PREFACE

PREFACE

A distinguished German authority on mathematical physics, writing recently on the theory of Relativity, declared that if his publishers had been willing to allow him sufficient paper and print he could have explained what he wished to convey without using a single mathematical formula. Such success is conceivable. Mathematical methods present, however, two advantages. Their terminology is precise and concentrated, in a fashion which ordinary language cannot afford to adopt. Further, the symbols which result from their employment have implications which, when brought to light, yield new knowledge. This is deductively reached, but it is none the less new knowledge. With greater precision than is usual, ordinary language may be made to do some, if not a great deal, of this work for which mathematical methods are alone quite appropriate. If ordinary language can do part of it an advantage may be gained. The difficulty that attends mathematical symbolism is the accompanying tendency to take the symbol as exhaustively descriptive of reality. Now it is not so descriptive. It always embodies an abstraction. It accordingly leads to the use of metaphors which are inadequate and generally untrue. It is only qualification by descriptive language of a wider range that can keep this tendency incheck. A new school of mathematical physicists, still, however, small in number, is beginning to appreciate this.

But for English and German writers the new task is very difficult. Neither Anglo-Saxon nor Saxon genius lends itself readily in this direction. Nor has the task as yet been taken in hand completely, so far as I am aware, in France. Still, in France there is a spirit and a gift of expression which makes the approach to it easier than either for us or for the Germans. Lucidity in expression is an endowment which the best French writers possess in a higher degree than we do. Some of us have accordingly awaited with deep interest French renderings of the difficult doctrine of Einstein.

M. Nordmann, in addition to being a highly qualified astronomer and mathematical-physicist, possesses the gift of his race. The Latin capacity for eliminating abstractness from the description of facts is everywhere apparent in his writing. Individual facts take the places of general conceptions, ofBegriffe. The language is that of theVorstellung, in a way that would hardly be practicable in German. Nor is our own language equal to that of France in delicacy of distinctive description. This book could hardly have been written by an Englishman. But the difficulty in his way would have been one as much of spirit as of letter. It is the lucidity of the French author, in combination with his own gift of expression, that has made it possible for the translator to succeed so well in overcoming the obstacles to giving the exposition in our own tongue this book contains. The rendering seems to me, after reading the book both in French and in English, admirable.

M. Nordmann has presented Einstein’s principle in words which lift the average reader over many of the difficulties he must encounter in trying to take it in. Remembering Goethe’s maxim that he who would accomplish anything must limit himself, he has not aimed at covering the full field to which Einstein’s teaching is directed. But he succeeds in making many abstruse things intelligible to the layman. Perhaps the most brilliant of his efforts in this direction are ChaptersVandVI, in which he explains with extraordinary lucidity the new theory of gravitation and of its relation to inertia. I think that M. Nordmann is perhaps less successful in the courageous attack he makes in histhird chapteron the obscurity which attends the notion of the “Interval.” But that is because the four-dimensional world, which is the basis of experience of space and time for Einstein and Minkowski, is in itself an obscure conception. Mathematicians talk about it gaily and throw its qualities into equations, despite the essential exclusion from it of the measurement and shape which actual experience always in some form involves. They lapse on that account into unconscious metaphysics of a dubious character. This does not destroy the practical value of their equations, but it does make them very unreliable as guides to the character of reality in the meaning which the plain man attaches to it. Here, accordingly, we find the author of this little treatise to be a good man struggling with adversity. If he could make the topic clear he would. But then no one has made it clear excepting as an abstraction which works, but which, despite suggestions made to the contrary, cannot be clothed for us in images.

This, however, is the fault, not of M. Nordmann himself, but of a phaseof the subject. With the subject in its other aspects he deals with the incomparable lucidity of a Frenchman. I know no book better adapted than the one now translated to give the average English reader some understanding of a principle, still in its infancy, but destined, as I believe, to transform opinion in more regions of knowledge than those merely of mathematical physics.

Haldane


Back to IndexNext