbst erst nachzuweisen wäre.
Am leichtesten möchte sich unser Fall noch mit folgendem vergleichen lassen. Man habe in einem Bohrloche eine mit der Tiefe regelmässig zunehmende Temperatur bemerkt; man habe bisher sehr verschiedene Gesteinsschichten angetroffen. Es ist dann offenbar aus den Beobachtungen, die man an diesem Bohrloche gemacht hat, allein nichts über die Beschaffenheit der tiefern Schichten zu schliessen, und ob die Regelmässigkeit der Temperaturvertheilung sich weiter bewähren würde, muss dahingestellt bleiben. Unter den Begriff »was bei fortgesetztem Bohren angetroffen wird« fällt zwar das bisher Beobachtete wie das Tieferliegende;aber das kann hier wenig nützen. Ebenso wenig wird es uns bei den Zahlen nützen, dass sie sämmtlich unter den Begriff »was man durch fortgesetzte Vermehrung um eins erhält« fallen. Man kann eine Verschiedenheit der beiden Fälle darin finden, dass die Schichten nur angetroffen werden, die Zahlen aber durch die fortgesetzte Vermehrung um eins geradezu geschaffen und ihrem ganzen Wesen nach bestimmt werden. Dies kann nur heissen, dass man aus der Weise, wie eine Zahl, z. B. 8, durch Vermehrung um 1 entstanden ist, alle ihre Eigenschaften ableiten kann. Damit giebt man im Grunde zu, dass die Eigenschaften der Zahlen aus ihren Definitionen folgen, und es eröffnet sich die Möglichkeit, die allgemeinen Gesetze der Zahlen aus der allen gemeinsamen Entstehungsweise zu beweisen, während die besondern Eigenschaften der einzelnen aus der besondern Weise zu folgern wären, wie sie durch fortgesetzte Vermehrung um eins gebildet sind. So kann man auch, was bei den Erdschichten, schon durch die Tiefe allein bestimmt ist, in der sie getroffen werden, also ihre Lagenverhältnisse, eben daraus schliessen, ohne dass man die Induction nöthig hätte; was aber nicht dadurch bestimmt ist, kann auch die Induction nicht lehren.
Vermuthlich kann das Verfahren der Induction selbst nur mittels allgemeiner Sätze der Arithmetik gerechtfertigt werden, wenn man darunter nicht eine blosse Gewöhnung versteht. Diese hat nämlich durchaus keine wahrheitverbürgende Kraft. Während das wissenschaftliche Verfahren nach objectiven Maasstäben bald in einer einzigen Bestätigung eine hohe Wahrscheinlichkeit begründet findet, bald tausendfaches Eintreffen fast für werthlos erachtet, wird die Gewöhnung durch Zahl und Stärke der Eindrücke und subjective Verhältnisse bestimmt, die keinerlei Recht haben, auf das Urtheil Einfluss zu üben. Die Induction muss sich auf die Lehre von der Wahrscheinlichkeit stützen, weil sie einen Satz nie mehr als wahrscheinlich machen kann. Wiediese Lehre aber ohne Voraussetzung arithmetischer Gesetze entwickelt werden könne, ist nicht abzusehen.
§ 11.Leibniz20meint dagegen, dass die nothwendigen Wahrheiten, wie man solche in der Arithmetik findet, Principien haben müssen, deren Beweis nicht von den Beispielen und also nicht von dem Zeugnisse der Sinne abhangt, wiewohl ohne die Sinne sich niemand hätte einfallen lassen, daran zu denken. »Die ganze Arithmetik ist uns eingeboren und in uns auf virtuelle Weise.« Wie er den Ausdruck »eingeboren« meint, verdeutlicht eine andere Stelle21: »Es ist nicht wahr, dass alles, was man lernt, nicht eingeboren sei; – die Wahrheiten der Zahlen sind in uns, und nichtsdestoweniger lernt man sie, sei es, indem man sie aus ihrer Quelle zieht, wenn man sie auf beweisende Art lernt (was eben zeigt, dass sie eingeboren sind), sei es …«.
§ 12. Wenn man den Gegensatz von analytisch und synthetisch hinzunimmt, ergeben sich vier Combinationen, von denen jedoch eine, nämlich
analytisch aposteriori
ausfällt. Wenn man sich mitMillfür aposteriori entschieden hat, bleibt also keine Wahl, sodass für uns nur noch die Möglichkeiten
synthetisch apriori
und
analytisch
zu erwägen bleiben. Für die erstere entscheidet sichKant.In diesem Falle bleibt wohl nichts übrig, als eine reine Anschauung als letzten Erkenntnissgrund anzurufen, obwohl hier schwer zu sagen ist, ob es eine räumliche oder zeitliche ist, oder welche es sonst sein mag.Baumann22stimmtKant, wenngleich mit etwas anderer Begründung, bei. Auch nachLipschitz23fliessen die Sätze, welche die Unabhängigkeit der Anzahl von der Art des Zählens und die Vertauschbarkeit und Gruppirbarkeit der Summanden behaupten, aus der inneren Anschauung.Hankel24gründet die Lehre von den reellen Zahlen auf drei Grundsätze, denen er den Charakter dernotiones communeszuschreibt: »Sie werden durch Explication vollkommen evident, gelten für alle Grössengebiete nach der reinen Anschauung der Grösse und können, ohne ihren Charakter einzubüssen, in Definitionen verwandelt werden, indem man sagt: Unter der Addition von Grössen versteht man eine Operation, welche diesen Sätzen genügt.« In der letzten Behauptung liegt eine Unklarheit. Vielleicht kann man die Definition machen; aber sie kann keinen Ersatz für jene Grundsätze bilden; denn bei der Anwendung würde es sich immer darum handeln: sind die Anzahlen Grössen, und ist das, was man Addition der Anzahlen zu nennen pflegt, Addition im Sinne dieser Definition? Und zur Beantwortung müsste man jene Sätze von den Anzahlen schon kennen. Ferner erregt der Ausdruck »reine Anschauung der Grösse« Anstoss. Wenn man erwägt, was alles Grösse genannt wird: Anzahlen, Längen, Flächeninhalte, Volumina, Winkel, Krümmungen, Massen, Geschwindigkeiten, Kräfte, Lichtstärken, galvanische Stromstärken u. s. f., so ist wohl zu verstehen, wie man dies einem Grössenbegriffeunterordnen kann; aber der Ausdruck »Anschauung der Grösse« und gar »reine Anschauungder Grösse« kann nicht als zutreffend anerkannt werden. Ich kann nicht einmal eine Anschauung von 100000 zugeben, noch viel weniger von Zahl im Allgemeinen oder gar von Grösse im Allgemeinen. Man beruft sich zu leicht auf innere Anschauung, wenn man keinen andern Grund anzugeben vermag. Aber man sollte dabei den Sinn des Wortes »Anschauung« doch nicht ganz aus dem Auge verlieren.
Kantdefinirt in der Logik (ed. Hartenstein, VIII, S. 88):
»Die Anschauung ist eine einzelne Vorstellung (repraesentatio singularis), der Begriff eine allgemeine (repraesentatio per notas communes) oder reflectirte Vorstellung (repraesentatio discursiva).«
Hier kommt die Beziehung zur Sinnlichkeit gar nicht zum Ausdrucke, die doch in der transcendentalen Aesthetik hinzugedacht wird, und ohne welche die Anschauung nicht als Erkenntnissprincip für die synthetischen Urtheile apriori dienen kann. In der Kr. d. r. V. (ed. Hartenstein III, S. 55) heisst es:
»Vermittelst der Sinnlichkeit also werden uns Gegenstände gegeben und sie allein liefert uns Anschauungen.«
Der Sinn unseres Wortes in der Logik ist demnach ein weiterer als in der trancendentalen Aesthetik. Im logischen Sinne könnte man vielleicht 100000 eine Anschauung nennen; denn ein allgemeiner Begriff ist es nicht. Aber in diesem Sinne genommen, kann die Anschauung nicht zur Begründung der arithmetischen Gesetze dienen.
§ 13. Ueberhaupt wird es gut sein, die Verwandtschaft mit der Geometrie nicht zu überschätzen. Ich habe schon eine leibnizische Stelle dagegen angeführt. Ein geometrischer Punkt für sich betrachtet, ist von irgendeinem andern gar nicht zu unterscheiden; dasselbe gilt von Geraden und Ebenen. Erst wenn mehre Punkte, Gerade, Ebenen in einer Anschauung gleichzeitig aufgefasst werden, unterscheidet man sie. Wenn in der Geometrie allgemeine Sätze aus derAnschauung gewonnen werden, so ist das daraus erklärlich, dass die angeschauten Punkte, Geraden, Ebenen eigentlich gar keine besondern sind und daher als Vertreter ihrer ganzen Gattung gelten können. Anders liegt die Sache bei den Zahlen: jede hat ihre Eigenthümlichkeit. Inwiefern eine bestimmte Zahl alle andern vertreten kann, und wo ihre Besonderheit sich geltend macht, ist ohne Weiteres nicht zu sagen.
§ 14. Auch die Vergleichung der Wahrheiten in Bezug auf das von ihnen beherrschte Gebiet spricht gegen die empirische und synthetische Natur der arithmetischen Gesetze.
Die Erfahrungssätze gelten für die physische oder psychologische Wirklichkeit, die geometrischen Wahrheiten beherrschen das Gebiet des räumlich Anschaulichen, mag es nun Wirklichkeit oder Erzeugniss der Einbildungskraft sein. Die tollsten Fieberphantasien, die kühnsten Erfindungen der Sage und der Dichter, welche Thiere reden, Gestirne stille stehen lassen, aus Steinen Menschen und aus Menschen Bäume machen, und lehren, wie man sich am eignen Schopfe aus dem Sumpfe zieht, sie sind doch, sofern sie anschaulich bleiben, an die Axiome der Geometrie gebunden. Von diesen kann nur das begriffliche Denken in gewisser Weise loskommen, wenn es etwa einen Raum von vier Dimensionen oder von positivem Krümmungsmaasse annimmt. Solche Betrachtungen sind durchaus nicht unnütz; aber sie verlassen ganz den Boden der Anschauung. Wenn man diese auch dabei zu Hilfe nimmt, so ist es doch immer die Anschauung des euklidischen Raumes, des einzigen, von dessen Gebilden wir eine haben. Sie wird dann nur nicht so, wie sie ist, sondern symbolisch für etwas anderes genommen; man nennt z. B. gerade oder eben, was man doch als Krummes anschaut. Für das begriffliche Denken kann man immerhin von diesem oder jenem geometrischen Axiome das Gegentheil annehmen, ohne dass man in Widersprüche mit sich selbst verwickelt wird, wenn man Schlussfolgerungenaus solchen der Anschauung widerstreitenden Annahmen zieht. Diese Möglichkeit zeigt, dass die geometrischen Axiome von einander und von den logischen Urgesetzen unabhängig, also synthetisch sind. Kann man dasselbe von den Grundsätzen der Zahlenwissenschaft sagen? Stürzt nicht alles in Verwirrung, wenn man einen von diesen leugnen wollte? Wäre dann noch Denken möglich? Liegt nicht der Grund der Arithmetik tiefer als der alles Erfahrungswissens, tiefer selbst als der der Geometrie? Die arithmetischen Wahrheiten beherrschen das Gebiet des Zählbaren. Dies ist das umfassendste; denn nicht nur das Wirkliche, nicht nur das Anschauliche gehört ihm an, sondern alles Denkbare. Sollten also nicht die Gesetze der Zahlen mit denen des Denkens in der innigsten Verbindung stehen?
§ 15. DassLeibnizensAussprüche sich nur zu Gunsten der analytischen Natur der Zahlgesetze deuten lassen, ist vorauszusehen, da für ihn das Apriori mit dem Analytischen zusammenfällt. So sagt er25, dass die Algebra ihre Vortheile einer viel höhern Kunst, nämlich der wahren Logik entlehne. An einer andern Stelle26vergleicht er die nothwendigen und zufälligen Wahrheiten mit den commensurabeln und incommensurabeln Grössen und meint, dass bei nothwendigen Wahrheiten ein Beweis oder eine Zurückführung auf Identitäten möglich sei. Doch diese Aeusserungen verlieren dadurch an Gewicht, dassLeibnizdazu neigt, alle Wahrheiten als beweisbar anzusehen27: »… dass jede Wahrheit ihren apriorischen, aus dem Begriff der Termini gezogenen Beweis hat, wiewohl es nicht immer in unserer Macht steht, zu dieser Analyse zu kommen.« Der Vergleich mit der Commensurabilität und Incommensurabilität richtet freilich doch wieder eine für uns wenigstens unüberschreitbareSchranke zwischen zufälligen und nothwendigen Wahrheiten auf.
Sehr entschieden im Sinne der analytischen Natur der Zahlgesetze spricht sichW. Stanley Jevonsaus28: »Zahl ist nur logische Unterscheidung und Algebra eine hoch entwickelte Logik.«
§ 16. Aber auch diese Ansicht hat ihre Schwierigkeiten. Soll dieser hochragende, weitverzweigte und immer noch wachsende Baum der Zahlenwissenschaft in blossen Identitäten wurzeln? Und wie kommen die leeren Formen der Logik dazu, aus sich heraus solchen Inhalt zu gewinnen?
Millmeint: »Die Lehre, dass wir durch kunstfertiges Handhaben der Sprache Thatsachen entdecken, die verborgene Naturprocesse enthüllen können, ist dem gesunden Menschenverstande so entgegen, dass es schon einen Fortschritt in der Philosophie verlangt, um sie zu glauben«.
Gewiss dann, wenn man sich bei dem kunstfertigen Handhaben nichts denkt.Millwendet sich hier gegen einen Formalismus, der kaum von irgendwem vertreten wird. Jeder, der Worte oder mathematische Zeichen gebraucht, macht den Anspruch, dass sie etwas bedeuten, und niemand wird erwarten, dass aus leeren Zeichen etwas Sinnvolles hervorgehe. Aber es ist möglich, dass ein Mathematiker längere Rechnungen vollführt, ohne unter seinen Zeichen etwas sinnlich Wahrnehmbares, Anschauliches zu verstehen. Darum sind diese Zeichen noch nicht sinnlos; man unterscheidet dennoch ihren Inhalt von ihnen selbst, wenn dieser auch vielleicht nur mittels der Zeichen fassbar wird. Man ist sich bewusst, dass andere Zeichen für Dasselbe hätten festgesetzt werden können. Es genügt zu wissen, wie der in den Zeichen versinnlichte Inhalt logisch zu behandeln ist, und wenn man Anwendungen auf die Physik machen will, wie der Uebergang zu den Erscheinungen geschehenmuss. Aber in einer solchen Anwendung ist nicht der eigentliche Sinn der Sätze zu sehen. Dabei geht immer ein grosser Theil der Allgemeinheit verloren, und es kommt etwas Besonderes hinein, das bei andern Anwendungen durch Anderes ersetzt wird.
§ 17. Man kann trotz aller Herabsetzung der Deduction doch nicht leugnen, dass die durch Induction begründeten Gesetze nicht genügen. Aus ihnen müssen neue Sätze abgeleitet werden, die in keinem einzelnen von jenen enthalten sind. Dass sie in allen zusammen schon in gewisser Weise stecken, entbindet nicht von der Arbeit, sie daraus zu entwickeln und für sich herauszustellen. Damit eröffnet sich folgende Möglichkeit. Statt eine Schlussreihe unmittelbar an eine Thatsache anzuknüpfen, kann man, diese dahingestellt sein lassend, ihren Inhalt als Bedingung mitführen. Indem man so alle Thatsachen in einer Gedankenreihe durch Bedingungen ersetzt, wird man das Ergebniss in der Form erhalten, dass von einer Reihe von Bedingungen ein Erfolg abhängig gemacht ist. Diese Wahrheit wäre durch Denken allein, oder, um mitMillzu reden, durch kunstfertiges Handhaben der Sprache begründet. Es ist nicht unmöglich, dass die Zahlgesetze von dieser Art sind. Sie wären dann analytische Urtheile, obwohl sie nicht durch Denken allein gefunden zu sein brauchten; denn nicht die Weise des Findens kommt hier in Betracht, sondern die Art der Beweisgründe; oder, wieLeibnizsagt29, »es handelt sich hier nicht um die Geschichte unserer Entdeckungen, die verschieden ist in verschiedenen Menschen, sondern um die Verknüpfung und die natürliche Ordnung der Wahrheiten, die immer dieselbe ist.« Die Beobachtung hätte dann zuletzt zu entscheiden, ob die in dem so begründeten Gesetze enthaltenen Bedingungen erfüllt sind. So würde man schliesslich eben dahin gelangen, wohin man durch unmittelbare Anknüpfungder Schlussreihe an die beobachteten Thatsachen gekommen wäre. Aber die hier angedeutete Art des Vorgehens ist in vielen Fällen vorzuziehen, weil sie auf einen allgemeinen Satz führt, der nicht nur auf die grade vorliegenden Thatsachen anwendbar zu sein braucht. Die Wahrheiten der Arithmetik würden sich dann zu denen der Logik ähnlich verhalten wie die Lehrsätze zu den Axiomen der Geometrie. Jede würde in sich eine ganze Schlussreihe für den künftigen Gebrauch verdichtet enthalten, und ihr Nutzen würde darin bestehen, dass man die Schlüsse nicht mehr einzeln zu machen braucht, sondern gleich das Ergebniss der ganzen Reihe aussprechen kann30. Angesichts der gewaltigen Entwickelung der arithmetischen Lehren und ihrer vielfachen Anwendungen wird sich dann freilich die weit verbreitete Geringschätzung der analytischen Urtheile und das Märchen von der Unfruchtbarkeit der reinen Logik nicht halten lassen.
Wenn man diese nicht hier zuerst geäusserte Ansicht im Einzelnen so streng durchführen könnte, dass nicht der geringste Zweifel zurückbliebe, so würde das, wie mir scheint, kein ganz unwichtiges Ergebniss sein.
§ 18. Indem wir uns nun den ursprünglichen Gegenständen der Arithmetik zuwenden, unterscheiden wir die einzelnen Zahlen 3, 4 u. s. f. von dem allgemeinen Begriffeder Anzahl. Nun haben wir uns schon dafür entschieden, dass die einzelnen Zahlen am besten in der Weise vonLeibniz,Mill,H. Grassmannund Andern aus der Eins und der Vermehrung um eins abgeleitet werden, dass aber diese Erklärungen unvollständig bleiben, solange die Eins und die Vermehrung um eins unerklärt sind. Wir haben gesehen, dass man allgemeiner Sätze bedarf, um aus diesen Definitionen die Zahlformeln abzuleiten. Solche Gesetze können eben wegen ihrer Allgemeinheit nicht aus den Definitionen der einzelnen Zahlen folgen, sondern nur aus dem allgemeinen Begriffe der Anzahl. Wir unterwerfen diesen jetzt einer genaueren Betrachtung. Dabei werden voraussichtlich auch die Eins und die Vermehrung um eins erörtert werden müssen und somit auch die Definitionen der einzelnen Zahlen eine Ergänzung zu erwarten haben.
§ 19. Hier möchte ich mich nun gleich gegen den Versuch wenden, die Zahl geometrisch als Verhältnisszahl von Längen oder Flächen zu fassen. Man glaubte offenbar die vielfachen Anwendungen der Arithmetik auf Geometrie dadurch zu erleichtern, dass man gleich die Anfänge in die engste Beziehung setzte.
Newton31will unter Zahl nicht so sehr eine Menge von Einheiten als das abstracte Verhältniss einer jeden Grösse zu einer andern derselben Art verstehen, die als Einheit genommen wird. Man kann zugeben, dass hiermit die Zahl im weitern Sinne, wozu auch die Brüche und Irrationalzahlen gehören, zutreffend beschrieben sei; doch werden hierbei die Begriffe der Grösse und des Grössenverhältnisses vorausgesetzt. Danach scheint es, dass die Erklärung der Zahl im engern Sinne, der Anzahl, nicht überflüssig werde; dennEuklidbraucht den Begriff des Gleichvielfachen um die Gleichheit von zwei Längenverhältnissen zu definiren; und das Gleichvielfache kommtwieder auf eine Zahlengleichheit hinaus. Aber es mag sein, dass die Gleichheit von Längenverhältnissen unabhängig vom Zahlbegriffe definirbar ist. Man bliebe dann jedoch im Ungewissen darüber, in welcher Beziehung die so geometrisch definirte Zahl zu der Zahl des gemeinen Lebens stände. Dies wäre dann ganz von der Wissenschaft getrennt. Und doch kann man wohl von der Arithmetik verlangen, dass sie die Anknüpfungspunkte für jede Anwendung der Zahl bieten muss, wenn auch die Anwendung selbst nicht ihre Sache ist. Auch das gewöhnliche Rechnen muss die Begründung seines Verfahrens in der Wissenschaft finden. Und dann erhebt sich die Frage, ob die Arithmetik selbst mit einem geometrischen Begriffe der Zahl auskomme, wenn man an die Anzahl der Wurzeln einer Gleichung, der Zahlen, die prim zu einer Zahl und kleiner als sie sind, und ähnliche Vorkommnisse denkt. Dagegen kann die Zahl, welche die Antwort auf die Frage wieviel? giebt, auch bestimmen, wieviel Einheiten in einer Länge enthalten sind. Die Rechnung mit negativen, gebrochenen, Irrationalzahlen kann auf die mit den natürlichen Zahlen zurückgeführt werden.Newtonwollte aber vielleicht unter Grössen, als deren Verhältniss die Zahl definirt wird, nicht nur geometrische, sondern auch Mengen verstehen. Dann wird jedoch die Erklärung für unsern Zweck unbrauchbar, weil von den Ausdrücken »Zahl, durch die eine Menge bestimmt wird« und »Verhältniss einer Menge zur Mengeneinheit« der letztere keine bessere Auskunft als der erstere giebt.
§ 20. Die erste Frage wird nun sein, ob Zahl definirbar ist.Hankel32spricht sich dagegen aus: »Was es heisst, ein Object 1mal, 2mal, 3mal … denken oder setzen, kann bei der principiellen Einfachheit des Begriffes der Setzung nicht definirt werden.« Hier kommt es jedoch weniger auf das Setzen als auf das 1mal, 2mal, 3mal an. Wenn diesdefinirt werden könnte, so würde die Undefinirbarkeit des Setzens uns wenig beunruhigen.Leibnizist geneigt, die Zahl wenigstens annähernd als adaequate Idee anzusehen, d. h. als eine solche, die so deutlich ist, dass alles, was in ihr vorkommt, wieder deutlich ist.
Wenn man im Ganzen mehr dazu neigt, die Anzahl für undefinirbar zu halten, so liegt das wohl mehr an dem Misslingen darauf gerichteter Versuche als an dem Bestehen der Sache selbst entnommener Gegengründe.
§ 21. Versuchen wir wenigstens der Anzahl ihre Stelle unter unsern Begriffen anzuweisen! In der Sprache erscheinen Zahlen meistens in adjectivischer Form und in attributiver Verbindung ähnlich wie die Wörter hart, schwer, roth, welche Eigenschaften der äusseren Dinge bedeuten. Es liegt die Frage nahe, ob man die einzelnen Zahlen auch so auffassen müsse, und ob demgemäss der Begriff der Anzahl etwa mit dem der Farbe zusammengestellt werden könne.
Dies scheint die Meinung vonM. Cantor33zu sein, wenn er die Mathematik eine Erfahrungswissenschaft nennt, insofern sie von der Betrachtung von Objecten der Aussenwelt ihren Anfang nehme. Nur durch Abstraction von Gegenständen entstehe die Zahl.
E. Schröder34lässt die Zahl der Wirklichkeit nachgebildet, aus ihr entnommen werden, indem die Einheiten durch Einer abgebildet würden. Dies nennt er Abstrahiren der Zahl. Bei dieser Abbildung würden die Einheiten nur in Hinsicht ihrer Häufigkeit dargestellt, indem von allenandern Bestimmungen der Dinge als Farbe, Gestalt abgesehen werde. Hier ist Häufigkeit nur ein anderer Ausdruck für Anzahl. Schröder stellt also Häufigkeit oder Anzahl in eine Linie mit Farbe und Gestalt und betrachtet sie als eine Eigenschaft der Dinge.
§ 22.Baumann35verwirft den Gedanken, dass die Zahlen von den äussern Dingen abgezogene Begriffe seien: »Weil nämlich die äussern Dinge uns keine strengen Einheiten darstellen; sie stellen uns abgegränzte Gruppen oder sinnliche Punkte dar, aber wir haben die Freiheit, diese selber wieder als Vieles zu betrachten«. In der That, während ich nicht im Stande bin, durch blosse Auffassungsweise die Farbe eines Dinges oder seine Härte im Geringsten zu verändern, kann ich die Ilias als Ein Gedicht, als 24 Gesänge oder als eine grosse Anzahl von Versen auffassen. Spricht man nicht in einem ganz andern Sinne von 1000 Blättern als von grünen Blättern des Baumes? Die grüne Farbe legen wir jedem Blatte bei, nicht so die Zahl 1000. Wir können alle Blätter des Baumes unter dem Namen seines Laubes zusammenfassen. Auch dieses ist grün, aber nicht 1000. Wem kommt nun eigentlich die Eigenschaft 1000 zu? Fast scheint es weder dem einzelnen Blatte noch der Gesammtheit; vielleicht gar nicht eigentlich den Dingen der Aussenwelt? Wenn ich jemandem einen Stein gebe mit den Worten: bestimme das Gewicht hiervon, so habe ich ihm damit den ganzen Gegenstand seiner Untersuchung gegeben. Wenn ich ihm aber einen Pack Spielkarten in die Hand gebe mit den Worten: bestimme die Anzahl hiervon, so weiss er nicht, ob ich die Zahl der Karten oder der vollständigen Spiele oder etwa der Wertheinheiten beim Skatspiele erfahren will. Damit, dass ich ihm den Pack in die Hand gebe, habe ich ihm den Gegenstand seiner Untersuchung noch nicht vollständig gegeben; ich muss ein Wort:Karte, Spiel, Wertheinheit hinzufügen. Man kann auch nicht sagen, dass die verschiedenen Zahlen hier so wie die verschiedenen Farben neben einander bestehen. Auf die einzelne farbige Fläche kann ich hindeuten, ohne ein Wort zu sagen, nicht so auf die einzelne Zahl. Wenn ich einen Gegenstand mit demselben Rechte grün und roth nennen kann, so ist das ein Zeichen, dass dieser Gegenstand nicht der eigentliche Träger des Grünen ist. Diesen habe ich erst in einer Fläche, die nur grün ist. So ist auch ein Gegenstand, dem ich mit demselben Rechte verschiedene Zahlen zuschreiben kann, nicht der eigentliche Träger einer Zahl.
Ein wesentlicher Unterschied zwischen Farbe und Anzahl besteht demnach darin, dass die blaue Farbe einer Fläche unabhängig von unserer Willkühr zukommt. Sie ist ein Vermögen, gewisse Lichtstrahlen zurückzuwerfen, andere mehr oder weniger zu verschlucken, und daran kann unsere Auffassung nicht das Geringste ändern. Dagegen kann ich nicht sagen, dass dem Pack Spielkarten die Anzahl 1 oder 100 oder irgend eine andere an sich zukomme, sondern höchstens in Bezug auf unsere willkührliche Auffassungsweise, und dann auch nicht so, dass wir ihm die Anzahl einfach als Praedicat beilegen könnten. Was wir ein vollständiges Spiel nennen wollen, ist offenbar eine willkührliche Festsetzung und der Pack Spielkarten weiss nichts davon. Indem wir ihn aber in dieser Hinsicht betrachten, entdecken wir vielleicht, dass wir ihn zwei vollständige Spiele nennen können. Jemand, der nicht wüsste, was man ein vollständiges Spiel nennt, würde wahrscheinlich irgend eine andere Anzahl eher an ihm herausfinden, als grade die Zwei.
§ 23. Die Frage, wem die Zahl als Eigenschaft zukomme, beantwortetMill36so:
»Der Name einer Zahl bezeichnet eine Eigenschaft, die dem Aggregat von Dingen angehört, welche wir mitdem Namen benennen; und diese Eigenschaft ist die charakteristische Weise, in welcher das Aggregat zusammengesetzt ist oder in Theile zerlegt werden kann.«
Hier ist zunächst der bestimmte Artikel in dem Ausdrucke »die charakteristische Weise« ein Fehler; denn es giebt sehr verschiedene Weisen, wie man ein Aggregat zerlegen kann, und man kann nicht sagen, dass Eine allein charakteristisch wäre. Ein Bündel Stroh kann z. B. so zerlegt werden, dass man alle Halme durchschneidet, oder so, dass man es in einzelne Halme auflöst, oder so dass man zwei Bündel daraus macht. Ist denn ein Haufe von hundert Sandkörnern ebenso zusammengesetzt wie ein Bündel von 100 Strohhalmen? und doch hat man dieselbe Zahl. Das Zahlwort »Ein« in dem Ausdruck »Ein Strohhalm« drückt doch nicht aus, wie dieser Halm aus Zellen oder aus Molekeln zusammengesetzt ist. Noch mehr Schwierigkeit macht die Zahl 0. Müssen denn die Strohhalme überhaupt ein Bündel bilden, um gezählt werden zu können? Muss man die Blinden im Deutschen Reiche durchaus in einer Versammlung vereinigen, damit der Ausdruck »Zahl der Blinden im Deutschen Reiche« einen Sinn habe? Sind tausend Weizenkörner, nachdem sie ausgesäet sind, nicht mehr tausend Weizenkörner? Giebt es eigentlich Aggregate von Beweisen eines Lehrsatzes oder von Ereignissen? und doch kann man auch diese zählen. Dabei ist es gleichgiltig, ob die Ereignisse gleichzeitig oder durch Jahrtausende getrennt sind.
§ 24. Damit kommen wir auf einen andern Grund, die Zahl nicht mit Farbe und Festigkeit zusammenzustellen: die bei weitem grössere Anwendbarkeit.
Mill37meint, die Wahrheit, dass, was aus Theilen zusammengesetzt ist, aus Theilen dieser Theile zusammengesetzt ist, sei von allen Naturerscheinungen giltig, weilalle gezählt werden könnten. Aber kann nicht noch weit mehr gezählt werden?Locke38sagt: »Die Zahl findet Anwendung auf Menschen, Engel, Handlungen, Gedanken, jedes Ding, das existirt oder vorgestellt werden kann«.Leibniz39verwirft die Meinung der Scholastiker, dass die Zahl auf unkörperliche Dinge unanwendbar sei, und nennt die Zahl gewissermaassen eine unkörperliche Figur, entstanden aus der Vereinigung irgendwelcher Dinge, z. B. Gottes, eines Engels, eines Menschen, der Bewegung, welche zusammen vier sind. Daher, meint er, ist die Zahl etwas ganz Allgemeines und zur Metaphysik gehörig. An einer andern Stelle40sagt er: »Gewogen kann nicht werden, was nicht Kraft und Vermögen hat; was keine Theile hat, hat demgemäss kein Maass; aber es giebt nichts, was nicht die Zahl zulässt. So ist die Zahl gleichsam die metaphysische Figur«.
Es wäre in der That wunderbar, wenn eine, von äussern Dingen abstrahirte Eigenschaft, auf Ereignisse, auf Vorstellungen, auf Begriffe ohne Aenderung des Sinnes übertragen werden könnte. Es wäre grade so, als ob man von einem schmelzbaren Ereignisse, einer blauen Vorstellung, einem salzigen Begriffe, einem zähen Urtheile reden wollte.
Es ist ungereimt, dass an Unsinnlichem vorkomme, was seiner Natur nach sinnlich ist. Wenn wir eine blaue Fläche sehen, so haben wir einen eigenthümlichen Eindruck, der dem Worte »blau« entspricht; und diesen erkennen wir wieder, wenn wir eine andere blaue Fläche erblicken. Wollten wir annehmen, dass in derselben Weise beim Anblick eines Dreiecks etwas Sinnliches dem Worte »drei« entspräche, so müssten wir dies auch in drei Begriffen wiederfinden; etwas Unsinnliches würde etwas Sinnliches an sich haben.Man kann wohl zugeben, dass dem Worte »dreieckig« eine Art sinnlicher Eindrücke entspreche, aber man muss dabei dies Wort als Ganzes nehmen. Die Drei darin sehen wir nicht unmittelbar; sondern wir sehen etwas, woran eine geistige Thätigkeit anknüpfen kann, welche zu einem Urtheile führt, in dem die Zahl 3 vorkommt. Womit nehmen wir denn etwa die Anzahl der Schlussfiguren wahr, die Aristoteles aufstellt? etwa mit den Augen? wir sehen höchstens gewisse Zeichen für diese Schlussfiguren, nicht sie selbst. Wie sollen wir ihre Anzahl sehen können, wenn sie selbst unsichtbar bleiben? Aber, meint man vielleicht, es genügt, die Zeichen zu sehen; deren Zahl ist gleich der Zahl der Schlussfiguren. Woher weiss man denn das? Dazu muss man doch schon auf andere Weise die letztere bestimmt haben. Oder ist der Satz »die Anzahl der Schlussfiguren ist vier« nur ein anderer Ausdruck für »die Anzahl der Zeichen der Schlussfiguren ist vier«? Nein! von den Zeichen soll nichts ausgesagt werden; von den Zeichen will niemand etwas wissen, wenn nicht deren Eigenschaft zugleich eine des Bezeichneten ausdrückt. Da ohne logischen Fehler dasselbe verschiedene Zeichen haben kann, braucht nicht einmal die Zahl der Zeichen mit der des Bezeichneten übereinzustimmen.
§ 25. Während fürMilldie Zahl etwas Physikalisches ist, besteht sie fürLockeundLeibniznur in der Idee. In der That sind, wieMill41sagt, zwei Aepfel von drei Aepfeln, zwei Pferde von einem Pferd physikalisch verschieden, ein davon verschiedenes sichtliches und fühlbares Phänomen42. Aber ist daraus zu schliessen, dass dieZweiheit, Dreiheit, etwas Physikalisches ist? Ein Paar Stiefel kann dieselbe sichtbare und fühlbare Erscheinung sein, wiezweiStiefel. Hier haben wir einen Zahlenunterschied, dem kein physikalischer entspricht; dennzweiundEin Paarsind keineswegs dasselbe, wieMillsonderbarer Weise zu glauben scheint. Wie ist es endlich möglich, dass sich zwei Begriffe von drei Begriffen physikalisch unterscheiden?
So sagtBerkeley43: »Es ist zu bemerken, dass die Zahl nichts Fixes und Festgestelltes ist, was realiter in den Dingen selber existirte. Sie ist gänzlich Geschöpf des Geistes, wenn er entweder eine Idee an sich oder eine Combination von Ideen betrachtet, der er einen Namen geben will und sie so für eine Einheit gelten lässt. Jenachdem der Geist seine Ideen variirend combinirt, variirt die Einheit, und wie die Einheit so variirt auch die Zahl, welche nur eine Sammlung von Einheiten ist. Ein Fenster = 1; ein Haus, in dem viele Fenster sind, = 1; viele Häuser machen Eine Stadt aus.«
§ 26. In diesem Gedankengange kommt man leicht dazu, die Zahl für etwas Subjectives anzusehen. Es scheint die Weise, wie die Zahl in uns entsteht, über ihr Wesen Aufschluss geben zu können. Auf eine psychologische Untersuchung also würde es dann ankommen. In diesem Sinne sagt wohlLipschitz44:
»Wer über gewisse Dinge einen Ueberblick gewinnen will, der wird mit einem bestimmten Dinge beginnen und immer ein neues Ding den früheren hinzufügen«. Dies scheint viel besser darauf zu passen, wie wir etwa die Anschauung eines Sternbildes erhalten, als auf die Zahlbildung. DieAbsicht, einen Ueberblick zu gewinnen, ist unwesentlich; denn man wird kaum sagen können, dass eine Herde übersichtlicher wird, wenn man erfährt, aus wieviel Häuptern sie besteht.
Eine solche Beschreibung der innern Vorgänge, die der Fällung eines Zahlurtheils vorhergehen, kann nie, auch wenn sie zutreffender ist, eine eigentliche Begriffsbestimmung ersetzen. Sie wird nie zum Beweise eines arithmetischen Satzes herangezogen werden können; wir erfahren durch sie keine Eigenschaft der Zahlen. Denn die Zahl ist so wenig ein Gegenstand der Psychologie oder ein Ergebniss psychischer Vorgänge, wie es etwa die Nordsee ist. Der Objectivität der Nordsee thut es keinen Eintrag, dass es von unserer Willkühr abhängt, welchen Theil der allgemeinen Wasserbedeckung der Erde wir abgrenzen und mit dem Namen »Nordsee« belegen wollen. Das ist kein Grund, dies Meer auf psychologischem Wege erforschen zu wollen. So ist auch die Zahl etwas Objectives. Wenn man sagt »die Nordsee ist 10,000 Quadratmeilen gross,« so deutet man weder durch »Nordsee« noch durch »10,000« auf einen Zustand oder Vorgang in seinem Innern hin, sondern man behauptet etwas ganz Objectives, was von unsern Vorstellungen und dgl. unabhängig ist. Wenn wir etwa ein ander Mal die Grenzen der Nordsee etwas anders ziehen oder unter »10,000« etwas Anderes verstehen wollten, so würde nicht derselbe Inhalt falsch, der vorher richtig war; sondern an die Stelle eines wahren Inhalts wäre vielleicht ein falscher geschoben, wodurch die Wahrheit jenes ersteren in keiner Weise aufgehoben würde.
Der Botaniker will etwas ebenso Thatsächliches sagen, wenn er die Anzahl der Blumenblätter einer Blume, wie wenn er ihre Farbe angiebt. Das eine hängt so wenig wie das andere von unserer Willkühr ab. Eine gewisse Aehnlichkeit der Anzahl und der Farbe ist also da; aber diese besteht nicht darin, dass beide an äusseren Dingen sinnlich wahrnehmbar, sondern darin, dass beide objectiv sind.
Ich unterscheide das Objective von dem Handgreiflichen, Räumlichen, Wirklichen. Die Erdaxe, der Massenmittelpunkt des Sonnensystems sind objectiv, aber ich möchte sie nicht wirklich nennen, wie die Erde selbst. Man nennt den Aequator oft einegedachteLinie; aber es wäre falsch, ihn eineerdachteLinie zu nennen; er ist nicht durch Denken entstanden, das Ergebniss eines seelischen Vorgangs, sondern nur durch Denken erkannt, ergriffen. Wäre das Erkanntwerden ein Entstehen, so könnten wir nichts Positives von ihm aussagen in Bezug auf eine Zeit, die diesem vorgeblichen Entstehen vorherginge.
Der Raum gehört nach Kant der Erscheinung an. Es wäre möglich, dass er andern Vernunftwesen sich ganz anders als uns darstellte. Ja, wir können nicht einmal wissen, ob er dem einen Menschen so wie dem andern erscheint; denn wir können die Raumanschauung des einen nicht neben die des andern legen, um sie zu vergleichen. Aber dennoch ist darin etwas Objectives enthalten; Alle erkennen dieselben geometrischen Axiome, wenn auch nur durch die That, an und müssen es, um sich in der Welt zurechtzufinden. Objectiv ist darin das Gesetzmässige, Begriffliche, Beurtheilbare, was sich in Worten ausdrücken lässt. Das rein Anschauliche ist nicht mittheilbar. Nehmen wir zur Verdeutlichung zwei Vernunftwesen an, denen nur die projectivischen Eigenschaften und Beziehungen anschaulich sind: das Liegen von drei Punkten in einer Gerade, von vier Punkten in einer Ebene u. s. w.; es möge dem einen das als Ebene erscheinen, was das andere als Punkt anschaut und umgekehrt. Was dem einen die Verbindungslinie von Punkten ist, möge dem andern die Schnittkante von Ebenen sein u. s. w. immer dualistisch entsprechend. Dann könnten sie sich sehr wohl mit einander verständigen und würden die Verschiedenheit ihres Anschauens nie gewahr werden, weil in der projectivischen Geometrie jedem Lehrsatze ein anderer dualistisch gegenübersteht; denn das Abweichen in einer ästhetischenWerthschätzung würde kein sicheres Zeichen sein. In Bezug auf alle geometrische Lehrsätze wären sie völlig im Einklange; sie würden sich nur die Wörter in ihre Anschauung verschieden übersetzen. Mit dem Worte »Punkt« verbände etwa das eine diese, das andere jene Anschauung. So kann man immerhin sagen, dass ihnen dies Wort etwas Objectives bedeute; nur darf man unter dieser Bedeutung nicht das Besondere ihrer Anschauung verstehn. Und in diesem Sinne ist auch die Erdaxe objectiv.
Man denkt gewöhnlich bei »weiss« an eine gewisse Empfindung, die natürlich ganz subjectiv ist; aber schon im gewöhnlichen Sprachgebrauche, scheint mir, tritt ein objectiver Sinn vielfach hervor. Wenn man den Schnee weiss nennt, so will man eine objective Beschaffenheit ausdrücken, die man beim gewöhnlichen Tageslicht an einer gewissen Empfindung erkennt. Wird er farbig beleuchtet, so bringt man das bei der Beurtheilung in Anschlag. Man sagt vielleicht: ererscheintjetzt roth, aber er ist weiss. Auch der Farbenblinde kann von roth und grün reden, obwohl er diese Farben in der Empfindung nicht unterscheidet. Er erkennt den Unterschied daran, dass Andere ihn machen, oder vielleicht durch einen physikalischen Versuch. So bezeichnet das Farbenwort oft nicht unsere subjective Empfindung, von der wir nicht wissen können, dass sie mit der eines Andern übereinstimmt – denn offenbar verbürgt das die gleiche Benennung keineswegs – sondern eine objective Beschaffenheit. So verstehe ich unter Objectivität eine Unabhängigkeit von unserm Empfinden, Anschauen und Vorstellen, von dem Entwerfen innerer Bilder aus den Erinnerungen früherer Empfindungen, aber nicht eine Unabhängigkeit von der Vernunft; denn die Frage beantworten, was die Dinge unabhängig von der Vernunft sind, hiesse urtheilen, ohne zu urtheilen, den Pelz waschen, ohne ihn nass zu machen.
§ 27. Deswegen kann ich auchSchloemilch45nichtzustimmen, der die Zahl Vorstellung der Stelle eines Objects in einer Reihe nennt46. Wäre die Zahl eine Vorstellung, so wäre die Arithmetik Psychologie. Das ist sie so wenig, wie etwa die Astronomie es ist. Wie sich diese nicht mit den Vorstellungen der Planeten, sondern mit den Planeten selbst beschäftigt, so ist auch der Gegenstand der Arithmetik keine Vorstellung. Wäre die Zwei eine Vorstellung, so wäre es zunächst nur die meine. Die Vorstellung eines Andern ist schon als solche eine andere. Wir hätten dann vielleicht viele Millionen Zweien. Man müsste sagen: meine Zwei, deine Zwei, eine Zwei, alle Zweien. Wenn man latente oder unbewusste Vorstellungen annimmt, so hätte man auch unbewusste Zweien, die dann später wieder bewusste würden. Mit den heranwachsenden Menschen entständen immer neue Zweien, und wer weiss, ob sie sich nicht in Jahrtausenden so veränderten, dass 2 × 2 = 5 würde. Trotzdem wärees zweifelhaft, ob es, wie man gewöhnlich meint, unendlich viele Zahlen gäbe. Vielleicht wäre 1010nur ein leeres Zeichen, und es gäbe gar keine Vorstellung, in irgendeinem Wesen, die so benannt werden könnte.
Wir sehen, zu welchen Wunderlichkeiten es führt, wenn man den Gedanken etwas weiter ausspinnt, dass die Zahl eine Vorstellung sei. Und wir kommen zu dem Schlusse, dass die Zahl weder räumlich und physikalisch ist, wie Mills Haufen von Kieselsteinen und Pfeffernüssen, noch auch subjectiv wie die Vorstellungen, sondern unsinnlich und objectiv. Der Grund der Objectivität kann ja nicht in dem Sinneseindrucke liegen, der als Affection unserer Seele ganz subjectiv ist, sondern, soweit ich sehe, nur in der Vernunft.
Es wäre wunderbar, wenn die allerexacteste Wissenschaft sich auf die noch zu unsicher tastende Psychologie stützen sollte.
§ 28. Einige Schriftsteller erklären die Anzahl als eine Menge, Vielheit oder Mehrheit. Ein Uebelstand besteht hierbei darin, dass die Zahlen 0 und 1 von dem Begriffe ausgeschlossen werden. Jene Ausdrücke sind recht unbestimmt: bald nähern sie sich mehr der Bedeutung von »Haufe,« »Gruppe,« »Aggregat« – wobei an ein räumliches Zusammensein gedacht wird – bald werden sie fast gleichbedeutend mit »Anzahl« gebraucht, nur unbestimmter. Eine Auseinanderlegung des Begriffes der Anzahl kann darum in einer solchen Erklärung nicht gefunden werden.Thomae47verlangt zur Bildung der Zahl, dass verschiedenen Objectenmengen verschiedene Namen gegeben werden. Damit ist offenbar eine schärfere Bestimmung jener Objectenmengen gemeint, für welche die Namengebung nur das äussere Zeichen ist. Welcher Art nun diese Bestimmung sei, das ist dieFrage. Es würde offenbar die Idee der Zahl nicht entstehen, wenn man für »3 Sterne,« »3 Finger,« »7 Sterne« Namen einführen wollte, in denen keine gemeinsamen Bestandtheile erkennbar wären. Es kommt nicht darauf an, dass überhaupt Namen gegeben werden, sondern dass für sich bezeichnet werde, was Zahl daran ist. Dazu ist nöthig, dass es in seiner Besonderheit erkannt sei.
Noch ist folgende Verschiedenheit zu beachten. Einige nennen die Zahl eine Menge von Dingen oder Gegenständen; Andere wie schonEuklid48, erklären sie als eine Menge von Einheiten. Dieser Ausdruck bedarf einer besondern Erörterung.
§ 29. In den Definitionen, die Euklid am Anfange des 7. Buches der Elemente giebt, scheint er mit dem Worte »μονάς« bald einen zu zählenden Gegenstand, bald eine Eigenschaft eines solchen, bald die Zahl Eins zu bezeichnen. Ueberall kommt man mit der Uebersetzung »Einheit« durch, aber nur, weil dies Wort selbst in diesen verschiedenen Bedeutungen schillert.
Schröder49sagt: »Jedes der zu zählenden Dinge wird Einheit genannt.« Es fragt sich, weshalb man die Dinge erst unter den Begriff der Einheit bringt und nicht einfach erklärt: Zahl ist eine Menge von Dingen, womit wir wieder auf das Vorige zurückgeworfen wären. Man könnte zunächst in der Benennung der Dinge als Einheiten eine nähere Bestimmung finden wollen, indem man der sprachlichen Form folgend »Ein« als Eigenschaftswort ansiehtund »Eine Stadt« so auffasst wie »weiser Mann«. Dann würde eine Einheit ein Gegenstand sein, dem die Eigenschaft »Ein« zukäme und würde sich zu »Ein« ähnlich verhalten wie »ein Weiser« zu dem Adjectiv »weise«. Zu den Gründen, die oben dagegen geltend gemacht sind, dass die Zahl eine Eigenschaft von Dingen sei, treten hier noch einige besondere hinzu. Auffallend wäre zunächst, dass jedes Ding diese Eigenschaft hätte. Es wäre unverständlich, weshalb man überhaupt noch einem Dinge ausdrücklich die Eigenschaft beilegt. Nur durch die Möglichkeit, dass etwas nicht weise sei, gewinnt die Behauptung, Solon sei weise, einen Sinn. Der Inhalt eines Begriffes nimmt ab, wenn sein Umfang zunimmt; wird dieser allumfassend, so muss der Inhalt ganz verloren gehen. Es ist nicht leicht zu denken, wie die Sprache dazu käme, ein Eigenschaftswort zu schaffen, das gar nicht dazu dienen könnte, einen Gegenstand näher zu bestimmen.
Wenn »Ein Mensch« ähnlich wie »weiser Mensch« aufzufassen wäre, so sollte man denken, dass »Ein« auch als Praedicat gebraucht werden könnte, sodass man wie »Solon war weise« auch sagen könnte »Solon war Ein« oder »Solon war Einer«. Wenn nun der letzte Ausdruck auch vorkommen kann, so ist er doch für sich allein nicht verständlich. Er kann z. B. heissen: Solon war ein Weiser, wenn »Weiser« aus dem Zusammenhange zu ergänzen ist. Aber allein scheint »Ein« nicht Praedicat sein zu können50. Noch deutlicher zeigt sich dies beim Plural. Während man »Solon war weise« und »Thales war weise« zusammenziehen kann in »Solon und Thales waren weise,« kann man nicht sagen »Solon und Thales waren Ein«. Hiervon wäre dieUnmöglichkeit nicht einzusehen, wenn »Ein« sowie »weise« eine Eigenschaft sowohl des Solon als auch des Thales wäre.
§ 30. Damit hangt es zusammen, dass man keine Definition der Eigenschaft »Ein« hat geben können. WennLeibniz51sagt: »Eines ist, was wir durch Eine That des Verstandes zusammenfassen«, so erklärt er »Ein« durch sich selbst. Und können wir nicht auch Vieles durch Eine That des Verstandes zusammenfassen? Dies wird vonLeibnizan derselben Stelle zugestanden. Aehnlich sagtBaumann52: »Eines ist, was wir als Eines auffassen« und weiter: »Was wir als Punkt setzen oder nicht mehr als getheilt setzen wollen, das sehen wir als Eines an; aber jedes Eins der äussern Anschauung, der reinen wie der empirischen, können wir auch als Vieles ansehen. Jede Vorstellung ist Eine, wenn abgegränzt gegen eine andere Vorstellung; aber in sich kann sie wieder in Vieles unterschieden werden.« So verwischt sich jede sachliche Begrenzung des Begriffes und alles hangt von unserer Auffassung ab. Wir fragen wieder: welchen Sinn kann es haben, irgendeinem Gegenstande die Eigenschaft »Ein« beizulegen, wenn je nach der Auffassung jeder Einer sein und auch nicht sein kann? Wie kann auf einem so verschwommenen Begriffe eine Wissenschaft beruhen, die grade in der grössten Bestimmtheit und Genauigkeit ihren Ruhm sucht?
§ 31. Obwohl nunBaumann53den Begriff der Eins auf innerer Anschauung beruhen lässt, so nennt er doch in der eben angeführten Stelle als Merkmale die Ungetheiltheit und die Abgegränztheit. Wenn diese zuträfen, so wäre zu erwarten, dass auch Thiere eine gewisse Vorstellung von Einheit haben könnten. Ob wohl ein Hund beim Anblick des Mondes eine wenn auch noch so unbestimmte Vorstellungvon dem hat, was wir mit dem Worte »Ein« bezeichnen? Schwerlich! Und doch unterscheidet er gewiss einzelne Gegenstände: ein andrer Hund, sein Herr, ein Stein, mit dem er spielt, erscheinen ihm gewiss ebenso abgegrenzt, für sich bestehend, ungetheilt wie uns. Zwar wird er einen Unterschied merken, ob er sich gegen viele Hunde zu vertheidigen hat oder nur gegen Einen, aber dies ist der vonMillphysikalisch genannte Unterschied. Es käme darauf besonders an, ob er von dem Gemeinsamen, welches wir durch das Wort »Ein« ausdrücken, ein wenn auch noch so dunkles Bewusstsein hat z. B. in den Fällen, wo er von Einem grössern Hunde gebissen wird, und wo er Eine Katze verfolgt. Das ist mir unwahrscheinlich. Ich folgere daraus, dass die Idee der Einheit nicht, wieLocke54meint, dem Verstande durch jenes Object draussen und jede Idee innen zugeführt, sondern von uns durch die höhern Geisteskräfte erkannt wird, die uns vom Thiere unterscheiden. Dann können solche Eigenschaften der Dinge wie Ungetheiltheit und Abgegrenztheit, die von den Thieren ebenso gut wie von uns bemerkt werden, nicht das Wesentliche an unserm Begriffe sein.
§ 32. Doch kann man einen gewissen Zusammenhang vermuthen. Darauf deutet die Sprache hin, indem sie von »Ein« »einig« ableitet. Etwas ist desto mehr geeignet, als besonderer Gegenstand aufgefasst zu werden, je mehr die Unterschiede in ihm gegenüber den Unterschieden von der Umgebung zurücktreten, je mehr der innere Zusammenhang den mit der Umgebung überwiegt. So bedeutet »einig« eine Eigenschaft, die dazu veranlasst, etwas in der Auffassung von der Umgebung abzusondern und für sich zu betrachten. Wenn das französische »uni« »eben,« »glatt« heisst, so ist dies so zu erklären. Auch das Wort »Einheit« wird in ähnlicher Weise gebraucht, wenn von politischer Einheiteines Landes, Einheit eines Kunstwerks gesprochen wird55. Aber in diesem Sinne gehört »Einheit« weniger zu »Ein« als zu »einig« oder »einheitlich.« Denn, wenn man sagt, die Erde habe Einen Mond, so will man diesen damit nicht für einen abgegrenzten, für sich bestehenden, ungetheilten Mond erklären; sondern man sagt dies im Gegensatze zu dem, was bei der Venus, dem Mars oder dem Jupiter vorkommt. In Bezug auf Abgegrenztheit und Ungetheiltheit könnten sich die Monde des Jupiter wohl mit unserm messen und sind in dem Sinne ebenso einheitlich.
§ 33. Die Ungetheiltheit wird von einigen Schriftstellern bis zur Untheilbarkeit gesteigert.G. Köpp56nennt jedes unzerlegbar und für sich bestehend gedachte sinnlich oder nicht sinnlich wahrnehmbare Ding ein Einzelnes und die zu zählenden Einzelnen Einse, wo offenbar »Eins« in dem Sinne von »Einheit« gebraucht wird. IndemBaumannseine Meinung, die äussern Dinge stellten keine strengen Einheiten dar, damit begründet, dass wir die Freiheit hätten, sie als Vieles zu betrachten, giebt auch er die Unzerlegbarkeit für ein Merkmal der strengen Einheit aus. Dadurch dass man den innern Zusammenhang bis zum Unbedingten steigert, will man offenbar ein Merkmal der Einheit gewinnen, das von der willkührlichen Auffassung unabhängig ist. Dieser Versuch scheitert daran, dass dann fast nichts übrig bliebe, was Einheit genannt und gezählt werden dürfte. Deshalb wird auch sofort der Rückzug damit angetreten, dass man nicht die Unzerlegbarkeit selbst, sondern das als unzerlegbar Gedachtwerden als Merkmal aufstellt. Damit ist man denn bei der schwankenden Auffassung wieder angekommen. Und wird denn dadurch etwas gewonnen, dass man sich die Sachen anders denkt als sie sind? Im Gegentheil! aus einer falschenAnnahme können falsche Folgerungen fliessen. Wenn man aber aus der Unzerlegbarkeit nichts schliessen will, was nützt sie dann? wenn man von der Strenge des Begriffes ohne Schaden etwas ablassen kann, ja es sogar muss, wozu dann diese Strenge? Aber vielleicht soll man an die Zerlegbarkeit nur nicht denken. Als ob durch Mangel an Denken etwas erreicht werden könnte! Es giebt aber Fälle, wo man gar nicht vermeiden kann, an die Zerlegbarkeit zu denken, wo sogar ein Schluss auf der Zusammensetzung der Einheit beruht, z. B. bei der Aufgabe: Ein Tag hat 24 Stunden, wieviel Stunden haben 3 Tage?
§ 34. So misslingt denn jeder Versuch, die Eigenschaft »Ein« zu erklären, und wir müssen wohl darauf verzichten, in der Bezeichnung der Dinge als Einheiten eine nähere Bestimmung zu sehen. Wir kommen wieder auf unsere Frage zurück: weshalb nennt man die Dinge Einheiten, wenn »Einheit« nur ein andrer Name für Ding ist, wenn alle Dinge Einheiten sind oder als solche aufgefasst werden können?E. Schröder57giebt als Grund die den Objecten der Zählung zugeschriebene Gleichheit an. Zunächst ist nicht zu sehen, warum die Wörter »Ding« und »Gegenstand« dies nicht ebenso gut andeuten könnten. Dann fragt es sich: weshalb wird den Gegenständen der Zählung Gleichheit zugeschrieben? Wird sie ihnen nur zugeschrieben, oder sind sie wirklich gleich? Jedenfalls sind nie zwei Gegenstände durchaus gleich. Andrerseits kann man wohl fast immer eine Hinsicht ausfindig machen, in der zwei Gegenstände übereinstimmen. So sind wir wieder bei der willkührlichen Auffassung angelangt, wenn wir nicht gegen die Wahrheit den Dingen eine weitergehende Gleichheit zuschreiben wollen, als ihnen zukommt. In der That nennen viele Schriftstellerdie Einheiten ohne Einschränkung gleich.Hobbes58sagt: »Die Zahl, absolut gesagt, setzt in der Mathematik unter sich gleiche Einheiten voraus, aus denen sie hergestellt wird.«Hume59hält die zusammensetzenden Theile der Quantität und Zahl für ganz gleichartig.Thomae60nennt ein Individuum der Menge Einheit und sagt: »Die Einheiten sind einander gleich.« Ebenso gut oder vielmehr richtiger könnte man sagen: die Individuen der Menge sind von einander verschieden. Was hat nun diese vorgebliche Gleichheit für die Zahl zu bedeuten? Die Eigenschaften, durch die sich die Dinge unterscheiden, sind für ihre Anzahl etwas Gleichgiltiges und Fremdes. Darum will man sie fern halten. Aber das gelingt in dieser Weise nicht. Wenn man, wieThomaeverlangt, »von den Eigenthümlichkeiten der Individuen einer Objectenmenge abstrahirt« oder »bei der Betrachtung getrennter Dinge von den Merkmalen absieht, durch welche sich die Dinge unterscheiden,« so bleibt nicht, wieLipschitzmeint, »der Begriff der Anzahl der betrachteten Dinge« zurück, sondern man erhält einen allgemeinen Begriff, unter den jene Dinge fallen. Diese selbst verlieren dadurch nichts von ihren Besonderheiten. Wenn ich z. B. bei der Betrachtung einer weissen und einer schwarzen Katze von den Eigenschaften absehe, durch die sie sich unterscheiden, so erhalte ich etwa den Begriff »Katze«. Wenn ich nun auch beide unter diesen Begriff bringe und sie etwa Einheiten nenne, so bleibt die weisse doch immer weiss und die schwarze schwarz. Auch dadurch, dass ich an die Farben nicht denke oder mir vornehme, keine Schlüsse aus deren Verschiedenheit zu ziehen, werden die Katzen nicht farblos und bleiben ebenso verschieden, wie sie waren. Der Begriff »Katze,« der durchdie Abstraction gewonnen ist, enthält zwar die Besonderheiten nicht mehr, ist aber eben dadurch nur Einer.
§ 35. Durch blos begriffliche Verfahrungsweisen gelingt es nicht, verschiedene Dinge gleich zu machen; gelänge es aber, so hätte man nicht mehr Dinge, sondern nur Ein Ding; denn, wieDescartes61sagt, die Zahl – besser: die Mehrzahl – in den Dingen entspringt aus deren Unterscheidung.E. Schröder62behauptet mit Recht: »Die Anforderung Dinge zu zählen kann vernünftiger Weise nur gestellt werden, wo solche Gegenstände vorliegen, welche deutlich von einander unterscheidbar z. B. räumlich und zeitlich getrennt und gegen einander abgegrenzt erscheinen.« In der That erschwert zuweilen die zu grosse Aehnlichkeit z. B. der Stäbe eines Gitters die Zählung. Mit besonderer Schärfe drückt sichW. Stanley Jevons63in diesem Sinne aus: »Zahl ist nur ein andrer Name für Verschiedenheit. Genaue Identität ist Einheit, und mit Verschiedenheit entsteht Mehrheit.« Und weiter (S. 157): »Es ist oft gesagt, dass Einheiten Einheiten sind, insofern sie einander vollkommen gleichen; aber, obwohl sie in einigen Rücksichten vollkommen gleich sein mögen, müssen sie mindestens in Einem Punkte verschieden sein; sonst wäre der Begriff der Mehrheit auf sie unanwendbar. Wenn drei Münzen so gleich wären, dass sie denselben Raum zu derselben Zeit einnähmen, so wären sie nicht drei Münzen, sondern Eine Münze.«
§ 36. Aber es zeigt sich bald, dass die Ansicht von der Verschiedenheit der Einheiten auf neue Schwierigkeiten stösst.Jevonserklärt: »Eine Einheit (unit) ist irgendein Gegenstand des Denkens, der von irgendeinem andern Gegenstande unterschieden werden kann, der als Einheit in derselben Aufgabe behandelt wird.« Hier ist Einheit durchsich selbst erklärt und der Zusatz »der von irgendeinem andern Gegenstande unterschieden werden kann« enthält keine nähere Bestimmung, weil er selbstverständlich ist. Wir nennen den Gegenstand eben nur darum einen andern, weil wir ihn vom ersten unterscheiden können.Jevons64sagt ferner: »Wenn ich das Symbol 5 schreibe, meine ich eigentlich
1 + 1 + 1 + 1 + 1
und es ist vollkommen klar, dass jede dieser Einheiten von jeder andern verschieden ist. Wenn erforderlich, kann ich sie so bezeichnen:
1´ + 1´´ + 1´´´ + 1´´´´ + 1´´´´´.«
Gewiss ist es erforderlich, sie verschieden zu bezeichnen, wenn sie verschieden sind; sonst würde ja die grösste Verwirrung entstehen. Wenn schon die verschiedene Stelle, an der die Eins erschiene, eine Verschiedenheit bedeuten sollte, so müsste das als ausnahmslose Regel hingestellt werden, weil man sonst nie wüsste, ob 1 + 1 2 bedeuten solle oder 1. Dann müsste man die Gleichung 1 = 1 verwerfen und wäre in der Verlegenheit, nie dasselbe Ding zum zweiten Male bezeichnen zu können. Das geht offenbar nicht an. Wenn man aber verschiedenen Dingen verschiedene Zeichen geben will, so ist nicht einzusehen, weshalb man in diesen noch einen gemeinsamen Bestandtheil festhält und nicht lieber statt
1´ + 1´´ + 1´´´ + 1´´´´ + 1´´´´´
schreibt
a + b + c + d + e.
Die Gleichheit ist doch nun einmal verloren gegangen, und die Andeutung einer gewissen Aehnlichkeit nützt nichts. So zerrinnt uns die Eins unter den Händen; wir behalten die Gegenstände mit allen ihren Besonderheiten. Diese Zeichen
1´, 1´´, 1´´´
sind ein sprechender Ausdruck für die Verlegenheit: wirhaben die Gleichheit nöthig; deshalb die 1; wir haben die Verschiedenheit nöthig; deshalb die Indices, die nur leider die Gleichheit wieder aufheben.
§ 37. Bei andern Schriftstellern stossen wir auf dieselbe Schwierigkeit.Locke65sagt: »Durch Wiederholung der Idee einer Einheit und Hinzufügung derselben zu einer andern Einheit machen wir demnach eine collective Idee, die durch das Wort »zwei« bezeichnet wird. Und wer das thun und so weitergehen kann, immer noch Eins hinzufügend zu der letzten collectiven Idee, die er von einer Zahl hatte, und ihr einen Namen geben kann, der kann zählen.«Leibniz66definirt Zahl als 1 und 1 und 1 oder als Einheiten.Hesse67sagt: »Wenn man sich eine Vorstellung machen kann von der Einheit, die in der Algebra mit dem Zeichen 1 ausgedrückt wird, … so kann man sich auch eine zweite gleichberechtigte Einheit denken und weitere derselben Art. Die Vereinigung der zweiten mit der ersten zu einem Ganzen giebt die Zahl 2«.
Hier ist auf die Beziehung zu achten, in der die Bedeutungen der Wörter »Einheit« und »Eins« zu einander stehen.Leibnizversteht unter Einheit einen Begriff, unter den die Eins und die Eins und die Eins fallen, wie er denn auch sagt: »Das Abstracte von Eins ist die Einheit.«LockeundHessescheinen Einheit und Eins gleichbedeutend zu gebrauchen. Im Grunde thut dies wohl auchLeibniz; denn indem er die einzelnen Gegenstände, die unter den Begriff der Einheit fallen, sämmtlich Eins nennt, bezeichnet er mit diesem Worte nicht den einzelnen Gegenstand, sondern den Begriff, unter den sie fallen.