Feeding

Males(1.) First captured October 14, 1951, and last captured 327 days later on September 6, 1952. He was taken 12 times. For the first seven captures (October 14, 1951, to July 15, 1952), no movements were recorded. In the following seven days he moved 367 feet. Within the next 21 days he returned to within 114 feet of the site of original capture. Less than one month later he was caught for the last time, at this same site.(2.) This large male was captured twelve times over a period of 827 days (March 16, 1952, to June 21, 1954). He tended to wander more than other males and was absent from the trapping area from early 1952 to May 1953. One round trip made in a two-weeks period, amounted to a linear distance of 1894 feet if the rat followed natural cover. The return trip of 947 feet was the greatest distance traversed in a single night in any of the woodrats we recorded. Other movements between successive captures were: 722, 397, 356, 293, 253 and 144 feet (the latter shift made three different times). Sexual urge probably motivated most of his wandering, since numbers of females were low.(3.) For this male the span of records was 143 days, with 18 captures. For the first eight recaptures, extending over a period of 39 days, he was still at the original location. Four days later he had moved 120 feet and was visiting a female. A week later he returned. In the following month he was recorded as making two more moves, of 115 feet and 215 feet. He was last recorded at the hilltop outcrop.(4.) The records of this male extended over 465 days, with 13 captures. For the entire period only one movement, of 163 feet, was recorded. Twelve of the 13 captures were at the same house.(5.) This male was captured 16 times over a span of 130 days. After the second capture he moved 144 feet along the outcrop and was caught there for the next 14 times, having developed a "trap habit."(6.) This male was in the area 210 days (13 captures) and shifted his range. He was first captured on August 17, 1952, at a house at the rock fence 433 feet from the outcrop. Between this date and October 12, 1952, he moved to the outcrop and established residence in a vacant house. He was recorded as making six more moves, the longest of which was only 40 feet.(7.) This male was first caught in June, 1949, as a juvenile probably between two and three months old (weighing 96 grams) and hence probably still at the maternal house. In September, grown to adult size, he was caught twice, still at this same place. In October, November, December, and in February, 1950, he was caught 11 times at eight places all within a 90-foot radius of his original location. In April, 1950, he was caught at points 550 feet WSW and 700 feet SW. In October he was caught within 150 feet of the original location. In November, 1950, and in March and April, 1951, he was caught four times at a place 900 feet SW from his original location.(8.) This subadult male was first caught at the hilltop outcrop on October 4, 1949. Two days later he had moved 160 feet north along the outcrop. A month later he had shifted 600 feet south; in three more days 1040 feet north. On November 15 he was 105 feet south of the November 8 location; on November 16, he had moved 70 feet north. On November 17 he had moved 900 feet back south, but had returned on the 18th to the November 16 location. OnNovember 22, he had again shifted 900 feet south. All capture sites were at the hilltop outcrop.(9.) This male was caught as a juvenile (75 grams) on October 8, 1950. On November 9 he had moved 220 feet, from the lower outcrop to the upper, and he was recaptured at or near this same site on November 10, 28 and 29, and on January 11 and February 9, 1951. On November 21, 1951, grown to maximum adult size, he was caught at a new location 1080 feet from the original.(10.) This male was caught as a subadult twice at the same place on November 30 and December 14. By the following autumn he had shifted to a new location 180 feet south along the outcrop, and he was caught there on September 22 and October 18, 1951, and on January 20 and February 2, 1952.Females(11.) This female was captured 27 times over a span of 211 days. She moved back and forth considerably between two houses 40 feet apart but made only one substantial movement of 245 feet; at this time she was in breeding condition. Nearly seven months after the first capture she was seen for the last time only 16 feet from the original site of capture. It was assumed she fell prey to spotted skunks which were raiding traps.(12.) First captured on March 24, 1951, she remained on the area 105 days in which period she was live-trapped 25 times. Sixty per cent of the total captures were at the same house and the longest movement recorded was only 56 feet. She was last caught in a trap 25 feet from the site of original capture.(13.) This young adult remained at her house at the rock fence approximately four months. In this period she was captured 11 times. On March 16, 1952, she had moved 410 feet to a house at the eastern section of outcrop, probably searching for a male. She was never seen again.(14.) This subadult female moved from the site of original capture to a house 253 feet away on the same outcrop. She was probably in search of a new home when caught the first time. She was recorded at another house 40 feet away on one occasion.(15.) Over a span of 90 days and 15 captures this female was not recorded as making any movement. She was living in one of the woodland houses. Mature males were numerous in the area and she was visited by at least two.(16.) This female was also living in the woodland section and was first caught on March 30, 1952, in one of the less favorable houses. She was trapped 17 times over a period of 85 days. One movement of 68 feet to a new home site was recorded, but the area of foraging probably did not change. She was caught here four times and then disappeared.(17.) This female was first trapped as a subadult on October 5, 1948, at a house in brush on the upper part of a north slope. On November 24 she had shifted 590 feet to the bottom of the slope and was living in the recess beneath an undermined honey locust on a gully bank. On November 25 she was caught in a similar situation 100 feet farther east along the gully bank. She was recaptured at the gully on November 26 and 30, December 1, 3, 22, and March 8 and 9, and in all she shifted six times between the two gully-bank dens.(18.) This female was first trapped as an adult on November 18, 1948, in a gully-bank den. She was recaptured at this same place a year later, on November 18 and 30, 1949. On February 19, 1950, she was caught at a hollow sycamore 650 feet farther up the gully, and she was recaptured there on February 25 and April 7, and on June 15, 1951. On August 6, 1951, she was caught at a house in a thicket on the gully bank, between the first and second locations and 150 feet from the latter.(19.) This female was recorded only twice; on October 15, 1948, she was at a hilltop rock outcrop. On July 14, 1950, she had moved 1480 feet and was living in a rock pile at the base of the slope, near the same hollow sycamore where female No. 18 had been caught.(20.) This female was first caught as an adult on April 5, 1950, at a large boulder of a hillside rock outcrop. On October 7, 1950, she had shifted 110 feet to a house at an osage orange tree on the hilltop rock outcrop. On November 9 she was back at the first location and on November 28 she had moved 70 feet south along the hillside outcrop. On January 11 and February 9, 1951, she was back at the original location. On November 9, and 21, 1951, she was again at the site 70 feet south, and was still there at her last capture on February 3, 1952.

Males

(1.) First captured October 14, 1951, and last captured 327 days later on September 6, 1952. He was taken 12 times. For the first seven captures (October 14, 1951, to July 15, 1952), no movements were recorded. In the following seven days he moved 367 feet. Within the next 21 days he returned to within 114 feet of the site of original capture. Less than one month later he was caught for the last time, at this same site.

(2.) This large male was captured twelve times over a period of 827 days (March 16, 1952, to June 21, 1954). He tended to wander more than other males and was absent from the trapping area from early 1952 to May 1953. One round trip made in a two-weeks period, amounted to a linear distance of 1894 feet if the rat followed natural cover. The return trip of 947 feet was the greatest distance traversed in a single night in any of the woodrats we recorded. Other movements between successive captures were: 722, 397, 356, 293, 253 and 144 feet (the latter shift made three different times). Sexual urge probably motivated most of his wandering, since numbers of females were low.

(3.) For this male the span of records was 143 days, with 18 captures. For the first eight recaptures, extending over a period of 39 days, he was still at the original location. Four days later he had moved 120 feet and was visiting a female. A week later he returned. In the following month he was recorded as making two more moves, of 115 feet and 215 feet. He was last recorded at the hilltop outcrop.

(4.) The records of this male extended over 465 days, with 13 captures. For the entire period only one movement, of 163 feet, was recorded. Twelve of the 13 captures were at the same house.

(5.) This male was captured 16 times over a span of 130 days. After the second capture he moved 144 feet along the outcrop and was caught there for the next 14 times, having developed a "trap habit."

(6.) This male was in the area 210 days (13 captures) and shifted his range. He was first captured on August 17, 1952, at a house at the rock fence 433 feet from the outcrop. Between this date and October 12, 1952, he moved to the outcrop and established residence in a vacant house. He was recorded as making six more moves, the longest of which was only 40 feet.

(7.) This male was first caught in June, 1949, as a juvenile probably between two and three months old (weighing 96 grams) and hence probably still at the maternal house. In September, grown to adult size, he was caught twice, still at this same place. In October, November, December, and in February, 1950, he was caught 11 times at eight places all within a 90-foot radius of his original location. In April, 1950, he was caught at points 550 feet WSW and 700 feet SW. In October he was caught within 150 feet of the original location. In November, 1950, and in March and April, 1951, he was caught four times at a place 900 feet SW from his original location.

(8.) This subadult male was first caught at the hilltop outcrop on October 4, 1949. Two days later he had moved 160 feet north along the outcrop. A month later he had shifted 600 feet south; in three more days 1040 feet north. On November 15 he was 105 feet south of the November 8 location; on November 16, he had moved 70 feet north. On November 17 he had moved 900 feet back south, but had returned on the 18th to the November 16 location. OnNovember 22, he had again shifted 900 feet south. All capture sites were at the hilltop outcrop.

(9.) This male was caught as a juvenile (75 grams) on October 8, 1950. On November 9 he had moved 220 feet, from the lower outcrop to the upper, and he was recaptured at or near this same site on November 10, 28 and 29, and on January 11 and February 9, 1951. On November 21, 1951, grown to maximum adult size, he was caught at a new location 1080 feet from the original.

(10.) This male was caught as a subadult twice at the same place on November 30 and December 14. By the following autumn he had shifted to a new location 180 feet south along the outcrop, and he was caught there on September 22 and October 18, 1951, and on January 20 and February 2, 1952.

Females

(11.) This female was captured 27 times over a span of 211 days. She moved back and forth considerably between two houses 40 feet apart but made only one substantial movement of 245 feet; at this time she was in breeding condition. Nearly seven months after the first capture she was seen for the last time only 16 feet from the original site of capture. It was assumed she fell prey to spotted skunks which were raiding traps.

(12.) First captured on March 24, 1951, she remained on the area 105 days in which period she was live-trapped 25 times. Sixty per cent of the total captures were at the same house and the longest movement recorded was only 56 feet. She was last caught in a trap 25 feet from the site of original capture.

(13.) This young adult remained at her house at the rock fence approximately four months. In this period she was captured 11 times. On March 16, 1952, she had moved 410 feet to a house at the eastern section of outcrop, probably searching for a male. She was never seen again.

(14.) This subadult female moved from the site of original capture to a house 253 feet away on the same outcrop. She was probably in search of a new home when caught the first time. She was recorded at another house 40 feet away on one occasion.

(15.) Over a span of 90 days and 15 captures this female was not recorded as making any movement. She was living in one of the woodland houses. Mature males were numerous in the area and she was visited by at least two.

(16.) This female was also living in the woodland section and was first caught on March 30, 1952, in one of the less favorable houses. She was trapped 17 times over a period of 85 days. One movement of 68 feet to a new home site was recorded, but the area of foraging probably did not change. She was caught here four times and then disappeared.

(17.) This female was first trapped as a subadult on October 5, 1948, at a house in brush on the upper part of a north slope. On November 24 she had shifted 590 feet to the bottom of the slope and was living in the recess beneath an undermined honey locust on a gully bank. On November 25 she was caught in a similar situation 100 feet farther east along the gully bank. She was recaptured at the gully on November 26 and 30, December 1, 3, 22, and March 8 and 9, and in all she shifted six times between the two gully-bank dens.

(18.) This female was first trapped as an adult on November 18, 1948, in a gully-bank den. She was recaptured at this same place a year later, on November 18 and 30, 1949. On February 19, 1950, she was caught at a hollow sycamore 650 feet farther up the gully, and she was recaptured there on February 25 and April 7, and on June 15, 1951. On August 6, 1951, she was caught at a house in a thicket on the gully bank, between the first and second locations and 150 feet from the latter.

(19.) This female was recorded only twice; on October 15, 1948, she was at a hilltop rock outcrop. On July 14, 1950, she had moved 1480 feet and was living in a rock pile at the base of the slope, near the same hollow sycamore where female No. 18 had been caught.

(20.) This female was first caught as an adult on April 5, 1950, at a large boulder of a hillside rock outcrop. On October 7, 1950, she had shifted 110 feet to a house at an osage orange tree on the hilltop rock outcrop. On November 9 she was back at the first location and on November 28 she had moved 70 feet south along the hillside outcrop. On January 11 and February 9, 1951, she was back at the original location. On November 9, and 21, 1951, she was again at the site 70 feet south, and was still there at her last capture on February 3, 1952.

Ordinarily each house that is in use harbors only a single woodrat. To a greater degree than any other kind of mammal on this area woodrats show intraspecific intolerance. On various occasions when captives were placed in the same or adjacent cages, they focused their attention on each other with evident hostility, the more powerful or aggressive individuals attacking or pursuing. Several times the confinement of two rats in the same live-trap or cage resulted in the death of the weaker individual, and seemingly this is the normal outcome unless the attacked rat is able to escape. On various other occasions two or more rats have been caught in the same trap simultaneously but in every instance these were either: a pair of adults, the female appearing to be in oestrus; a lactating female and one or more of her young; or young less than half-grown, that were obviously litter mates. Older woodrats, especially males, often have their ears torn and punctured from fighting.

Territoriality involves, primarily, defense of the house itself. An individual that ventures into an occupied house may be quickly routed by the occupant even though the latter is smaller. Chasing has been observed occasionally, but it is doubtful whether any individual is able consistently to defend the entire area over which it forages. Because each rat spends most of its time within the shelter of its house, an intruder might venture onto its home range unchallenged and undetected, so long as it did not enter the nest cavity.

An adult female was live-trapped on October 14, 1951, beside her house at the outcrop. As soon as she was released, she disappeared within the house. After approximately two minutes, a soft, high pitched whine was heard and immediately another woodrat dashed into view closely followed by the female. The chase continued for several seconds in the vicinity of the house, but the woodrat being chased soon left the areaviathe outcrop. Probably this intruder had moved into the house in the night while the female was in the trap.

On June 17, 1952, an adult male was found in a live-trap set at one of the brush pile houses in the woodland area. This house was occupied by an adult female. He ran into the house after release, and immediately there was a loud squeal. He ran outside and paused under some limbs approximately 15 feet from the house, and remained there for 15 minutes before clipping off an ironweed 12 inches long, which he carried to the house. He did not enter the house but stopped beneath overhanging sticks at the edge, eating leaves from the plant. He made another attempt to enter the house but loud squeals and rustling followed and he returned to the ironweed plant and was still eating when observations were halted. In another instance, squeals and rustling indicated that the occupant and intruder were in combat.

Fig. 2. Diagram illustrating spacing (due to territoriality or intolerance of the rats) in twelve woodrat houses in a hedge row extending south from south boundary of the Reservation at the middle.Fig. 2. Diagram illustrating spacing (due to territoriality or intolerance of the rats) in twelve woodrat houses in a hedge row extending south from south boundary of the Reservation at the middle.

Although home ranges may overlap to some extent, intraspecific intolerance tends to maintain a certain minimum interval between houses. The arrangement of twelve houses along a hedge row 1170 feet long is diagrammatically represented in Figure 2. The average interval was 78.5 feet (minimum 42; maximum 171). The habitat was uniform. Home ranges probably overlap somewhat, and the spacing is the expression of the need for an otherwise unoccupied area in which there is sufficient space to live. Because individuals tend to fight whenever they meet, there is probably a psychologicaltendency for sequestration which results in spacing of houses and reduces social contact thereby avoiding a depletion of energy that would be detrimental to the population. Whereas condition of the hedge row determines whether or not it will be inhabited by woodrats, length determines the number of occupants. The spacing of houses in a hedge row must be attributed to something other than restriction of sites because the number of sites available always exceeds the number that are in use. Although rock outcrops situated in areas of uniform habitat have not been observed to the extent that hedge rows have, a similar spacing seems to exist and the sites available for houses always exceed the actual number found. This behavior pattern limits the number of houses and is probably advantageous to the species through preventing overcrowding and possible critical depletion of the food supply.

Eleven of the young that weighed 100 grams or less when originally captured and were presumably still living at the mothers' houses, were recaptured repeatedly over periods of weeks or months, providing a limited amount of information regarding dispersal. They followed no definite pattern. In seven instances (five males and two females) the young stayed on at the house beyond the age when they were completely independent of the female. In at least two instances the female was known to have moved away while the young remained. One female shifted to a house 58 feet from the one where she had reared her litter of two, and was accompanied by the young male, while the young female stayed on in possession of the maternal house. Two months later this young female was caught at a house 90 feet away, and an adult male was in possession of her former house. One young male shifted to a house 220 feet from his original home and remained there several months, but was recaptured once back at the original location. Another male made a series of moves over a period of weeks and finally settled in a house 490 feet from his first home. One male who stayed in the maternal house all summer, and reached adult size there, later moved several times, and was last recorded 900 feet away. One young female shifted 110 feet. In several instances juveniles appeared abruptly in houses known to have been unoccupied previously, and some of these houses were in poor repair. These young had wandered from their maternal houses, for unknown reasons. On one occasion a young woodrat was caught in a mouse trap set in a meadow, a habitat into which adult woodrats would scarcely be expected to venture.

Rainey (1956) has listed 31 food plants that are used by the woodrat in northeastern Kansas. He has emphasized that each rat usually obtains its food from plants growing in the immediate vicinity of its house, and that individuals thus differ greatly in their feeding, according to the local vegetation. Therefore, with a sufficiently large number of observations, the list of food plants might be greatly expanded, to include most of the local flora, with the exception of the relatively few kinds that have developed strongly repellent properties rendering them unpalatable to herbivores in general.

At the quarry where one or more woodrats usually lived beneath metal strips, as described previously (under the heading of "Commensals"), the situation seemed to be especially favorable, despite the fact that the metal offered no insulation from extremes of heat in summer and cold in winter. Perhaps the rat had an alternative nest among nearby boulders, to use when temperature was unendurable beneath the metal.

The rat itself, the stored food, and other details of its home life, could be observed with a minimum of disturbance by raising one side of the metal strip momentarily, then carefully lowering it into place. The following observations made in the summer and autumn of 1948 give some idea of the range of food plants stored at any one time and the change as the season progresses.

July 12: Bundles of leaves of carrion-flower (Smilax herbacea); 15 green pods of honey locust (Gleditsia triacanthos) with seeds eaten out; several green fruits of osage orange (Maclura pomifera), and several seeds of coffee-tree (Gymnocladus dioica).July 24: Bundles of green leaves of osage orange and carrion-flower; many pods of honey locust.August 30: Three large clusters of the fruits of pokeberry (Phytolacca americana).October 20: Many small clusters of grapes (Vitis vulpina) judged to weigh perhaps one pound in all; several old pods of coffee-tree and a few berries of dogwood (Cornus Drummondi) and of pokeberry; a pile of small acorns of chinquapin oak (Quercus prinoides); dry seed heads of grass (Bromus inermisandB. japonicus).December 22: Many twigs of bittersweet (Celastrus scandens) with fruits still attached; several seed heads of sunflower (Helianthus annuus); a few acorns of chinquapin oak; fragments of the fruit of osage orange; cured bundles of trefoil (Desmodium glutinosum), carrion-flower, and tickle grass (Panicum capillare).

July 12: Bundles of leaves of carrion-flower (Smilax herbacea); 15 green pods of honey locust (Gleditsia triacanthos) with seeds eaten out; several green fruits of osage orange (Maclura pomifera), and several seeds of coffee-tree (Gymnocladus dioica).

July 24: Bundles of green leaves of osage orange and carrion-flower; many pods of honey locust.

August 30: Three large clusters of the fruits of pokeberry (Phytolacca americana).

October 20: Many small clusters of grapes (Vitis vulpina) judged to weigh perhaps one pound in all; several old pods of coffee-tree and a few berries of dogwood (Cornus Drummondi) and of pokeberry; a pile of small acorns of chinquapin oak (Quercus prinoides); dry seed heads of grass (Bromus inermisandB. japonicus).

December 22: Many twigs of bittersweet (Celastrus scandens) with fruits still attached; several seed heads of sunflower (Helianthus annuus); a few acorns of chinquapin oak; fragments of the fruit of osage orange; cured bundles of trefoil (Desmodium glutinosum), carrion-flower, and tickle grass (Panicum capillare).

Although the eastern woodrat is relatively unspecialized in itsfeeding habits, a few species of favored food plants probably make up the greater part of its diet. In northeastern Kansas, at present, osage orange probably is by far the most important single species. Despite the fact that its aromatic leaves and fruits are somewhat repellent to insects and some other animals, they are well liked by woodrats, and provide a year-round food supply to those individuals having houses in or near the trees. Honey locust similarly provides thorny shelter for house sites, while the foliage, the seeds, and the bark of twigs and trunks are eaten. In houses that are situated near honey locusts, the large, heavy seed pods are sometimes stored by the hundreds. Old pods are often used in substitution for sticks as building material in the house. Nevertheless, honey locust is used relatively little as compared with osage orange. Other plants that figure most importantly in the diet include bittersweet, fox grape, pokeberry and horse nettle (Solanum carolinense).

Rainey (op. cit.) mentioned that captive woodrats would eat meat, both cooked and raw, and on one occasion he found remains of a cicada on a house under circumstances suggesting that this insect had been eaten by a rat. In the course of trapping for opossums and small carnivores, woodrats were caught on many occasions by Fitch in traps baited with animal material exclusively—miscellaneous meat scraps, canned dog-food, bacon grease, or carcasses of small vertebrates. In fact, such baits seemed to be even more attractive than the grain, seeds, peanut butter and raisins that had been used customarily to bait the traps set for woodrats. However, such meat baits could be used effectively only in cold weather, because of rapid spoilage and interference by insects at higher temperatures.

On one occasion an adult pilot black snake found dead on the road, a recent traffic victim, was brought to the Reservation headquarters for examination and was left overnight in the garage. On the following morning the carcass of the snake was found to have been dragged a short distance and gnawed; a quantity of flesh was eaten at an exposed wound on the neck. Woodrat tracks were thickly imprinted on the dusty soil around the snake. The adult male woodrat that lived in the garage had evidently spent much time moving about the carcass and over it, and feeding upon it. It seemed remarkable that this individual was not deterred from feeding on the snake by an instinctive fear of one of its chief natural enemies.

Although the eastern woodrat's food consists mostly of vegetation,the strong tendency noted to feed upon flesh when it is available suggests that these rodents may, occasionally at least, prey upon helpless young of small vertebrates that are readily available to them. Nestling birds, either on the ground or in low trees, and young mice in nests that are accessible, might tempt the rat to indulge in predation.

Reproductive activity continues to some extent throughout the year except in late autumn and early winter. Presence of a vaginal orifice was used as an indication of sexual activity. In most instances the orifice was not indicative of actual oestrus, as it persisted through the preceding and following stages of an oestrus cycle. In anoestrus the orifice is sealed, the genitalia are reduced in size and the skin in the genital region is white. Immature females, and adults during most of the winter, are in this quiescent condition. Onset of the breeding season in late winter is relatively abrupt, and seemingly is a photoperiodic response. Breeding may begin in late January, and most females are in breeding condition within the first half of February. In oestrus the genitalia are enlarged and discolored and the vaginal orifice is prominent and gaping. By February most females born the previous season have matured, and breeding involves the entire population, except possibly for retarded young and individuals suffering from disease, injury or malnutrition. Rainey (1956) recorded an average of 2.3 young per litter.

Number of litters normally produced in the course of a season by an adult female is unknown, but most mature females examined within the period February to September inclusive were in some stage of the breeding cycle. It is obvious that the females which are successful in rearing their litters produce at least two litters annually, and probably some produce three litters. When entire litters are lost at an early age, to predation, or other causes, productivity is much increased, with perhaps only short intervals between pregnancies.

The smallest female having a vaginal orifice weighed 160 grams, but in most instances somewhat larger size is attained before the onset of oestrus. Judging from the average growth rate of immature females (Fig. 3), most probably attain sexual maturity at an age of five to six months unless this age is reached in the winter period of sexual quiescence. Rainey (op. cit.) found no clear cut instances of young maturing in time to breed before their first winter. Heconcluded, tentatively, that in most instances sexual maturity is not attained until the spring of the year following that in which the rat is born. However, the evidence was inconclusive because few of the young marked survived to maturity. In late summer and early autumn, the latter third of the breeding season, newly matured young of the year, born in early spring, may be the most productive group. Young conceived at the beginning of the breeding season, and born in early March, would normally reach adult size and breeding maturity in August. For example, a young female first caught on June 15, 1951, weighed only 150 grams, but by August 10 she had gained to 220 grams (probably in pregnancy) and had a vaginal orifice. Of 35 adult and subadult females examined by Fitch in October, eleven had a vaginal orifice, the latest on October 18. Of these eleven showing signs of breeding, four at least had not yet produced litters, judging from the undeveloped condition of their mammae, and others that showed evidence of recent lactation probably included young of the year that had bred in August or September. One female gave birth to a litter in a trap on the night of October 6, 1950. Of 32 adult and subadult females recorded by Fitch in November, all were sexually quiescent, with the possible exception of one having a partially open vagina on November 10. All females taken in December, and most of those taken in January, also were sexually quiescent. January 20 was the earliest recorded date for a female with a vaginal orifice. Females examined in February mostly were perforate and many of them appeared to be in oestrus. One female trapped on February 19, 1950, weighed only 140 grams and was still imperforate. Another, weighing 200 grams on February 3, 1952, still was imperforate, but by February 27 she was perforate and appeared to be in oestrus. An adult female that appeared to be in oestrus on February 3, 1952, was imperforate on February 10.

At birth woodrats weigh approximately 10 grams or a little more. In a litter born in captivity and kept by Rainey, the average gain amounted to a little more than 1.5 grams per day during the first two months, but in the third month it was somewhat less. As this was an unusually large litter, of five young, one more than the female's teats could accommodate, their growth may have been a little less rapid than in most of those under natural conditions. At an age of three months they averaged approximately 120 grams. The three males consistently exceeded the two females.

Fig. 3. Typical growth curves for male and female woodrats; early stages are based on the litter of a captive female, later stages on average gains of recaptured juveniles and subadults, excluding those that seemed to be stunted. Solid line represents males and broken line represents females.Fig. 3. Typical growth curves for male and female woodrats; early stages are based on the litter of a captive female, later stages on average gains of recaptured juveniles and subadults, excluding those that seemed to be stunted. Solid line represents males and broken line represents females.

Young weighing less than 100 grams are rarely caught in live-traps. Four young, all males, first caught at an average weight of 80 grams, gained on the average, 1.39 grams per day over intervals that averaged 44 days. Six other young males first caught while in the weight range of 100 to 149 grams, were recaptured after intervals of 17 to 45 days and they had gained, on the average, .92 grams per day. The corresponding figure for four young females in the same size range was .71 grams per day. In seven young males in the weight range 150 to 250 grams, that were caught after intervals averaging 66 days, the gain in weight amounted to .83 grams per day. In seven females in the range 150 to 199 grams, gains averaged only .68 grams per day. Fully grown females that are not pregnant weigh, most typically, a little less than 250 grams while fully grown adult males average a little more than 300 grams. Growth rate and adult weight bothare influenced to a large extent by season and even more by individual differences. The underlying causes are obscure in most instances, but individual rats that are still short of adult size may stop growing for periods of months, and some individuals grow much more rapidly than others. One male that weighed 108 grams when he was first caught on July 3, 1951, was estimated to have been born in early May. He was last captured 152 days later on December 2, 1951, and by then his weight was 300 grams, representing an increase of 1.2 grams per day. Another male that weighed only 75 grams when he was caught on October 8, 1950, may have been less than two months old then. By November 21, 1951, at a probable age of 15 months, he weighed 350 grams having attained almost the maximum size. Other exceptionally large individuals were known to be less than two years old, while those rats that survived longest on the study areas did not much exceed average adult size. These records seem to show that exceptionally large woodrats are usually not those of advanced age, but are individuals which have grown most rapidly through fortuitous circumstances, probably depending upon both innate and environmental factors.

None of the woodrats handled was excessively fat, nor were any emaciated. The habit of keeping on hand stores of food at all seasons perhaps obviates the necessity for storing quantities of fat. Seasonal trends in weight vary among individuals, and are not wholly consistent from year to year. Rainey found that in late autumn and winter, rats steadily gain weight reaching a peak in late February or March. However, in the winters of 1948-49 and 1949-50, Fitch found that most rats lost weight and hardly any, even those that were short of adult size, made gains.

The following records of a male born in the spring of 1949 show rapid growth and attainment of adult size in his first summer, cessation of growth during the winter, and resumption of growth, with attainment of near-maximum size the following spring.

June 16, 194996 gms.September 26, 1949230 gms.September 27, 1949230 gms.October 18, 1949260 gms.October 27, 1949250 gms.October 29, 1949220 gms.November 8, 1949235 gms.November 15, 1949245 gms.November 24, 1949240 gms.November 26, 1949240 gms.November 30, 1949240 gms.December 20, 1949260 gms.February 18, 1950230 gms.April 5, 1950290 gms.April 7, 1950300 gms.October 7, 1950320 gms.November 29, 1950345 gms.March 23, 1951340 gms.

Another example, showing winter cessation of growth in a male at even smaller size is shown below. This was in the winter of 1950-1951.

November 9145 gms.November 28175 gms.November 29165 gms.January 10180 gms.January 11175 gms.March 1225 gms.March 23200 gms.

The longest span of records for an individual woodrat recorded was 991 days in a female, already adult when she was first caught on November 18, 1948. Other relatively long spans of records were: 827 days in a male, adult when first caught on March 16, 1952; 754 days in a female, also adult when first captured; 649 days in a male first captured as a juvenile; 465 days in a male, adult when first captured; 409 days in a male, juvenile when first captured; 399 days in a female, juvenile when first captured; 395 days in a female, adult when first captured; 390 days in a female, adult when first captured; 366 days in a male, adult when first captured. Of these eleven individuals (six females and five males) whose records cover more than a year, eight were already adult when first caught. These eleven rats represent only 4.3 per cent of the total number captured. Our study was made at a time when populations were shrinking and disappearing, and obviously individual spans would have been longer if we had been working with a stable population. In most instances the spans of our records represent only small parts of the life spans of the individuals involved. Nevertheless, our records emphasize the potentially greater longevity of the woodrat as contrasted with the various smaller rodents living in the same area. Of several thousand individuals of the generaMus,Zapus,Reithrodontomys,Peromyscus,Sigmodon, and especiallyMicrotus, none is known to have survived so long as two years, and only a few individuals are known to have survived so long as one year after being marked.

Plant succession resulting from land use practices created habitat conditions especially favorable for woodrats in the late nineteen forties in northeastern Kansas, and particularly on the University of Kansas Natural History Reservation. With protection from prairie fires, woody vegetation had encroached onto areas that were formerly grassland, and, later, fencing against livestock permitted dense thickets of undergrowth to develop. In this region the woodratusually lives in a forest habitat, and requires for its house sites places that are especially well sheltered, as in matted thickets of undergrowth, root tangles exposed along eroded gully banks, hollow stumps or tree trunks, bases of thorny trees with multiple trunks for support, thick tops of fallen trees, or, especially, rock outcrops with deep crevices.

At the time of their maximum population density in or about 1947, woodrats probably averaged several per acre on the woodland parts of the Reservation. In the autumn of 1948, 17 were caught on the ten-acre tract of woodland that was live-trapped most intensively. By then, however, the population had already undergone drastic reduction, as shown by the fact that there were many unoccupied and disintegrating houses throughout the woodland. While the time and manner of mortality was not definitely determined, circumstantial evidence suggests that the downward trend began in early March, 1948, when record low temperatures and unusually heavy snowfall coincided with the time when parturition normally occurs. The rigorous weather conditions then may have been injurious, not only to the newborn litters but to the females comprising the breeding stock. Nevertheless, the population remained moderately high through 1948, but by early spring of 1949 more than three-fourths of the adults and subadults present in late autumn had been eliminated. Again, unusually severe winter weather seemed to be the underlying cause, as in January precipitation was the heaviest on record in 81 years, with penetrating sleet storms, persistent ice glaze, and occasional brief thawing followed by sudden drops to extremely low temperature.

After the drastic reduction in the winter of 1948-49, the population did not recover. Although no further sudden reductions due to extremes of weather were noted, the trend seemed to be one of gradual, progressive decline throughout the following period of years. Deterioration of the habitat, as the developing forest shaded out undergrowth, and inroads of certain predators may have been important in preventing recovery of the population. Many kinds of predatory mammals, hawks, owls, and snakes probably take woodrats occasionally, but the spotted skunk, long-tailed weasel, horned owl, timber rattlesnake and pilot black snake are considered to be by far the most important predators because of their habits and prey preferences. Few actual records of predation on woodrats were obtained because of their scarcity during most of the period covered by our study.

Of the animals which share the woodrat's habitat, many small mammals, reptiles, amphibians, and invertebrates use its houses and live in a somewhat commensal relationship.

Woodrats are somewhat territorial, each defending its house and an indefinite surrounding area against intrusion by others. Houses tend to be spaced at intervals of at least 40 feet; occasionally they are closer together. Most foraging for food is done within 75 feet of the house. However, woodrats often wander far beyond the limits of the usual home range. On the average, males travel more frequently and more widely than females, and the larger and older males travel more than the smaller and younger. Search for mates provides the chief motivation for wandering. Extent of wandering is controlled to a large degree by availability of natural travelways, such as rock ledges, by shelters for temporary stopping places, such as old deserted houses, and by population density of the rats themselves.

Food of the eastern woodrat consists chiefly of vegetation; many kinds of leaves, fruits, and seeds are eaten. For many individuals foliage and seeds of the osage orange are the staple; hedge rows and dense trees of osage orange provide favorable sites for the houses. Woodrats are attracted to meat baits, and have been known to feed on flesh of carcasses, even on one of the pilot black snake which is a predator on the rat.

Woodrats are born blind, naked, and helpless, at a weight approximately four per cent of the adult female's. They gain at a rate of at least 1.5 grams per day in the first two months. When they have reached a weight of 100 grams, the gain averages somewhat less than one gram per day, but individual variation is great. Males gain more rapidly than females, especially in the later stages of growth, as adult weight is greater by approximately one-fourth in the male. Some individuals grow to maximum adult size at an age of one year. Unusually large individuals are not necessarily those that are unusually old. Longevity is greater in woodrats than in most smaller rodents. One female of adult size when first trapped was last captured 991 days later when she must have been well over three years old, and others are known to have survived more than two years even though populations were shrinking so that few of the rats were able to survive for their normal life span.

Crabb, W. D.

1941. Food habits of the prairie spotted skunk in southeastern Iowa. Jour. Mamm., 22:349-364.

Fitch, H. S.

1947. Predation by owls in the Sierran foothills of California. Condor, 49:137-151.

Rainey, D. G.

1956. Eastern woodrat, Neotoma floridana: natural history and ecology. Univ. Kansas Publ. Mus. Nat. Hist., 8: No. 10, in press.


Back to IndexNext