The Fairbanks Morse oil engine storage battery set
The tungsten lamp, requiring only one-third as much electric current as the carbon lamp, for the same amount of light, reduces the size (and the cost) of the storage battery in the same degree, thus bringing the storage battery within the means of the farmer. Some idea of the power that may be put into a small storage battery is to be had from the fact that a storage battery of only 6 volts pressure, such as is used in self-starters on automobiles, will turn a motor and crank a heavy six-cylinder engine; or it will run the automobile, without gasoline, for a mile or more with its own accumulated store of electric current.
The Low Voltage Battery
The 30-volt storage battery has become standard for small lighting plants, since the introduction of the tungsten lamp. Although the voltage of each separate cell of this battery registers 2.5 volts when fully charged, it falls to approximately 2 volts per cell immediately discharging begins. For this reason, it is customary to figure the working pressure of each cell at 2 volts. This means that a 30-volt battery should consist of at least 15 cells. Since, however, the voltage falls below 2 for each cell, as discharging proceeds, it is usual to include one additional cell for regulating purposes. Thus, the ordinary 30-volt storage battery consists of 16 cells, the last cell in the line remaining idle until the lamps begin to dim, when it is switched in by means of a simple arrangement of connections. This maintains a uniform pressure of 30 volts from the beginning to the end of the charge, at the lamp socket.
We saw in earlier chapters that the 110-voltcurrent is the most satisfactory, under all conditions, where the current is to be used for heating and small power, as well as light. But a storage battery of 110 volts would require at least 55 cells, which would make it too expensive for ordinary farm use. As a 30-volt current is just as satisfactory for electric light, this type has become established, in connection with the battery, and it is used for electric lighting only, as a general rule.
Batteries are rated first, as to voltage; second, as to their capacity in ampere hours—that is, the number of amperes that may be drawn from them in a given number of hours. Thus, a battery rated at 60 ampere hours would give 60 amperes, at 30 volts pressure, for one hour; 30 amperes for 2 hours; 15 amperes for 4 hours; 7½ amperes for 8 hours; 3¾ amperes for 16 hours; etc., etc. In practice, a battery should not be discharged faster than its 8-hour rate. Thus, a 60-ampere hour battery should not be drawn on at a greater rate than 7½ amperes per hour.
This 8-hour rate also determines the rateat which a battery should be re-charged, once it is exhausted. Thus, this battery should be charged at the rate of 7½ amperes for 8 hours, with another hour added to make up for losses that are bound to occur. A battery of 120-ampere hour capacity should be charged for 8 or 9 hours at the rate of 120 ÷ 8, or 15 amperes, etc.
To determine the size of battery necessary for any particular instance, it is necessary first to decide on the number of lamps required, and their capacity. Thirty-volt lamps are to be had in the market in sizes of 10, 15 and 20 watts; they yield respectively 8, 12, and 16 candlepower each. Of these the 20-watt lamp is the most satisfactory for the living rooms; lamps of 10 or 15 watts may be used for the halls, the bathroom and the bedrooms. At 30 volts pressure these lamps would require a current of the following density in amperes:
Let us assume, as an example, that Farmer Brown will use 20-watt lamps in his kitchen, dining room, and sitting room; and 10-watt lamps in the halls, bathroom, and bedrooms. His requirements may be figured either in lamp hours or in watt-hours. Since he is using two sizes of lamps, it will be simpler to figure his requirements in watt-hours. Thus:
Since amperes equal watts divided by volts, the number of ampere hours required in this case each night would be 550 ÷ 30 = 18.3 ampere hours; or approximately 4½ amperes per hour for 4 hours.
Say it is convenient to charge this battery every fourth day. This would require a batteryof 4 × 18.3 ampere hours, or 73.2 ampere hours. The nearest size on the market is the 80-ampere hour battery, which would be the one to use for this installation.
To charge this battery would require a dynamo capable of delivering 10 amperes of current for 9 hours. The generator should be of 45 volts pressure (allowing 2½ volts in the generator for each 2 volts of battery) and the capacity of the generator would therefore be 450 watts. This would require a 1¼ horsepower gasoline engine. At 1¼ pints of gasoline for each horsepower, nine hours work of this engine would consume 14 pints of gasoline—or say 16 pints, or two gallons. At 12 cents a gallon for gasoline, lighting your house with this battery would cost 24 cents for four days, or 6 cents a day. Your city cousin, using commercial current, would pay 5½ cents a day for the same amount of current at 10 cents a kilowatt-hour; or 8¼ cents at a 15-cent rate. If the battery is charged by the farm gasoline engine at the same time it is doing its other work, the costwould be still less, as the extra gasoline required would be small.
This figure does not take into account depreciation of battery and engine. The average farmer is too apt to overlook this factor in figuring the cost of machinery of all kinds, and for that reason is unprepared when the time comes to replace worn-out machinery. The dynamo and switchboard should last a lifetime with ordinary care, so there is no depreciation charge against them. The storage battery, a 30-volt, 80-ampere hour installation, should not cost in excess of $100; and, if it is necessary to buy a gasoline engine, a 1¼ horsepower engine can be had for $50 or less according to the type. Storage batteries of the lead type are sold under a two-years' guarantee—which does not mean that their life is limited to that length of time. With good care they may last as long as 10 years; with poor care it may be necessary to throw them away at the end of a year. The engine should be serviceable for at least 10 years, with ordinary replacements; and the storagebattery may last from 6 to 10 years, with occasional renewal of parts. If it were necessary to duplicate both at the end of ten years, this would make a carrying charge of $1.25 a month for depreciation, which must be added to the cost of light.
Figuring by Lamp Hours
If all the lamps are to be of the same size—either ten, fifteen, or twenty watts, the light requirements of a farm house can be figured readily by lamp hours. In that event, the foregoing table would read as follows:
To determine the ampere hours from this table, multiply the total number of lamp hours by the current in amperes required for each lamp. As 10, 15, and 20-watt tungsten lamps require .33, .50 and .67 amperes, respectivelyat 30 volts pressure, the above requirements in ampere hours would be 12, 17½, or 24 ampere hours, according to the size of lamp chosen. This gives the average current consumption for one night. If it is desired to charge the battery twice a week on the average, multiply the number of lamp hours by 4, to get the size of battery required.
The foregoing illustration is not intended to indicate average light requirements for farms, but is given merely to show how a farmer may figure his own requirements. In some instances, it will be necessary to install a battery of 120 or more ampere hours, whereas a battery of 40 or 60 ampere hours would be quite serviceable in other instances. It all depends on how much light you wish to use and are willing to pay for, because with a storage battery the cost of electric light is directly in proportion to the number of lights used.
As a general rule, a larger generator and engine are required for a larger battery—although it is possible to charge a large batterywith a small generator and engine by taking more time for the operation.
How to Charge a Storage Battery
Direct current only can be used for charging storage batteries. In the rare instance of alternating current only being available, it must be converted into direct current by any one of the many mechanical, chemical, or electrical devices on the market—that is, the alternating current must be straightened out, to flow always in one direction.
A shunt-wound dynamo must be used; else, when the voltage of the battery rises too high, it may "back up" and turn the dynamo as a motor, causing considerable damage. If a compound dynamo is already installed, or if it is desired to use such a machine for charging storage batteries, it can be done simply by disconnecting the series windings on the field coils, thus turning the machine into a shunt dynamo.
The voltage of the dynamo should be approximately 50 per cent above the workingpressure of the battery. For this reason 45-volt machines are usually used for 30 or 32-volt batteries. Higher voltages may be used, if convenient. Thus a 110-volt dynamo may be used to charge a single 2-volt cell if necessary, although it is not advisable.
Direction of Current
Electricity flows from the positive to the negative terminal. A charging current must be so connected that the negative wire of the dynamo is always connected to the negative terminal of the battery, and the positive wire to the positive terminal. As the polarity is always marked on the battery, there is little danger of making a mistake in this particular.
When the storage battery is charged, and one begins to use its accumulation of energy, the current comes out in the opposite direction from which it entered in charging. In this respect, a storage battery is like a clock spring, which is wound up in one direction, and unwinds itself in the other. With all storage battery outfits, an ammeter (or current measure)is supplied with zero at the center. When the battery is being charged, the indicating needle points in one direction in proportion to the strength of the current flowing in; and when the battery is being discharged, the needle points in the opposite direction, in proportion to the strength of the current flowing out.
Sometimes one is at loss, in setting about to connect a battery and generator, to know which is the positive and which the negative wire of the generator. A very simple test is as follows:
Start the generator and bring it up to speed. Connect some form of resistance in "series" with the mains. A lamp in an ordinary lamp socket will do very well for this resistance. Dip the two ends of the wire (one coming from the generator, the other through the lamp) into a cup of water, in which a pinch of salt is dissolved. Bring them almost together and hold them there. Almost instantly, one wire will begin to turn bright, and give off bubbles. The wire which turns bright and gives off bubbles is thenegativewire. The other is the positive.
A rough-and-ready farm electric plant, supplying two farms with light, heat and power; and a Ward Leonard-type circuit-breaker for charging storage batteries
Care of Battery
Since specific directions are furnished with all storage batteries, it is not necessary to go into the details of their care here. Storage battery plants are usually shipped with all connections made, or plainly indicated. All that is necessary is to fill the batteries with the acid solution, according to directions, and start the engine. If the engine is fitted with a governor, and the switchboard is of the automatic type, all the care necessary in charging is to start the engine. In fact, many makes utilize the dynamo as a "self-starter" for the engine, so that all that is necessary to start charging is to throw a switch which starts the engine. When the battery is fully charged, the engine is stopped automatically.
The "electrolyte" or solution in which the plates of the lead battery are immersed, is sulphuric acid, diluted with water in theproportion of one part of acid to five of water, by volume.
The specific gravity of ordinary commercial sulphuric acid is 1.835. Since its strength is apt to vary, however, it is best to mix the electrolyte with the aid of the hydrometer furnished with the battery. The hydrometer is a sealed glass tube, with a graduated scale somewhat resembling a thermometer. The height at which it floats in any given solution depends on the density of the solution. It should indicate approximately 1.15 for a storage battery electrolyte before charging. It should not be over 1.15—or 1,150 if your hydrometer reads in thousandths.
Only pure water should be used. Distilled water is the best, but fresh clean rain water is permissible. Never under any circumstances use hydrant water, as it contains impurities which will injure the battery, probably put it out of commission before its first charge.
Pour the acid into the water.Never under any circumstances pour the water into the acid, else an explosion may occur from theheat developed. Mix the electrolyte in a stone crock, or glass container, stirring with a glass rod, and testing from time to time with a hydrometer. Let it stand until cool and then pour it into the battery jars, filling them to ½ inch above the top of the plates.
Then begin charging. The first charge will probably take a longer time than subsequent charges. If the installation is of the automatic type, all that is necessary is to start the engine. If it is not of the automatic type, proceed as follows:
First be sure all connections are right. Then start the engine and bring the dynamo up to its rated speed. Adjust the voltage to the pressure specified. Then throw the switch connecting generator to battery. Watch the ammeter. It should register in amperes, one-eighth of the ampere-hour capacity of the battery, as already explained. If it registers too high, reduce the voltage of the generator slightly, by means of the field rheostat connected to the generator. This will also reduce the amperes flowing. If too low, raise thevoltage until the amperes register correctly. Continue the charging operation until the cells begin to give off gas freely; or until the specific gravity of the electrolyte, measured by the hydrometer, stands at 1.24. Your battery is now fully charged. Throw the switch over to the service line, and your accumulator is ready to furnish light if you turn on your lamps.
Occasionally add distilled water to the cells, to make up for evaporation. It is seldom necessary to add acid, as this does not evaporate. If the battery is kept fully charged, it will not freeze even when the thermometer is well below zero.
A storage battery should be installed as near the house as possible—in the house, if possible. Since its current capacity is small, transmission losses must be reduced to a minimum.
In wiring the house for storage battery service, the same rules apply as with standard voltage. Not more than 6 amperes should be used on any single branch circuit. With low voltage batteries (from 12 volts to 32 volts) itis well to use No. 10 or No. 12 B. & S. gauge rubber-covered wire, instead of the usual No. 14 used with standard voltage. The extra expense will be only a few cents for each circuit, and precious volts will be saved in distribution of the current.
BATTERY CHARGING DEVICES
The automatic plant most desirable—How an automobile lighting and starting system works—How the same results can be achieved in house lighting, by means of automatic devices—Plants without automatic regulation—Care necessary—The use of heating devices on storage battery current—Portable batteries—An electricity "route"—Automobile power for lighting a few lamps.
The automatic plant most desirable—How an automobile lighting and starting system works—How the same results can be achieved in house lighting, by means of automatic devices—Plants without automatic regulation—Care necessary—The use of heating devices on storage battery current—Portable batteries—An electricity "route"—Automobile power for lighting a few lamps.
The water-power electric plants described in preceding chapters are practically automatic in operation. This is very desirable, as such plants require the minimum of care. It is possible to attain this same end with a storage battery plant.
Automatic maintenance approaches a high degree of perfection in the electric starting and lighting device on a modern automobile. In this case, a small dynamo geared to the main shaft is running whenever the engine is running. It is always ready to "pump"electricity into the storage battery when needed. An electric magnet, wound in a peculiar manner, automatically cuts off the charging current from the dynamo, when the battery is "full;" and the same magnet, or "regulator," permits the current to flow into the battery when needed. The principle is the same as in the familiar plumbing trap, which constantly maintains a given level of water in a tank, no matter how much water may be drawn from the tank. The result, in the case of the automobile battery, is that the battery is always kept fully charged; for no sooner does the "level" of electricity begin to drop (when used for starting or lighting) than the generator begins to charge. This is very desirable in more ways than one. In the first place, the energy of the battery is always the same; and in the second place, the mere fact that the battery is always kept fully charged gives it a long life.
The same result can be achieved in storage battery plants for house lighting, where the source of power is a gasoline or other engineengaged normally in other work. Then your electric current becomes merely a by-product of some other operation.
Take a typical instance where such a plant would be feasible: Farmer Brown has a five horsepower gasoline engine—an ordinary farm engine for which he paid probably $75 or $100. Electric light furnished direct from such an engine would be intolerable because of its constant flickering. This five horsepower engine is installed in the milk room of the dairy, and is belted to a countershaft. This countershaft is belted to the vacuum pump for the milking machine, and to the separator, and to a water pump, any one of which may be thrown into service by means of a tight-and-loose pulley. This countershaft is also belted to a small dynamo, which runs whenever the engine is running. The milking machine, the separator, and the water pump require that the gasoline engine be run on the average three hours each day.
The dynamo is connected by wires to the house storage battery through a properlydesigned switchboard. The "brains" of this switchboard is a little automatic device (called a regulator or a circuit breaker), which opens and shuts according to the amount of current stored in the battery and the strength of the current from the generator. When the battery is "full," this regulator is "open" and permits no current to flow. Then the dynamo is running idle, and the amount of power it absorbs from the gasoline engine is negligible. When the "level" of electricity in the battery falls, due to drawing current for light, the regulator is "shut," that is, the dynamo and battery are connected, and current flows into the battery.
These automatic instruments go still farther in their brainy work. They do not permit the dynamo to charge the battery when the voltage falls below a fixed point, due to the engine slowing down; neither do they permit the dynamo current to flow when the voltage gets too high due to sudden speeding up of the engine.
Necessarily, an instrument which will takecare of a battery in this way, is intricate in construction. That is not an argument against it however. A watch is intricate, but so long as we continue to wind it at stated intervals, it keeps time. So with this storage battery plant: so long as Farmer Brown starts his engine to do his farm chores every day, his by-product of electricity is stored automatically.
Such installations are not expensive. A storage battery capable of lighting 8 tungsten lamps, of 16 candlepower each, continuously for 8 hours (or fewer lamps for a longer time); a switchboard containing all the required regulating instruments; and a dynamo of suitable size, can be had for from $250 to $300. All that is necessary to put such a plant in operation, is to belt the dynamo to the gasoline engine so that it will run at proper speed; and to connect the wires from dynamo to switchboard, and thence to the house service. The dynamo required for the above plant delivers 10 amperes at 45 volts pressure, or 10 × 45 = 450 watts. A gasoline, gas, or oilengine, or a windmill of 1½ horsepower furnishes all the power needed. If the farmer uses his engine daily, or every other day, for other purposes, the cost of power will be practically negligible. With this system electric lights are available at any time day or night; and when the gasoline engine is in service daily for routine farm chores, the battery will never run low.
This system is especially desirable where one uses a windmill for power. The speed of the windmill is constantly fluctuating, so much so in fact that it could not be used for electric light without a storage battery. But when equipped with a regulator on the switchboard which permits the current to flow only when the battery needs it, and then only when the speed of the windmill is correct, the problem of turning wind power into electric light is solved.
If the farmer does not desire to go to the additional expense of automatic regulation, there are cheaper plants, requiring attentionfor charging. These plants are identical with those described above, except they have no regulators. With these plants, when the battery runs low (as is indicated by dimming of the lights) it is necessary to start the engine, bring it up to speed, adjust the dynamo voltage to the proper pressure, and throw a switch to charge the battery. For such plants it is customary to run the engine to charge the battery twice a week. It is necessary to run the engine from 8 to 10 hours to fully charge the discharged battery. When the battery approaches full charge, the fact is evidenced by so-called "gassing" or giving off of bubbles. Another way to determine if the battery is fully charged is by means of the voltmeter, as the volts slowly rise to the proper point during the process of charging. A third way, and probably the most reliable is by the use of the hydrometer. The voltage of each cell when fully charged should be 2.5; it should never be discharged below 1.75 volts. Many storage battery electric light plants on the market are provided witha simple and inexpensive circuit breaker, which automatically cuts off the current and stops the engine when the battery is charged. The current is then thrown from the dynamo to the house service by an automatic switch. If such a circuit breaker is not included, it is necessary to throw the switch by hand when charging is begun or ended.
Since the principal item of first cost, as well as depreciation, in a storage battery electric light plant is the storage battery itself, the smallest battery commensurate with needs is selected. Since the amount of current stored by these batteries is relatively small, electric irons and heating devices such as may be used freely on a direct-connected plant without a battery, are rather expensive luxuries. For instance, an electric iron drawing 400 watts an hour while in use, requires as much energy as 20 tungsten lamps of 16 candlepower each burning for the same length of time. Its rate of current consumption would be over 13 amperes, at 30 volts; which would require a larger battery thanneeded for light in the average farm home.
The use to which electricity from a storage battery is put, however, is wholly a matter of expense involved; and if one is willing to pay for these rather expensive luxuries, there is no reason why he should not have them. Heating, in any form, by electricity, requires a large amount of current proportionally. As a matter of fact, there is less heat to be had in thermal units from a horsepower-hour of electricity than from three ounces of coal. When one is generating current from water-power, or even direct from gasoline or oil, this is not an argument against electric heating devices. But it becomes a very serious consideration when one is installing a storage battery as the source of current, because of the high initial cost, and depreciation of such a battery.
Farmers who limit the use of their storage battery plants to lighting will get the best service.
Portable Batteries
Abroad it is becoming quite common for power companies to deliver storage batteries fully charged, and call for them when discharged. Without a stretch of the imagination, we can imagine an ingenious farmer possessing a water-power electric plant building up a thriving business among his less fortunate neighbors, with an "electricity" route. It could be made quite as paying as a milk route.
Connections for charging storage batteries on 110-volt mains
Many communities have water or steam power at a distance too great to transmit 110-volt current by wire economically; and because of lack of expert supervision, they do not care to risk using current at a pressure of 500 volts or higher, because of its danger to human life.
In such a case it would be quite feasible for families to wire their houses, and carry theirbatteries to the generating plant two or three times a week to be charged. There are a number of portable batteries on the market suitable for such service, at voltages ranging from 6 to 32 volts. The best results would be obtained by having two batteries, leaving one to be charged while the other was in use; and if the generating station was located at the creamery or feed mill, where the farmer calls regularly, the trouble would be reduced to a minimum.
Such a battery would necessarily be small, and of the sealed type, similar to those used in automobiles. It could be used merely for reading lamps—or it could be used for general lighting, according to the expense the farmer is willing to incur for batteries.
An ordinary storage battery used in automobile ignition and lighting systems is of the 6-volt, 60-ampere type, called in trade a "6-60." Lamps can be had for these batteries ranging in sizes from 2 candlepower to 25 candlepower. A lamp of 15 candlepower, drawing 2½ amperes, is used for automobileheadlights, and, as any one knows after an experience of meeting a headlight on a dark road, they give a great deal of light. A "6-60" battery keeps one of these lamps running for 24 hours, or two lamps running 12 hours. A minimum of wiring would be required to install such a battery for the reading lights in the sitting room, and for a hanging light in the dining room. The customary gates for charging these batteries in a large city is 10 cents; but in a country plant it could be made less.
To charge such a battery on a 110-volt direct current, it is necessary to install some means of limiting the amount of current, or in other words, the charging rate. This charging rate, for 8 hours should be, as we have seen, one-eighth of the ampere-hour capacity of the battery. Thus a "6-60" battery would require a 7½ ampere current.
Connecting two such batteries in "series" (that is, the negative pole of one battery to the positive pole of the second) would make a 12-volt battery. Ten or twelve such batteriescould be connected in "series," and a 110-volt direct current generator would charge them in 8 hours at a 7½ ampere rate.
The diagram on page 259 shows the connections for charging on a 110-volt circuit.
An ordinary 16-candlepower carbon lamp is of 220 ohms resistance, and (by Ohm's Law, C equals E divided by R) permits ½ ampere of current to flow. By connecting 15 such lamps across the mains, in parallel, the required 7½ amperes of current would be flowing from the generator through the lamps, and back again. Connect the battery in "series" at any point on either of the two mains, between the lamps and the generator, being careful to connect the positive end to the positive pole of the battery, andvice versa.
Lamps are the cheapest form of resistance; but in case they are not available, any other form of resistance can be used. Iron wire wound in spirals can be used, or any of the many makes of special resistance wire on the market. First it is necessary to determine the amount of resistance required.
We have just seen that the charging rate of a 60-ampere hour battery is 7½ amperes. Applying Ohm's Law here, we find that ohms resistance equals volts divided by amperes, or R = 110/7.5 = 14.67 ohms. With a 220-volt current, the ohms resistance required in series with the storage battery of this size would be 29.33 ohms.
Automobile Power for Lighting
There are many ingenious ways by which an automobile may be utilized to furnish electric light for the home. The simplest is to run wires direct from the storage battery of the self-starting system, to the house or barn, in such a way that the current may be used for reading lamps in the sitting room. By a judicious use of the current in this way, the normal operation of the automobile in the daytime will keep the battery charged for use of the night lamps, and if care is used, such a plan should not affect the life of the battery. Care should be used also, in this regard, not to discharge the battery too lowto prevent its utilizing its function of starting the car when it was desired to use the car. However, if the battery were discharged below its starting capacity, by any peradventure, the car could be started by the old-fashioned cranking method.
Using an automobile lighting system for house lighting implies that the car be stored in a garage near the house or barn; as this battery is too low in voltage to permit transmitting the current any distance. One hundred feet, with liberal sized transmission wires is probably the limit.
That such a system is feasible is amply proved by an occurrence recently reported in the daily papers. A doctor summoned to a remote farm house found that an immediate operation was necessary to save the patient's life. There was no light available, except a small kerosene lamp which was worse than nothing. The surgeon took a headlight off his car, strung a pair of wires through a window, and instantly had at his command a light of the necessary intensity.
Another manner in which an automobile engine may be used for house lighting is to let it serve as the charging power of a separate storage battery. The engine can be belted to the generator, in such a case, by means of the fly wheel. Or a form of friction drive can be devised, by means of which the rear wheels (jacked up off the floor) may supply the necessary motive power. In such a case it would be necessary to make allowance for the differential in the rear axle, so that the power developed by the engine would be delivered to the friction drive.
The following pages contain advertisements of Macmillan books by the same author or on related subjects.
WATER POWER ENGINEERS
DESIGNERS AND MANUFACTURERS
HUNT
SUPERIOR QUALITY
Complete equipments for developing water powers including:—Water Wheels, Flumes, Governors, Supply Pipes, Gates, Hoists, Valves, Screens, Gears, Pulleys, Clutches, Bearings, Shafting, etc.
Three types of water power developing wheels, ranged to meet every condition.
drawing of turbine
Div. No. 1—Turbine Water Wheelsfor large powers and large quantities of water.Div. No. 2—Rim Leverage Wheelsfor small powers and very limited quantities of water.Div. No. 3—Small Water Motorsfor minimum water supplies under high heads.Send for special catalogues and Water Power Blanks to fill in for estimates on suitable type of Water Wheel for developing your water power to best advantage.
Div. No. 1—Turbine Water Wheelsfor large powers and large quantities of water.
Div. No. 2—Rim Leverage Wheelsfor small powers and very limited quantities of water.
Div. No. 3—Small Water Motorsfor minimum water supplies under high heads.
Send for special catalogues and Water Power Blanks to fill in for estimates on suitable type of Water Wheel for developing your water power to best advantage.
RODNEY HUNT MACHINE COMPANY60 MILL STREETORANGE, MASSACHUSETTS, U.S.A.
The Farmer of TomorrowCloth, 12mo, $1.50"A crisp, entertaining, and instructive discussion of the conditions which have brought about the present agricultural problem in America."—Countryside Magazine."The book is interestingly written and full of many vital discussions."—Annals of the American Academy of Political and Social Science."A popular consideration of the fundamental factors affecting the business of farming."—Pacific Rural Press."The growing, popular question of farming analyzed from all angles, with many helpful suggestions."—Leslie's Weekly."Any person of intelligence, alive to the present and future welfare of his country will find 'The Farmer of Tomorrow,' a book of absorbing character."—Times-Star.THE MACMILLAN COMPANYPublishers64-66 Fifth AvenueNew York
The Farmer of Tomorrow
Cloth, 12mo, $1.50
"A crisp, entertaining, and instructive discussion of the conditions which have brought about the present agricultural problem in America."—Countryside Magazine.
"The book is interestingly written and full of many vital discussions."—Annals of the American Academy of Political and Social Science.
"A popular consideration of the fundamental factors affecting the business of farming."—Pacific Rural Press.
"The growing, popular question of farming analyzed from all angles, with many helpful suggestions."—Leslie's Weekly.
"Any person of intelligence, alive to the present and future welfare of his country will find 'The Farmer of Tomorrow,' a book of absorbing character."—Times-Star.
THE MACMILLAN COMPANYPublishers64-66 Fifth AvenueNew York
Coöperation in AgricultureByG. HAROLD POWELLCloth, 12mo, $1.50"The author has a broad outlook and never fails to suggest that the economic advantages of coöperation may frequently be quite subordinate to the general social and community interests which are fostered through a common undertaking. He writes with the genuine interest of a man having experience and faith in that of which he speaks."—Political Science Quarterly."A volume which explains in a lucid way the features of the existing system and the measures taken by farmers to protect their interests."—Journal of the Royal Statistical Society."Mr. Powell has not attempted to cover the entire field of agricultural coöperation, but has confined himself to its more important phases. His work shows a grasp of the issues involved and a ripeness of conclusion that comes only from actual contact with the practical side of coöperation."—American Economic Review."The book is decidedly worth while."—Farm Life and Agriculture.THE MACMILLAN COMPANYPublishers64-66 Fifth AvenueNew York
Coöperation in Agriculture
ByG. HAROLD POWELL
Cloth, 12mo, $1.50
"The author has a broad outlook and never fails to suggest that the economic advantages of coöperation may frequently be quite subordinate to the general social and community interests which are fostered through a common undertaking. He writes with the genuine interest of a man having experience and faith in that of which he speaks."—Political Science Quarterly.
"A volume which explains in a lucid way the features of the existing system and the measures taken by farmers to protect their interests."—Journal of the Royal Statistical Society.
"Mr. Powell has not attempted to cover the entire field of agricultural coöperation, but has confined himself to its more important phases. His work shows a grasp of the issues involved and a ripeness of conclusion that comes only from actual contact with the practical side of coöperation."—American Economic Review.
"The book is decidedly worth while."—Farm Life and Agriculture.
THE MACMILLAN COMPANYPublishers64-66 Fifth AvenueNew York
RURAL SCIENCE SERIESEdited by L. H. BAILEYEach volume illustrated. Cloth, 12mo.
A series of practical books for farmers and gardeners, sold as a set or separately. Each one is the work of a competent specialist, and is suitable for consultation alike by the amateur or professional tiller of the soil, the scientist or the student. Illustrations of marked beauty are freely used, and the books are clearly printed and well bound.