Chart of Complementary Colors
Fig. 14.
Each of the foregoing experiments furnishes an interesting class exercise, and may be very closely repeated by the pupilswith their tops. Also the computation of the proportion of green and blue when raised to the full circle may form a practical problem in proportion for pupils of the higher grades. Taken together, these experiments prove that the complementaries of the old primaries are not found in the secondaries.
The last claim of the Brewster theory is that the secondaries by combination form three lines of colors peculiar to themselves, called citrines, russets and olives. It is asserted that the mixture of orange and green makes citrine; orange and violet russet; green and violet olive. Although these names may be very convenient terms to express three general classes of colors, they must of necessity be too general and indefinite to be of value for accurate expression of color effects, and are in fact so vague that hardly two persons can be found in a large company who will agree as to the best expression of either of them. The following are formulas for a number of colors in each class, as made from analyses of colors coming under these names. It is an interesting exercise to produce some of these colors by means of the rotating color disks and test the opinions of the different members of a company as to which best represents to each one of them a tertiary color, as citrine, for example. For this purpose three different formulas may be shown at the same time, with three sizes of disks.
The term citrine theoretically covers all possible combinations of orange and green, but as generally understood those colors which are so near the orange or the green as to very decidedly approach either the one or the other are not included, and, as shown in the above analyses, a citrine is a very broken color ranging from an orange yellow through yellow to a green yellow.
Although the russets would theoretically range from violet to orange, yet the general conception of russet will hardly accept a violet red, but will cover only the red and orange reds as above indicated, while olives are confined to blue greens and green blues.
These tests are based on combinations of the Bradley standard orange, green and violet pigments, and therefore are far stronger in color than those colors usually termed citrine, russet and olive, made by mixing the pigmentary secondaries. For example, if a yellow and blue pigment are mixed to form a green, and red and yellow pigments to make an orange, and then this green and orange are mixed to produce a citrine, the result will be very much darker and more broken than the mixture of the purer orange and green colors used as standards.
Restricted to these limits these names may become very useful terms for general color expressions, as covering three different classes of broken colors. If any one believes that these color formulas do not correctly represent the three classes of colors indicated, a series of experiments with even the small color top will prove very convincing.
When the subject of standards as a means for identifying colors is mentioned artists frequently express the feeling thatthe names of pigments are good enough for them, such as Ultramarine Blue, Prussian Blue, Vermilions, the Siennas, Indian Red, etc. The following are the analyses of several samples of Vermilion, Burnt Sienna, Raw Sienna, and Indian Red of the best tube oil colors in the market:—
A careful examination of these formulas and a reproduction and comparison of the colors on the color top will convince any one that in no case does the commercial name determine the color with a degree of accuracy sufficient for any valuable nomenclature.
The theory of the harmonies of colors is a subject which awaits very careful investigation and a general discussion by artists and expert colorists. Such investigations must include many experiments based on common standards and uniform methods of measurements and records.
Harmonies naturally seem to fall into a few general classes which are convenient for comparison and discussion as well as for elementary instruction, but no one person can set himself or herself up to decide which are thebestharmonies.The practices and recommendations of noted artists who have appeared to be gifted with intuitive perceptions regarding color combinations have frequently included those for which there seemed to be no recognized authority, and yet their beauty could not be questioned. As the rules of grammar are but the correlation of the practices of the best scholars, so the rules governing color combinations must be the summary of the practices and recommendations of the best artists, if they are to be generally accepted as final, and hence we must patiently await the growth of similarly established laws by the comparison of the opinions of critics of acknowledged ability in various departments of the world of art. This has not been possible in the past and can never occur until there is a language of color through which color facts can be somewhat accurately expressed in verbal and written language, and this language cannot exist until there is an accepted alphabet of color on which it can be based. This alphabet is now in part furnished by the spectrum standards and completed by the pigmentary standards and the rotating disks made like them. Together they form the basis for a nomenclature by the use of which the questions involved in harmonies can be discussed and the results expressed in written language.
In the investigation of any subject with a view to elementary instruction, classification is an important factor, but one which heretofore has been almost ignored as regards color education. Consequently at present the more definite division of harmonies into classes is very much a matter of personal opinion, but Mr. Henry T. Bailey, State Supervisor of Drawing in Massachusetts, has suggested a very useful classification in which he arranges all harmonies under these five heads: Contrasted, Dominant, Complementary, Analogous and Perfected.
Contrasted.—The contrasted harmonies are those in which color is contrasted with non-color, or more accurately in which an active color, that is a tone from the spectrum circuit, is contrasted with a passive color, white, black, gray or silver andgold; for example, a blue green tint with white, or green blue with warm gray No. 1.
Dominant.—By dominant harmonies we mean those in which are combined different tones from one color scale. For example, red tint No. 1, and red shade No. 1, or a green blue tint, green blue, and a green blue shade. A dominant harmony composed of grays, or white, gray and black, is sometimes called a neutral harmony.
Complementary.—This term refers to those harmonies in which are combined opposite or complementary colors in the spectrum circuit. The best of them show not only opposition in color but also opposition in tone. Thus, tints of one color with shades of its complementary produce a more pleasing effect than do complementaries of equal value. The best complementary harmonies contain one or more passive colors.
Analogous.—This name is applied to those harmonies in which are combined tones from scales of neighboring colors in the spectrum circuit.
For example, in a composition of colors from that part of the spectrum containing yellow, green yellow and yellow green the following simple combination may be made: Yellow tint No. 1, green yellow and yellow green shade No. 2.
Perfected.—By perfected harmonies we mean those in which the general effect of one analogous harmony is complementary to that of another.
The above classification of harmonies is very valuable for fixing in the mind the various effects of color combinations, and yet they may seem to somewhat merge into each other in their application, until the underlying principles which govern them are understood. It is unwise to suppose that because the above classification of harmonies is based on the science of color we can infer that it furnishes definite rules for producing best effects.
The good or bad effect of two or more colors in combination in decorative designs or fine art depends very largely uponphenomena which are elaborately explained in a book entitled "The principles of Harmony and Contrasts of Colours" by M. Chevreul.[A]The first edition of this book was prepared in 1835 and published in 1838. The author had at that time been employed for a number of years as superintendent of the manufactory of Gobelin Tapestries in Paris under the control of the French government.
In this book are described in detail the results of a great number of experiments which were instigated by complaints regarding certain colors produced in the dyeing department of the manufactory, and which afford the most elaborate exposition of the subject ever published.
One of the first things which led Chevreul to make his investigation was the complaint that certain black yarns used as shades in blue draperies were not a full black but more or less gray.
The author says in his preface, "The work I now publish is the result of my researches on Simultaneous Contrasts of Colours; researches which have been greatly extended since the lectures I gave on this subject at the institute on the 7th April, 1828. In reflecting on the relations these facts have together, in seeking the principle of which they are the consequence, I have been led to the discovery of the one which I have named theLaw of Simultaneous Contrast of Colours."
The closing sentence of the preface to the first edition and dated 1835 is as follows:—
"I beg the reader never to forget when it is asserted of the phenomena of simultaneous contrast,that one colour placed beside another receives such a modification from it, that this manner of speaking does not mean that two colours, or rather the two material objects that present them to us, have a mutualaction, either physical or chemical; it is really only applied to the modification that takes place before us when we perceive the simultaneous impression of these two colours."
It was not till three years later that a publisher could be found for this book, which is still a standard.
The English translation comprises over five hundred closely printed pages with many engraved and colored plates, and yet, it has been of comparatively little value inpopular instructionbecause of the lack of a generally accepted color nomenclature or list of well defined color terms, by which the readers might have understood and repeated for themselves the experiments described.
Unfortunately Chevreul was fully impressed with the Newton-Brewster idea of three primaries, red, yellow and blue, and therefore some of his deductions from his experiments seem to have been more or less influenced by the attempt to make them harmonize with this theory, and yet the subject which he has treated so exhaustively and intelligently is one of the most important in the æsthetic study and use of colors. In all expressions of colors in combination with each other, whether in nature, fine arts or the decorative and industrial arts, every color is affected by its surrounding colors, a fact which is exhaustively treated in this book.
While with our present knowledge of the subject it does not seem that the material use of color can be reduced to an exact science, this should not prevent us from accepting all the natural and scientific aids which have been or may be discovered toward this desirable result. Because of this lack of scientific knowledge in Chevreul's time much of the worth of his experiments is lost to us, yet there is very much of value in his work, suggesting as it does experiments which may be tried with present standards and modern methods.
If the use of Maxwell disks had been known to Chevreul his deductions from his experiments would have been quite different in their details. For example, in accepting the propositionthat there are three primaries, red, yellow and blue, which may be combined in pairs to make the secondaries, orange, green and violet, he states that owing to the impurities of the pigments the secondaries are not as pure as the primaries. Consequently he believes that this may account for many of the shortcomings which he was too observing to overlook; but notwithstanding such an error in theory this wonderful investigator made many practical experiments and established very valuable facts regarding color contrasts.
The term Simultaneous Contrast seems rather restricted for a title covering such a range of effects, and the author subdivides the subject into simultaneous contrasts, successive contrasts and mixed contrasts, which he defines as follows:—
"In the Simultaneous Contrast of Colors is included all the phenomena of modification which differently colored objects appear to undergo in their physical composition and in the height of tone of their respective colors, when seen simultaneously."
"The Successive Contrast of Colors includes all the phenomena which are observed when the eyes, having looked at one or more colored objects for a certain length of time, perceive, upon turning them away, images of these objects having a color complementary to that which belongs to each of them."
"The distinction of Simultaneous and Successive Contrast renders it easy to comprehend a phenomenon which we may call the mixed contrast; because it results from the fact that the eye, having seen for a time a certain color, acquires an aptitude to see for another period the complementary of that color, and also a new color, presented to it by an exterior object; the sensation then perceived is that which results from this new color and the complementary of the first." These last two effects may be shown very clearly in simple experiments.
There are various phenomena which may be classed as successivecontrasts sometimes called "after images." The phenomena which Chevreul groups under the term "Simultaneous Contrast of Colors" belong to a class of physio-psychological effects termed after images, and more definitely to the subdivision called negative images. The positive after images are not important in the consideration of the theories of color and therefore are not described here. The specific effect most directly involved in the subject of harmonies may be observed if the eyes are fixed upon a small disk of red paper on a white wall for a few seconds and then the paper is suddenly removed, as there will appear on the wall in place of the full red disk a faint tint of a blue green. This is called an after image, and is nearly or exactly a tint of the color complementary to red.
For making this experiment mount a circle of red paper, say three inches in diameter on a square white card, four or five inches across, and grasping the card by one corner hold it in front of a white wall or a sheet of white paper pinned on any support. Tell the observer to look intently at the red disk for a half minute, and then without giving any notice suddenly remove it and ask what color is seen in place of it. At the first trial the result may not be entirely successful, because the eyes of the observer may naturally follow the red spot when it is removed instead of remaining fixed in the original position, but a second trial will bring the expected result. To illustrate mixed contrast, fasten on the wall a piece of red tint No. 2 paper four or five inches square. This may be very conveniently done by using a bit of beeswax on each corner of the paper, which will not soil the wall. Then having the three-inch circle of standard red paper mounted on a white card somewhat larger than five inches square hold the card in front of the red tint on the wall and repeat the experiment as before. The effect now should be a three-inch disk of very light gray in the center of the pink square, which is a "mixed contrast" according to Chevreul. The reason is simple. The after-image or successivecontrast of light blue-green is projected on the red tint and being complementary the resulting effect is a gray. If the red tint could be exactly graded to the complementary effect in the eye the resulting gray circle would be a true neutral gray. Another illustration of the same physical effect by which the complementary is induced may be shown by substituting for the tint of red a light tint of the blue-green paper retaining the full red disk as before. The same blue-green after image is now projected on to the light blue-green paper and hence a circle of more intense blue-green is produced. Thus it is seen that Chevreul's successive and mixed contrasts are both due to the same physiological effect, the only difference being in the ground on to which the after image is projected.
It probably is unnecessary to state that these experiments may be made with any color and its complementary and that red and blue-green are used here merely as an example.
Another phase of the same physical effect is seen under other conditions which may at first seem to be quite different from those described, but which on examination appear somewhat similar.
It is a well established fact that when two surfaces approximating each other in color, as red and orange for example, are placed side by side, both are rendered less brilliant, an effect which might be reasonably expected because in order to see both the eye is naturally directed first to one and then to the other, and in each case the after image induced is a green-blue or blue-green, which being approximately complementary to both, dulls both. Or in other words, it is as though one examines for a long time a line of goods of similar colors so that the eye becomes fatigued and the color dulled. It is said that a good salesman of colored materials will endeavor to occasionally attract a customer's attention for a few moments to some other colors approximating a complementary, so that when the attention is again directed to the goods under consideration the full effect of the color may be secured.
If it is true that the phenomenon of the after image is the cause of the peculiar effects expressed by the terms simultaneous, successive and mixed contrasts, and that by these effects all harmonies in color are governed, it is certainly profitable to understand them while using color material with the children, for their good as well as our own pleasure.
Returning to our classification of harmonies, already stated, we find the first to be Contrasted Harmony, which covers those combinations in which a positive color, as a spectrum color for example, is combined with white, black or gray, leaving out for the present silver and gold, which may be confusing, and can at best be used only as outlines.
The simplest combinations of colors are found in this class, all of which are not equally harmonious, and some may not perhaps be entitled to be classed as harmonies, although not positively inharmonious. In this class, as in all others, there is involved contrast of tone and contrast of color, which may best be considered in several divisions.
According to the results of Chevreul's elaborate experiments the effect of a combination of an active color with white is to render the color more brilliant and to give to the white the effect of the complementary of the active color. He admits that the modification of white is very indefinite, but claims that, knowing what to expect, a complementary effect may be seen which otherwise would not be noticed. There is also a contrast of tone which in all cases tends to strengthen a color when used with white.
White and black are both intensified by combination with each other, and this is the type of "contrast of tone." Contrast of tone is very clearly shown when two or more grays of different tones are placed contiguous to each other. This experiment is easily tried by mounting side by side several stripsof gray papers of different tones. If more than two are used they should be arranged in order from lightest to darkest. In this case each band will appear to be graded in tone from one edge to the other, each being lighter at the edge next to the darker paper.
This effect is plainly shown on the color wheel by producing several rings of grays with white and black disks of several sizes graduated from light at the center to darker at the circumference.
In consequence of this law of contrast of tone the contrast of black with active colors generally tends to intensify the black and lower the tone of the color, i.e., to weaken it as though white or light gray was mixed with it, but this effect is modified by contrast of color. Contrast of color is perceptible in black when combined with color simply because the black is not perfectly black but a very dark gray, and hence there is the same complementary effect which shows in white and the lighter grays, but in a smaller degree. This effect is most clearly seen when the color used in combination is blue or blue-green, which induces in the black, yellow or red complementaries and gives the black a "rusty" appearance.
On the other hand, for example, red with black adds the complementary green-blue to the black, which improves it. The orange and yellow have a similar effect by their blue complementaries to relieve the black from any rusty appearance and a green yellow induces a violet effect in the black.
When a color is contrasted with white the light from the pure white surface is so intense as to very largely obscure the complementary effect on the white, while on the other hand the feeble light from the black is not favorable for the exhibition of a complementary. So it might naturally be inferred that some tone between the white and black would be much more favorable than either for the observance of this effect, which isproved by experiment to be the case. This fact is illustrated in the familiar experiment of placing a white tissue paper over black letters on a colored ground, by which the black is practically rendered a neutral gray and the color a light broken color, and in appearance the gray letters receive a color complementary to the color of the page on which they are printed. Each color has its own tone of gray most susceptible to this complementary effect. The truth of this proposition can be perfectly shown on the color wheel by forming with three different sizes of disks a gray ring on a colored surface. For example, select small disks of orange and white of equal size, then a black and a white disk of the second size and an orange and a white disk of the third size. First place the large orange and white disks on the spindle, then join the two medium-sized white and black disks and put them in front of it, and lastly add the small orange and white disks. By rotation the result is the required neutral gray ring on a light orange surface. By the joining of the white disk with each of the orange disks the orange surface may be changed to a variety of tints for trial with the different grays which may be made from the black and white disks, so that the best tones of both orange and gray may be secured. When the best proportions are obtained the effect will be surprising, because when such disks are properly adjusted the complementary effect is so strong in the gray that it appears as a very definite color, a broken green-blue. It is said that the tone of gray should have the same relation to the tone of the color that its complementary would have in order to get best results.
For the same reason if a circle of lightest neutral gray paper, say four inches in diameter, is placed on a piece of yellow paper about six inches square, and another circle just like it is put on a piece of blue paper of similar size, it will be quite difficult to convince any one who has not previously seen the experiment that both gray circles are from the same sheet of paper. The results observed in this experiment are produced bya contrast of tone which causes one to look lighter than the other, and a contrast of hue which gives one a blue and to the other a yellow hue, in contrast to the color on which it is mounted.
If two colors contiguous in the spectrum circuit are placed in juxtaposition the effect of the contrast of hue is to throw them away from each other. For example, if orange red and the red orange papers are put side by side the former will seem more red and the latter more orange. Therefore, when colored papers are pasted up or laid in order to form a spectrum, for example, the colors not only fail to blend together but each line of contact is very disagreeably prominent.
If two colors are separated by a narrow strip of light gray, gold, black or white, the effect is greatly improved. For this reason a design in analogous colors is often improved by separating certain colors by a fine line of black, gold or gray.
If two colors not closely related to each other in the spectrum circuit are placed in juxtaposition, each is modified by an effect which is the complementary of the other. For example, if red and yellow are placed side by side, in contact, the red is rendered more violet by the added effect of blue, which is the complementary of yellow, and the yellow is modified by the blue-green complementary of the red, which tends to dull the yellow and change it slightly toward green.
If blue and yellow are joined both are improved, as the two are so nearly complementary to each other that each is intensified by simultaneous contrast, blue being added to blue and yellow to yellow.
In the use of colored papers those combinations classified as dominant harmonies are the most simple to make because they are all in one family, as the little children like to consider the relationship. The red family consists of the standard red and its tints and shades, or in other words the red scale. With theseveral papers ready made this harmony becomes very simple, but in the use of pigments the production of a true color scale is not a thing to be confidently undertaken by a novice.
In a very elaborate color chart for Primary education prepared with great care by Dr. Hugo Magnus and Prof. B. Joy Jeffries, and published at large expense about ten years ago with hand-painted samples in oil colors, this lack of classification of hues is very noticeable, although at that time it was by far the best publication of the kind and was not criticised on this point.
For example in a scale of five tones of red the following are the analyses, beginning at the lightest tint:—
In this scale according to the Bradley nomenclature the standard or full color is a very fine vermilion expressed by R.75, O.25, i.e. an orange red, and therefore in order to form a perfect scale both tints and shades should be in the orange reds, but in fact the tints are both broken colors, the lightest a very broken yellow-orange and the deeper tint very nearly a light broken orange. The lightest shade is a pure orange-red but with a larger proportion of red to the orange than the standard, while the darkest tone is a pure shade of red. Thus in the five tones we have the following arrangement, beginning at the lightest tint:—
Broken yellow-orange, broken orange, orange-red; another pure orange-red but more red, and lastly red shade, thus embracing in one orange-red scale parts of four scales from yellow-orange to red. In these defects in the best chart of its kind in the market only ten years ago is seen the best possible evidence of the advance made since that time in color perception, largely due to the use of the color disks in determining scales.While in the use of colored papers the dominant harmony may be the simplest and the one in which there is least danger of really bad work, some of the combinations are much better than others, and superiority is perhaps secured as much by the relative quantities of each tone used in a composition as in the selecting of the tones. In the entire range of the spectrum even this class of harmonies involves problems too complex to be solved by a few rules, but it is a very interesting field in which the children may safely be allowed to roam and experiment.
Complementary Harmonies may perhaps be classified next to dominant because they are more easily described and more definitely limited than those effects termed Analogous Harmonies. A pure Complementary Harmony consists of the combination of tones from two scales which are complementary to each other. For example, the red scale is complementary to the blue-green scale, as also the green to the violet-red, and so on throughout the entire range of the spectrum scales.
As explained on Page 50, the complementary of any color can be determined by means of the color wheel, or nearly enough for æsthetic purposes with the color top. But even though the colors complementary to each other may be determined scientifically there will always remain ample opportunity for the exhibition of color sense and artistic feeling in the choice of colors because the difference between a very beautiful composition in complementary harmony and an indifferently good one may be found in the choice of tones, or in the proportions of each and their arrangement with relation to each other. This harmony certainly contains great possibilities with comparatively few limitations.
While it is perhaps approximately true that complementaries are harmonious in combination, yet best authorities do not seem to fully sustain this opinion and it is quite evident that pure tones of some complementary pairs when combined are very hard in their effects, if not positively unpleasant. This can be relievedvery decidedly and oftentimes very pleasing results secured by modifying the colors to tints and shades or various broken tones.
But as has before been stated, and must be constantly reiterated, all fine questions of harmonies can only be determined by a general agreement of experts in color based on accepted standards.
Analogous Harmonies may seem to be more closely related to the dominant than the complementary and hence, logically, should perhaps be considered before the complementary, but there may be greater difficulties involved in the analogous than in the complementary because they are not so definitely limited.
In an Analogous Harmony we may use tones from a number of scales more or less closely related in the spectrum circuit. In some parts of the spectrum it is possible to include a much wider range than in others. It is comparatively easy to produce safe compositions through that part bounded by the orange-yellow and the green scales, while from the green to the violet experiments are much less safe.
In almost any section of the spectrum a range of three scales is safe if the tones are properly selected and proportioned, and in some sections as many as five or six may possibly be included, by an artist, with striking and pleasing effect.
The compositions which have been classified as Perfected Harmonies may be defined as the combination of two Analogous Harmonies which as a whole are approximately complementary to each other, or in which the key tones of the Analogous Harmonies are complementary to each other. Such compositions may be entirely composed of analogous colors with the addition of but one complementary color, and this is in fact a very safe harmony, especially if that one color is used as a border line or an outline here and there in the design, in which case it may sometimes be strong in color and tone.
The chart of spectrum scales as made from colored paperscut in squares is of great value in explaining the classification of harmonies. Fig. 15 is a reduced copy of the chart of pure spectrum scales shown on page 41, and which is here placed horizontally for convenience.
Chart of Spectrum Scales
Fig. 15.
The black zig-zag lines are designed as graphic illustrations of the various classes of harmonies.
Contrasted Harmonies as defined are limited to designs in one active color mounted on a background of one of the passive colors and thus need no further explanation, although experience will prove that some combinations are very much more pleasing than others.
The Dominant Harmonies which are defined as combinations of tones from one scale cannot be made more clear by a diagram, which would be simply a straight vertical line through any one of the eighteen scales, indicating that the five tones in that scale or any selection from them may be used in a Dominant Harmony.
The Analogous Harmony has given students the most trouble and the diagram is principally prepared to illustrate the great variety in harmonies of this class.
Commencing at the left, the first line indicates a harmony in three scales beginning with red-violet shade No. 2 and passing to shade No. 1, then to standard violet and thence to blue-violet tints No. 1 and No. 2.
The next is in two scales, beginning at violet-blue shade No. 2, thence to blue shade No. 1; back to normal violet-blue;again into the blue scale at tint No. 1 and back to violet-blue tint No. 2.
The next begins at green-blue shade No. 2 and ends in green tint No. 2. Theoretically the line beginning in G. B. S. 2. and leading to G. T. 1. and thence to Y. S. 2. may represent an Analogous Harmony, but it may be doubtful whether a range of such an extent in that part of the spectrum could be made very harmonious. This may be divided into two harmonies at G. T. 1. and each part may be extended to G. T. 2.
The straight line from G. S. 2. to O. Y. T. 2., embracing five scales, might be extended to include the joining broken line running into the Y. O. scale and finishing at O. Y. S. 2.
The remaining lines at the red end of the chart may be considered as indicating one harmony in six tones, or two harmonies in three tones each.
If the two ends of the Chart of Spectrum Scales are joined so as to form an endless band or a cylinder, bringing the violet-red scale adjoining the red-violet, as in the spectrum circuit, the same graphic illustration could be given of harmonies extending from violet to red.
The complementary harmonies require no diagrams, because they are limited to the combination of two scales complementary to each other and would be represented by two parallel vertical lines through any two complementary colors, as for example vertical lines through the red and green-blue scales.
The compositions termed Perfected Harmonies may be fairly well illustrated in the diagram by the combination of the line in V. B. and B. with the broken line commencing in G. Y. S. 2. and ending in G. Y. T. 2.; or again by the line in R. V. to B. V. combined with the straight line from G. T. 1. to Y. S. 2.; or the broken line G. to Y. S. 2. Or again, the entire range of the double combination O. S. 2., O. R. T. 2., V. R. and O. R. S. 2. with the broken line from G. B. S. 2. to G. T. 2. Another sample of Perfected Harmony is found in the union of line O. R. S. 2., V. R., O. R. T. 2., with line G. B. S. 2. to G. T. 2.These diagrams are designed to show the range or extent which a single composition may cover under its special definition and do not imply a necessity for using at one time all the colors through which the line passes, or that they are specially good harmonies.
A striking illustration in nature of a Perfected Harmony was seen one bright autumn morning in a species of woodbine covering the side of a red brick building, in which could be discovered an infinite variety of colors in greens and violet-reds whose tones were increased in number and intensified in effect by the reflections of the sunlight and the corresponding shadows, producing very light tints and very dark shades of various hues of the complementary colors, and forming a complicated and wonderfully beautiful effect very definitely classified as a Perfected Harmony.
So much has been said and written about Field's Equivalents that there is a very general impression among artists and others that they constitute an important element in harmonious compositions of color. This proposition as given in Owen Jones' Grammar of Ornament is as follows:—
"The primaries of equal intensities will harmonize or neutralize each other, in the proportions of 3 yellow, 5 red and 8 blue—integrally as 16.
The secondaries in the proportions of 8 orange, 13 purple, 11 green—integrally as 32.
The tertiaries, citrine (compound of orange and green), 19; russet (orange and purple), 21; olive (green and purple), 24—integrally as 64."
In commenting on this in "The Theory of Color" Dr. Von Bezold says: "It is often maintained that the individual colors in a colored ornament should be so chosen, both as regards hues and the areas assigned to them, that the resulting mixture, as well as the total impression produced when such ornaments are looked at from a considerable distance, should be a neutralgray. Starting from this idea, the attempt has been made to fix the proportional size of the areas, which would have to be assigned to the various colors usually employed in the arts, for the purpose of arriving at the result indicated. This idea was especially elaborated by Field, an Englishman, who gave the name of 'chromatic equivalents' to the numbers of the proportions obtained, a designation which has since been very generally adopted. In reality, however, these 'chromatic equivalents' have no value whatever."
The same writer also says: "It will always remain incomprehensible that even a man like Owen Jones in the text accompanying his beautiful "Grammar of Ornament" should have adopted this proposition in the form given to it by Field, since among all the ornaments reproduced in the work just mentioned there are scarcely any which will really show the distribution of colors demanded by the proposition in question."[B]
In accordance with this eminent authority any one familiar with disk combinations will know by experiment that no combinations of red, yellow and blue approaching the proportion named by Field can produce a neutral gray effect in the eye.
For practical study of color some economic material is absolutely necessary and nothing so well combines manual work with æsthetic cultivation as colored papers, if specially prepared in standard colors and with a dead plated surface.
In the manufacture of the colored papers adopted in the Bradley scheme of color instruction, the effort has constantly been to produce the closest possible imitations of natural colors consistent with the material.
With this aim in view we have secured the brightest possible red, orange, yellow, green and blue and have chosen a violetwhich has the same relation to the other pigmentary colors that the soft beauty of the spectrum violet bears to the other parts of the spectrum.
It however happens that in the pure aniline colors discovered in recent years a line of purples and violets has been found so much purer than the other pigments that we cannot with our red and violet make a perfect imitation of the brightest aniline purples used in some of the goods now in the market. Purple is a general name for the several modifications of violet, red-violet and violet-red as Peacock Blue is a name given to the beautiful hues of blue-green and green-blue. These aniline purples are but another indication that we may expect such advance in the science of pigment manufacture in the comparatively near future that a much purer line of standards may be secured than is now possible in papers. But it does not materially affect the value of the present standards as long as they are accepted as indicating the kind of color, i.e., its location in the spectrum, and theartistscertainly should not object to this lack of purity, because their only present criticism is that the standards are too "raw," which is but another term for pure.
In the glazed colored papers in the market we may find some of these purples, especially in the tints or "pinks" which when placed beside the unglazed surfaces of the standard papers render the latter quite subdued. But in primary color education there is no place for these purest purple papers, until chemistry discovers other colors correspondingly brilliant to complete a purer chart of spectrum colors than is now possible.