RELATIONS OF THE VALLEY TO GEOLOGIC STRUCTURE

Rocky River is classed with streams which are comformable to the rock structure. This conclusion rests largely on the analogy between Rocky River and other rivers of this region. The latter very commonly are located on belts of limestone, or limestone and schist, and their extension is along the strike. The interfluvial ridges are generally composed of the harder rocks. The valleys of the East Aspetuck and Womenshenuck Brook on the north side of the Housatonic, and of the Still, the Umpog, Beaver Brook, the upper Saugatuck, and part of Rocky River are on limestone beds (fig. 2). In the valleys between Town Hill and Spruce Mountain (south of Danbury), two ravines northwest of Grassy Plain (near Bethel), and the Saugatuck valley north of Umpawaug Pond, the limestone bed is largely buried under drift, talus, and organic deposits, but remnants which reveal the character of the valley floors have been found. The parallelism between the courses of these streams and that of Rocky River and the general resemblance in the form of their valleys, flat-floored with steep-sided walls, as well as the scattered outcrops of limestone in the valley, have led to the inference that Rocky River, like the others, is a subsequent stream developed on beds of weaker rock along lines of foliation.

Present drainage of the Danbury region.Fig. 2.Geological map of Still River Valley.

The Geological Map of Connecticut[5]shows that the valleys of Still River, Womenshenuck Brook, Aspetuck River, and upper Rocky River are developed on Stockbridge limestone. The lower valley of Rocky River is, however, mapped as Becket gneiss and Thomaston granite gneiss. Although the only outcrops along lower Rocky River are of granite, it is believed that a belt of limestone or schist, now entirely removed, initially determined the course of the river. The assumption of an irregular belt of limestone in this position would account for the series of gorges and flood plains in the vicinity of Jerusalem bridge and for the broad drift-filled valley at the mouth of Rocky River. These features are difficult to explain on any other basis.

[5]Gregory, H. E., Robinson, H. H., Preliminary geological map of Connecticut; Geol. and Nat. Hist. Survey. Bull. 7, 1907.

[5]Gregory, H. E., Robinson, H. H., Preliminary geological map of Connecticut; Geol. and Nat. Hist. Survey. Bull. 7, 1907.

One of the distinguishing features of Rocky River is the angle at which it joins the Housatonic (fig. 1). The tributaries of a normal drainage system enter their master stream at acute angles, an arrangement which involves the least expenditure of energy. Rocky River, however, enters the Housatonic against the course of the latter, that is, the tributary points upstream. Still River and other southern tributaries of the Housatonic exhibit the same feature, thus producing a barbed drainage, which indicates that some factor interfered with the normal development of tributary streams. Barbed drainage generally results from the reversal of direction of the master stream[6], but it is impossible to suppose that the Housatonic was ever reversed. As will appear, it is an antecedent master stream crossing the crystalline rocks of western Connecticut regardless of structure, and its course obliquely across the strike accounts for the peculiar orientation of its southern tributaries, which are subsequent streams whose position is determined by the nature of the rock. For the same reason, the northern tributaries of the Housatonic present the usual relations.

[6]Leverett, Frank, Glacial formations and drainage features of the Erie and Ohio basins: U. S. Geol. Survey Mon. 41, pp. 88-91, figs. 1 and 2, 1902. See, also, the Genoa, Watkins, Penn Yan, and Naples (New York) topographic atlas sheets.

[6]Leverett, Frank, Glacial formations and drainage features of the Erie and Ohio basins: U. S. Geol. Survey Mon. 41, pp. 88-91, figs. 1 and 2, 1902. See, also, the Genoa, Watkins, Penn Yan, and Naples (New York) topographic atlas sheets.

The airline distance from the bend in Rocky River at Sherman to its mouth at the Housatonic is 2¾ miles, but the course of theriver between these two points is 15 miles, or 5.4 times the airline distance. This is a more extraordinary digression than that of Tennessee River, which deserts its ancestral course to the Gulf and flows northwest into the Ohio, multiplying the length of its course 3⅓ times. The fall of Rocky River between Sherman and its mouth is 240 feet or 16 feet to the mile, and were the river able to take a direct course the fall would be 87 feet to the mile. The possibility of capture would seem to be imminent from these figures, but in reality there is no chance of it, for an unbroken mountain ridge of resistant rock lies between the two forks of the river. This barrier is not likely to be crossed by any stream until the whole region has been reduced to a peneplain.

Measured from the head of its longest branch, Rocky River is about 19 miles long and falls 950 feet. Of this fall, 710 feet occurs in the first 4 miles and 173 feet in the last 2½ miles of its course. For the remaining distance of 12½ miles, in which the river after flowing south doubles back on itself, the fall is 67 feet, or slightly less than 5½ feet to the mile (fig. 3, A).

Present drainage of the Danbury region.Fig. 3.Profiles of present and preglacial Rocky River.Elevations at a, b, c and i are from U. S. G. S. map. Elevationat d is estimated from R. E. Dakin's records. Elevationsat e, f, g and h are from R. E. Dakin's records. TheU. S. G. S. figures for the same are enclosed in parenthesis.

In tabular form the figures, taken from the Danbury and New Milford atlas sheets and from reports of R. E. Dakin, are as follows:

Near Jerusalem, where Rocky River makes its sudden change in grade, there is an abrupt change in the form of the valley from broad and flat-bottomed to narrow and V-shaped. The profile of Rocky River is thus seen to be sharply contrasted with that of a normal stream, which is characterised throughout its course by a decreasing slope.

The present profile of Rocky River and the singular manner in which the lower course of the river is doubled back on the upper course are believed to represent changes wrought by glaciation. Before the advent of the glacier, Rocky River probably flowed southward through the "Neversink-Danbury Valley," to be described later, and joined the Still at Danbury, as shown infig. 4. The profile of the stream at this stage in its history is shown infig. 3, B.

At Sherman a low col separates Rocky River basin from that of the small northward flowing stream which enters the Housatonic about a mile below Gaylordsville. Streams by headward erosion at both ends of the belt of limestone and schist on which they are situated have reduced this divide to an almost imperceptible swell. The rock outcrops in the channel show that the glacier did not produce any change in the divide by damming, though it may have lowered it by scouring. Assume that at one time a divide also existed on the eastern fork of Rocky River, for example near Jerusalem. According to this hypothesis there was, north of this latter divide, a short northward flowing branch of the Housatonic located on a belt of weak rock, similar to the

Present drainage of the Danbury region.Fig. 4.Preglacial course of Rocky-Still River. Dotted lines show present courses of the two rivers.

small stream which now flows northward from Sherman, and very like any of the half-dozen parallel streams in the rock mass south and southwest of Danbury, all of which are subsequent streams flowing along the strike. While these stream valleys were growing, the southern ends of the same weak belts of rock were held by southward-flowing streams which united in the broad limestone area now occupied by the city of Danbury.

The southward-flowing streams whose heads were, respectively, above Sherman and near Jerusalem joined at the southern end of the long ridge which includes Towner Hill and Green Mountain. Thence the stream flowed southward along the valley now occupied by Wood Creek and reached Still River by way of the valley which extends southward from Neversink Pond (fig. 4).

The preglacial course of Rocky River, as above outlined, is subject to possible modification in one minor feature, namely, the point where the east and west forks joined. The junction may have been where Neversink Pond is now situated, or three miles farther south than the indicated junction near the mouth of Wood Creek. A low ridge of till is the only barrier that at present prevents the western branch from flowing into the head of Barses Pond and thence into Neversink Pond (fig. 1).

As thus reconstructed the greater part of Rocky River formerly belonged to the Still-Umpog system and formed a normal tributary in that distant period when the Still joined the Saugatuck on its way to the Sound (fig. 9). However, the normal condition was not lasting, for the reversal of Still River, as later described, brought about a complex arrangement of barbed streams (fig. 4) which remained until modified by glacial action.

In a large stream system which has been reversed, considerable evidence may be gathered from the angle at which tributary streams enter. As the original direction of Rocky River in its last 2½ miles is unchanged, normal tributaries should be expected; whereas between Jerusalem and the head of the stream entering Neversink Pond from the south, in accordance with the hypothesis that this portion of the stream was reversed, tributaries pointing upstream might be expected. Such little gullies as join Rocky River near its mouth are normal in direction; between Jerusalem and the mouth of Wood Creek, a distance of 4½miles, there are no distinct tributaries. South of the mouth of Wood Creek are four tributaries: (1) the brook which enters the valley from the west about one mile south of Neversink Pond, (2) Balls Brook, which empties into Neversink Pond, and (3) two streams on the east side--Mountain Brook and one other unnamed (fig. 1). All these, except Mountain Brook, are normal to the reconstructed drainage. The evidence of the tributaries, though not decisive, is thus favorable to the hypothesis of reversal.

Figures 3 and 5 show what is known of the buried channel of Rocky River. The only definite information as to rock levels is that derived from the drill holes made by R. E. Dakin for the J. A. P. Crisfield Contracting Company in connection with work on a reservoir for the Connecticut Light and Power Company. Numerous holes were drilled at the points indicated onfig. 5as No. 8, D, J, No. 7+1000, and No. 7, but only those showing the lowest rock levels need be considered. In the following account the elevations quoted are those determined by R. E. Dakin which differ, as shown infig. 3, A, from those of the New Milford atlas sheet.

Between the mouth of Wood Creek and Jerusalem bridge holes made near the river show that the depth of the drift--chiefly sand, gravel, and clay--varies from 45 to 140 feet. The greatest thickness of drift, consisting of humus, quicksand and clay, is 140 feet at a point 20 feet from the east bank of Rocky River and about 1¾ miles north of the mouth of Wood Creek (fig. 5, D). Although some allowance should be made for glacial scouring, the rock level at this point, 244 feet, is so much lower than any other record obtained between this point and Danbury that one is obliged to assume a buried channel with a level at Danbury at least 75 feet below the rock level found in the lowest well record.[7]It is probable that this well is not situated where the rock is lowest, that is, it may be on one side of the old Still River channel.

[7]Well of J. Hornig, rear of Bottling Works, near foot of Tower Place, 35 ft. to rock, indicated ata,fig. 5. The well of Bartley & Clancey, 94 White Street, 70 ft. to rock, is also indicated atb,fig. 5.

[7]Well of J. Hornig, rear of Bottling Works, near foot of Tower Place, 35 ft. to rock, indicated ata,fig. 5. The well of Bartley & Clancey, 94 White Street, 70 ft. to rock, is also indicated atb,fig. 5.

The level obtained at No. 8 is from a hole drilled within 50 feet of the river. The drill struck rock at an elevation of 316 feet after passing through 69 feet of quicksand, gravel, and till. This is clearly not within the channel as it is quite impossible to reconcile the figure with that at D, less than a mile distant.

South of Jerusalem bridge at J, 150 feet from the river, a hole was bored through 95 feet of clay, sand, and gravel before striking rock at an elevation of 298 feet.

Present drainage of the Danbury region.Fig. 5.Rocky River Valley. Diagram indicating lowest rock levels which have been discovered by drilling.

At the point marked No. 7+1000, about 1¼ miles from the mouth of Rocky River, the evidence derived from 8 drill holes, bored at distances ranging from 200 to 550 feet from the right bank, shows the drift cover to be from 48 to 72 feet in thickness. At 200 feet from the river the drill passed through 72 feet of sand, clay, and gravel before striking rock at 303 feet above sea-level.

At No. 7, about one mile from the mouth of Rocky River, a hole drilled 415 feet from the right bank showed 58 feet of drift, consisting of clay, sand, gravel, and boulders. The drill reached rock at 342 feet, which is the figure given by R. E. Dakin for the elevation of the river at this point. Drill holes made, respectively, at 50 and 60 feet to the right of this one showed a drift cover of 61 feet, so that the underlying rock rises only 4 feet in a distance of 475 feet to the east of the river.

The foregoing evidence, showing a rock level at D 98 feet lower than that at No. 7, leaves no doubt that the preglacial course of Rocky River was to the south from No. 7, and there is nothing in the topography between Jerusalem and Danbury to make improbable the existence of a buried channel.

The preglacial history of Rocky River as outlined assumes that before the glacier covered this part of Connecticut the present lower course of Rocky River was separated from the rest of the system by a divide situated somewhere between the present mouth of the river and the mouth of Wood Creek. It remains to be shown by what process Rocky River was cut off from its southern outlet into Still River and forced up its eastern branch and over the col into a tributary of the Housatonic. Though the preglacial course of Rocky River appears to be more natural than the present one, it is really a longer course to the Housatonic; the older route being 32 miles, whereas the present course is 19 miles. This fact explains, in part, why the glacier had little difficulty in altering the preglacial drainage, and how the change so effected became permanent. Eccentric asthe resulting system of drainage is, it would have been still more so had Rocky River when ponded overflowed at the head of its western instead of its eastern fork, taken its way past Sherman into the Housatonic near Gaylordsville, and discharging at this point lost the advantage of the fall of the Housatonic between Gaylordsville and Boardman.

In glaciated regions an area of swamp land may be taken as an indication of interference by the glacier with the natural runoff. The swamp in which Wood Creek joins the upper fork of Rocky River (fig. 1), was formerly a lake due to a dam built across the lower end of a river valley. Although the ponded water extended only a short distance up the steeper side valleys, it extended several miles up the main stream. The whole area of this glacial lake, except two small ponds and the narrow channels through which the river now flows, has been converted into a peat-filled bog having a depth of from 8 to 45 feet.[8]

At the termination of the swampy area on the eastern branch of Rocky River no indication is found of a dam such as would be required for so extensive a ponding of the waters. Here the valley is very narrow, and though the river bed is encumbered with heavy boulders, rock outcrops are so numerous as to preclude the idea of a drift cover raising the water level. This is just the condition to be expected if Rocky River reached its present outlet by overtopping a low col at the head of its former eastern branch.

The southern end of the Neversink Pond valley is the only other place whose level is so low that drift deposits could have interfered with the Rocky River drainage. The moraine at the head of this valley, crossing the country some two miles north of the city of Danbury and binding together two prominent north-and-south ridges, was evidently the barrier which choked the Rocky River valley near its mouth and turned back the preglacial river.

When Rocky River was thus ponded its lowest outlet was found to be at the head of its eastern fork. Here the waters spilled over the old divide and took possession of the channel ofa small stream draining into the Housatonic. Accordingly Rocky River should be found cutting its bed where it crosses the former divide. It seems reasonable to regard the gorge half-way between Jerusalem bridge and Housatonic River as approximately the position of the preglacial divide and to consider the small flat area to the north of Jerusalem bridge as a flood plain on softer rock, worn down as low as the outcrops of more resistant rock occurring farther down the valley will permit. The reversal of the river may account for the sudden transition from a flat-bottomed valley to a rocky gorge; and for the abrupt change in the profile, bringing the steepest part of the river near its mouth. The increased volume of water flowing through the channel since glacial time has plainly cut down the bed of the ravine between Jerusalem and the river's mouth, but the channel is still far from being graded.

[8]Report of soundings made in 1907 by T. T. Giffen.

[8]Report of soundings made in 1907 by T. T. Giffen.

Between Neversink Pond and Danbury extends a deep rock valley, in places filled with drift. As has been shown, this valley was probably occupied in preglacial time by Rocky River, which then flowed southward. At its southern end is Still River, which flows through Danbury from west to east.

The most important tributary of the Still rises northwest of the city, just beyond the New York-Connecticut boundary line, and has two forks. The northern fork, which drains East Lake, Padanaram Reservoir, and Margerie Pond, flows along the northeast side of Clapboard Ridge. The southern fork has two branches; the northern one includes the reservoirs of Upper Kohanza and Lake Kohanza, while the upper waters of the southern branch have been recently dammed to form an extensive reservoir. On approaching the city, the northernmost fork (draining East Lake) turns sharply out of its southeast course and flows in a direction a little east of north. At the end of Clapboard Ridge, the stream makes a detour around a knoll of coarse stratified drift. From this turn until it joins Still River, a distance of about a mile, the stream occupies a broad and partly swampy valley.

At the cemetery in this valley (fig. 1, C) are two eskers of symmetric form, each a few hundred yards in length and trending nearly parallel with the valley axis. East of the valley, and about 1½ miles north of the cemetery, is a broad, flat-topped ridge of till with rock exposed at the ends, forming a barrier which doubtless existed in preglacial time. West of the valley is a hill with rock foundation rounded out on the northeast side by a mass of drift. The preglacial course of Rocky River was between the outcrops at these two localities.

Northwest of the cemetery for one and a half miles the uneven surface is formed of till and small patches of stratified drift. In a swamp near the north end of the cemetery is a curved esker with lobes extending south and southwest. One mile north of this swamp is an area of excessively coarse till containing boulders which range in diameter from 6 to 10 feet and forming a low ridge separating two ravines, in which head streams flowing in opposite directions. The area of coarse till is bounded on the north by a long sinuous esker of coarse gravel terminating in a flat fan, which is superposed on a field of fine till. Associated with the esker is an interesting group of kames and kettleholes, the largest kettlehole being distinguished by distinct plant zones banding the sides of the depression.

North of the area of boulders, eskers, and kames just described lies a swamp whose surface is 30 to 40 feet below the upper level of the kame gravels. Soundings made by T. T. Giffen revealed the presence of 36 feet of peat and 2 feet of silt overlying firm sand, so that 70 feet is the minimum estimate for the difference in level between the surface of the gravels and the floor of the swamp.

Below the rocky cliffs which line the valley sides are boulders brought by the ice from near-by ledges, and about one-half mile above the head of the swamp are remnants of a terrace standing 20 to 30 feet above the level of the stream. Although the terrace appears to consist of till, it may conceal a rock floor which was cut by a former stream. As the valley is followed toward Neversink Pond, the various features of a till-coated, rock-floored valley are seen.

Present drainage of the Danbury region.Fig. 6.Course of Still River. Dotted lines show the preglacial channels.

Still River presents several unusual features, as shown in fig. 6. Tributaries from the west and south unite at Danbury to form a stream flowing northward opposite to the regional land slope. Near its junction with the Housatonic, the river flows northward, whereas its master stream half a mile distant flows southward. The lower valley of the river is broad and flat and apparently much out of proportion to the present stream; it is, indeed, comformable in size and direction with the valley of the Housatonic above the mouth of the Still. The Housatonic, however, instead of choosing the broad lowland in the limestone formation, spread invitingly before it, turns aside and flows through a narrow gorge cut in resistant gneiss, schist, and igneous intrusives. The headwaters of the Still mingle with those of the Croton system, and its chief southern branch, the Umpog, is interlaced with the sources of the Saugatuck on a divide marked by glacial drift and swamps. The explanation of these features involves not only the history of the Still River system, but also that of the Housatonic.

In explanation of the present unusual arrangement of streams in the Still River system, four hypotheses may be considered:

I. Still River valley is the ancient bed of the Housatonic from which that river has been diverted through reversal caused by a glacial dam.II. The Housatonic has always had its present southeasterly course, but the Still, heading at some point in its valley north of Danbury, flowed initially southward through one of four possible outlets. The latter stream was later reversed by a glacial dam at the southern end, or by glacial scouring at the northern end of its valley which removed the divide between its headwaters and the Housatonic.III. The Housatonic has always held its present southeasterly course, and the Still initially flowed southward, as stated above. Reversal in this case, however, occurred in a very early stage in the development of the drainage, as the result of the captureof the headwaters of the Still by a small tributary of the Housatonic.IV. The Housatonic has always held its present southeasterly course, but the Still has developed from the beginning as a subsequent stream in the direction in which it now flows.

I. Still River valley is the ancient bed of the Housatonic from which that river has been diverted through reversal caused by a glacial dam.

II. The Housatonic has always had its present southeasterly course, but the Still, heading at some point in its valley north of Danbury, flowed initially southward through one of four possible outlets. The latter stream was later reversed by a glacial dam at the southern end, or by glacial scouring at the northern end of its valley which removed the divide between its headwaters and the Housatonic.

III. The Housatonic has always held its present southeasterly course, and the Still initially flowed southward, as stated above. Reversal in this case, however, occurred in a very early stage in the development of the drainage, as the result of the captureof the headwaters of the Still by a small tributary of the Housatonic.

IV. The Housatonic has always held its present southeasterly course, but the Still has developed from the beginning as a subsequent stream in the direction in which it now flows.

The first hypothesis, that the Still is the ancient channel of the Housatonic, has been advocated by Professor Hobbs, who has stated:

"That the valley of the Still was formerly occupied by a large stream is probable from its wide valley area.... The former discharge of the waters of the Housatonic through the Still into the Croton system, on the one hand, or into the Saugatuck on the other, would require the assumption of extremely slight changes only in the rock channels which now connect them.... To turn the river (the Housatonic) from its course along the limestone valley some obstruction or differential uplift within the river basin may have been responsible. The former seems to be the more probable explanation in view of the large accumulations of drift material in the area south and west of Bethel and Danbury.""The structural valleys believed to be present in the crystalline rocks of the uplands due to post-Newark deformation may well have directed the course of the Housatonic after it had once deserted the limestone ... The deep gorge of the Housatonic through which the river enters the uplands not only crosses the first high ridge of gneiss in the rectilinear direction of one of the fault series, but its precipitous walls show the presence of minor planes of dislocation, along which the bottom of the valley appears to have been depressed."[9]

"That the valley of the Still was formerly occupied by a large stream is probable from its wide valley area.... The former discharge of the waters of the Housatonic through the Still into the Croton system, on the one hand, or into the Saugatuck on the other, would require the assumption of extremely slight changes only in the rock channels which now connect them.... To turn the river (the Housatonic) from its course along the limestone valley some obstruction or differential uplift within the river basin may have been responsible. The former seems to be the more probable explanation in view of the large accumulations of drift material in the area south and west of Bethel and Danbury."

"The structural valleys believed to be present in the crystalline rocks of the uplands due to post-Newark deformation may well have directed the course of the Housatonic after it had once deserted the limestone ... The deep gorge of the Housatonic through which the river enters the uplands not only crosses the first high ridge of gneiss in the rectilinear direction of one of the fault series, but its precipitous walls show the presence of minor planes of dislocation, along which the bottom of the valley appears to have been depressed."[9]

The hypothesis proposed by Professor Hobbs and also the second and third hypotheses here given involve the supposition of reversal of drainage, and their validity rests on the probability that the stream nowoccupyingStill River valley formerly flowed southward. The first and second hypotheses will be considered in the following section.

[9]Hobbs, W. H., Still rivers of western Connecticut: Bull. Geol. Soc. Am., vol. 13, pp. 17-26, 1901.

[9]Hobbs, W. H., Still rivers of western Connecticut: Bull. Geol. Soc. Am., vol. 13, pp. 17-26, 1901.

If Still River occupies the valley of a reversed stream, the following physiographic features should be expected:

At the mouth of Still River and for several miles north and south of it there is a plain more than a mile broad. This plain continues southward with a width of about one-half mile until, at Brookfield, it is interrupted by ledges of bare rock. A little distance south of Brookfield the valley broadens again to one-half mile, and this width is retained with some variation as far as Danbury. Drift deposits along the border of the valley make it appear narrower in some places than is indicated by rock outcrops. Between Brookfield and Danbury the narrowest place in the valley is southwest of Beaver Brook Mountain, where the distance between the hills of rock bounding the valley is one-fifth of a mile (fig. 6). Opposite Beaver Brook Mountain, which presents vertical faces of granite-gneiss toward the valley, is a hill of limestone. Ice, crowding through this narrow place in the valley, must have torn masses of rock from the side walls, so that the valley is now broader than in preglacial time. The constrictions in the valley near Shelter Rock are due to the fact that the pre-glacial valley, now partly buried in till, lies to the north. There are stretches of broad floor in the valley of Beaver Brook, in the lower valley of Umpog Creek, in the fields at the south end of Main Street in Danbury, about Lake Kanosha, and where the Danbury Fair Grounds are situated. In the western part of Danbury, however, and at Mill Plain the valley is very narrow, and at the head of Sugar Hollow, the valley lying east of Spruce Mountain, is a narrow col.

The broadest continuous area in the Still-Umpog Valley is, therefore, in the lower six miles between Brookfield and New Milford; south of that portion are several places where the valley is sharply constricted; and beyond the head of the Umpog, about one and a half miles below West Redding station (fig. 7), the Saugatuck Valley is a very narrow gorge. On the whole, the valleys south and southwest of Danbury are much narrower than the valley of the Still farther north. It is evident from these observations that Still River Valley is neither uniformly broad, nor does it increase in width toward the south.

But if a broad valley is to be accepted as evidence of the work of a large river, then there is too much evidence in the Still River valley. The broad areas named above are more or less isolated lowlands, some of them quite out of the main line of drainage, and can not be grouped to form a continuous valley. They can not be attributed to the Housatonic nor wholly to the work of the insignificant streams now draining them. These broad expanses are, in fact, local peneplains developed on areas of soluble limestone. The rock has dissolved and the plain so produced has been made more nearly level by a coating of peat and glacial sand. In a region of level and undisturbed strata, such as the Ohio or Mississippi Valley, a constant relation may exist between the size of a stream and the valley made by it; but in a region of complicated geologic structure, such as western Connecticut, where rocks differ widely in their resistance to erosion, the same result is not to be expected. In this region the valleys are commonly developed on limestone and their width is closely controlled by the width of the belt of limestone. Even the narrow valleys in the upland southwest of Danbury are to be accounted for by the presence of thin lenses of limestone embedded in gneiss and schist.

The opinion of Hobbs that Still River valley is too wide to be the work of the present stream takes into consideration only the broad places, but when the narrow places are considered it may be said as well that the valley is too narrow to be the work of a stream larger than the one now occupying it. Valley width has only negative value in interpreting the history of Still River.

The dominant topographic feature of western Connecticut, as may be seen on the atlas sheets, is elongated oval hills trending north by west to south by east, which is the direction of the axes of the folds into which the strata were thrown at the time their metamorphism took place. Furthermore, the direction of glacial movement in this part of New England was almost precisely that of foliation, and scouring by ice merely accentuated the dominant north-south trend of the valleys and ridges. As a result, the smaller streams developed on the softer rocks are generally parallel to each other and to the strike of the rocks. These streams commonly bend around the ends of the hills but do not cross them. The narrowness of the belts of soft rock makes it easy for the drainage of the valleys to be gathered by a single lengthwise stream. The Still and its larger tributaries conform in this way to the structure.

On the east side of the Still-Umpog every branch, except two rivulets 1¼ miles south of Bethel, points in the normal direction, that is, to the north, or downstream as the river now flows (fig. 6). The largest eastern tributary, Beaver Brook, is in a preglacial valley now converted into a swamp the location and size of which are due entirely to a belt of limestone. It is not impossible that Beaver Brook may have once flowed southward toward Bethel, but the limestone at its mouth, which lies at least 60 feet lower than that at its head, shows that if such were ever the case it must have been before the north-flowing Still River had removed the limestone north of Beaver Brook Swamp.

On the flanks of Beaver Brook Mountain are three tributaries which enter the river against its present course. Examination of the structure reveals, however, that these streams like those on the east side of the river are controlled in their direction by the orientation of the harder rock masses. The southward flowing stream four miles in length which drains the upland west of Beaver Brook Mountain has an abnormal direction in the upper part of its course, but on reaching the flood plain it takes a sharp turn to the north. Above the latter point it is in line with the streams near Beaver Brook Mountain and is abnormal in consequence of a line of weakness in the rock.

The lowland lying west of Umpog valley, extending from Main Street in Danbury to a point one mile beyond Bethel, affords no definite evidence in regard to the direction of tributaries. In reconstructing the history of this valley the chief difficulty arises from the old-age condition of the flood plain. Drainage channels which must once have existed have been obliterated, leaving a swampy plain which from end to end varies less than 20 feet in elevation. It is likely that in preglacial times the part of the valley north of Grassy Plain, if not the entire valley, drained northward into Still River, as now do Umpog Creek and Beaver Brook. From this outlet heavy drift deposits near the river later cut it off. The lowland is now drained by a stream which enters the Umpog north of Grassy Plain. Several small streams tributary to the Umpog south of Bethel also furnish no evidence in favor of the reversal of Still River.

West of Danbury the tributaries of Still River point upstream on one side and downstream on the other side of the valley, in conformity with the rock structure which is here diagonal to the limestone belt on which the river is located. Their direction in harmony with the trend of the rocks has, therefore, no significance in the earlier history of the river.

From the foregoing discussion, it appears that no definite conclusions in regard to the history of Still River can be drawn from the angle at which tributaries enter it. The direction of the branches which enter at an abnormal angle can be explained without assuming a reversal of the main stream, and likewise many of the tributaries with normal trends seem to have adopted their courses without regard to the direction of Still River.

Although the regional slope of western Connecticut as a whole is contrary to that of Still River, there is no marked lowering of the hill summits between the source of the river and its mouth. As branches on the south side of the Housatonic are naturally to be expected, there is nothing unusual in the Still flowing in opposition to the regional slope, except that it flows toward the north instead of the northeast.


Back to IndexNext