ELEMENTS

Of the Formation and Decomposition of Aëriform Fluids—of the Combustion of Simple Bodies—and the Formation of Acids.

Of the Formation and Decomposition of Aëriform Fluids—of the Combustion of Simple Bodies—and the Formation of Acids.

That every body, whether solid or fluid, is augmented in all its dimensions by any increase of its sensible heat, was long ago fully established as a physical axiom, or universal proposition, by the celebrated Boerhaave. Such facts as have been adduced for controverting thegenerality of this principle offer only fallacious results, or, at least, such as are so complicated with foreign circumstances as to mislead the judgment: But, when we separately consider the effects, so as to deduce each from the cause to which they separately belong, it is easy to perceive that the separation of particles by heat is a constant and general law of nature.

When we have heated a solid body to a certain degree, and have thereby caused its particles to separate from each other, if we allow the body to cool, its particles again approach each other in the same proportion in which they were separated by the increased temperature; the body returns through the same degrees of expansion which it before extended through; and, if it be brought back to the same temperature from which we set out at the commencement of the experiment, it recovers exactly the same dimensions which it formerly occupied. But, as we are still very far from being able to arrive at the degree of absolute cold, or deprivation of all heat, being unacquainted with any degree of coldness which we cannot suppose capable of still farther augmentation, it follows, that we are still incapable of causing the ultimate particles of bodies to approach each other as near as is possible; and, consequently, that the particles of all bodies do not touch each other in any state hitherto known, which, tho'a very singular conclusion, is yet impossible to be denied.

It is supposed, that, since the particles of bodies are thus continually impelled by heat to separate from each other, they would have no connection between themselves; and, of consequence, that there could be no solidity in nature, unless they were held together by some other power which tends to unite them, and, so to speak, to chain them together; which power, whatever be its cause, or manner of operation, we name Attraction.

Thus the particles of all bodies may be considered as subjected to the action of two opposite powers, the one repulsive, the other attractive, between which they remain in equilibrio. So long as the attractive force remains stronger, the body must continue in a state of solidity; but if, on the contrary, heat has so far removed these particles from each other, as to place them beyond the sphere of attraction, they lose the adhesion they before had with each other, and the body ceases to be solid.

Water gives us a regular and constant example of these facts; whilst below Zero[2]of the French thermometer, or 32° of Fahrenheit,it remains solid, and is called ice. Above that degree of temperature, its particles being no longer held together by reciprocal attraction, it becomes liquid; and, when we raise its temperature above 80°, (212°) its particles, giving way to the repulsion caused by the heat, assume the state of vapour or gas, and the water is changed into an aëriform fluid.

The same may be affirmed of all bodies in nature: They are either solid or liquid, or in the state of elastic aëriform vapour, according to the proportion which takes place between the attractive force inherent in their particles, and the repulsive power of the heat acting upon these; or, what amounts to the same thing, in proportion to the degree of heat to which they are exposed.

It is difficult to comprehend these phenomena, without admitting them as the effects of a real and material substance, or very subtile fluid, which, insinuating itself between the particles of bodies, separates them from each other; and, even allowing the existence of this fluid to be hypothetical, we shall see in the sequel, that it explains the phenomena of nature in a very satisfactory manner.

This substance, whatever it is, being the cause of heat, or, in other words, the sensation which we callwarmthbeing caused by the accumulation of this substance, we cannot, in strict language,distinguish it by the termheat; because the same name would then very improperly express both cause and effect. For this reason, in the memoir which I published in 1777[3], I gave it the names ofigneous fluidandmatter of heat. And, since that time, in the work[4]published by Mr de Morveau, Mr Berthollet, Mr de Fourcroy, and myself, upon the reformation of chemical nomenclature, we thought it necessary to banish all periphrastic expressions, which both lengthen physical language, and render it more tedious and less distinct, and which even frequently does not convey sufficiently just ideas of the subject intended. Wherefore, we have distinguished the cause of heat, or that exquisitely elastic fluid which produces it, by the term ofcaloric. Besides, that this expression fulfils our object in the system which we have adopted, it possesses this farther advantage, that it accords with every species of opinion, since, strictly speaking, we are not obliged to suppose this to be a real substance; it being sufficient, as will more clearly appear in the sequel of this work, that it be considered as the repulsive cause, whatever that may be, which separates the particles of matter from each other; so thatwe are still at liberty to investigate its effects in an abstract and mathematical manner.

In the present state of our knowledge, we are unable to determine whether light be a modification of caloric, or if caloric be, on the contrary, a modification of light. This, however, is indisputable, that, in a system where only decided facts are admissible, and where we avoid, as far as possible, to suppose any thing to be that is not really known to exist, we ought provisionally to distinguish, by distinct terms, such things as are known to produce different effects. We therefore distinguish light from caloric; though we do not therefore deny that these have certain qualities in common, and that, in certain circumstances, they combine with other bodies almost in the same manner, and produce, in part, the same effects.

What I have already said may suffice to determine the idea affixed to the wordcaloric; but there remains a more difficult attempt, which is, to give a just conception of the manner in which caloric acts upon other bodies. Since this subtile matter penetrates through the pores of all known substances; since there are no vessels through which it cannot escape, and, consequently, as there are none which are capable of retaining it, we can only come at the knowledge of its properties by effects which are fleeting, and difficultly ascertainable. It is inthese things which we neither see nor feel, that it is especially necessary to guard against the extravagancy of our imagination, which forever inclines to step beyond the bounds of truth, and is very difficultly restrained within the narrow line of facts.

We have already seen, that the same body becomes solid, or fluid, or aëriform, according to the quantity of caloric by which it is penetrated; or, to speak more strictly, according as the repulsive force exerted by the caloric is equal to, stronger, or weaker, than the attraction of the particles of the body it acts upon.

But, if these two powers only existed, bodies would become liquid at an indivisible degree of the thermometer, and would almost instantaneously pass from the solid state of aggregation to that of aëriform elasticity. Thus water, for instance, at the very moment when it ceases to be ice, would begin to boil, and would be transformed into an aëriform fluid, having its particles scattered indefinitely through the surrounding space. That this does not happen, must depend upon the action of some third power. The pressure of the atmosphere prevents this separation, and causes the water to remain in the liquid state till it be raised to 80° of temperature (212°) above zero of the French thermometer, the quantity of caloric which it receives in the lowest temperature being insufficientto overcome the pressure of the atmosphere.

Whence it appears that, without this atmospheric pressure, we should not have any permanent liquid, and should only be able to see bodies in that state of existence in the very instant of melting, as the smallest additional caloric would instantly separate their particles, and dissipate them through the surrounding medium. Besides, without this atmospheric pressure, we should not even have any aëriform fluids, strictly speaking, because the moment the force of attraction is overcome by the repulsive power of the caloric, the particles would separate themselves indefinitely, having nothing to give limits to their expansion, unless their own gravity might collect them together, so as to form an atmosphere.

Simple reflection upon the most common experiments is sufficient to evince the truth of these positions. They are more particularly proved by the following experiment, which I published in the Memoirs of the French Academy for 1777, p. 426.

Having filled with sulphuric ether[5]a small narrow glass vessel, A, (Plate VII. Fig. 17.), standingupon its stalk P, the vessel, which is from twelve to fifteen lines diameter, is to be covered by a wet bladder, tied round its neck with several turns of strong thread; for greater security, fix a second bladder over the first. The vessel should be filled in such a manner with the ether, as not to leave the smallest portion of air between the liquor and the bladder. It is now to be placed under the recipient BCD of an air-pump, of which the upper part B ought to be fitted with a leathern lid, through which passes a wire EF, having its point F very sharp; and in the same receiver there ought to be placed the barometer GH. The whole being thus disposed, let the recipient be exhausted, and then, by pushing down the wire EF, we make a hole in the bladder. Immediately the ether begins to boil with great violence, and is changed into an elastic aëriform fluid, which fills the receiver. If the quantity of ether be sufficient to leave a few drops in the phial after the evaporation is finished, the elastic fluid produced will sustain the mercury in the barometer attached to the air-pump, at eight or ten inches in winter, and fromtwenty to twenty-five in summer[6]. To render this experiment more complete, we may introduce a small thermometer into the phial A, containing the ether, which will descend considerably during the evaporation.

The only effect produced in this experiment is, the taking away the weight of the atmosphere, which, in its ordinary state, presses on the surface of the ether; and the effects resulting from this removal evidently prove, that, in the ordinary temperature of the earth, ether would always exist in an aëriform state, but for the pressure of the atmosphere, and that the passing of the ether from the liquid to the aëriform state is accompanied by a considerable lessening of heat; because, during the evaporation, a part of the caloric, which was before in a free state, or at least in equilibrio in the surrounding bodies, combines with the ether, and causes it to assume the aëriform state.

The same experiment succeeds with all evaporable fluids, such as alkohol, water, and even mercury; with this difference, that the atmosphere formed in the receiver by alkohol onlysupports the attached barometer about one inch in winter, and about four or five inches in summer; that formed by water, in the same situation, raises the mercury only a few lines, and that by quicksilver but a few fractions of a line. There is therefore less fluid evaporated from alkohol than from ether, less from water than from alkohol, and still less from mercury than from either; consequently there is less caloric employed, and less cold produced, which quadrates exactly with the results of these experiments.

Another species of experiment proves very evidently that the aëriform state is a modification of bodies dependent on the degree of temperature, and on the pressure which these bodies undergo. In a Memoir read by Mr de la Place and me to the Academy in 1777, which has not been printed, we have shown, that, when ether is subjected to a pressure equal to twenty-eight inches of the barometer, or about the medium pressure of the atmosphere, it boils at the temperature of about 32° (104°), or 33° (106.25°), of the thermometer. Mr de Luc, who has made similar experiments with spirit of wine, finds it boils at 67° (182.75°). And all the world knows that water boils at 80° (212°). Now, boiling being only the evaporation of a liquid, or the moment of its passing from the fluid to the aëriform state, it is evident that, if we keepether continually at the temperature of 33° (106.25°), and under the common pressure of the atmosphere, we shall have it always in an elastic aëriform state; and that the same thing will happen with alkohol when above 67° (182.75°), and with water when above 80° (212°); all which are perfectly conformable to the following experiment[7].

I filled a large vessel ABCD (Plate VII. Fig. 16.) with water, at 35° (110.75°), or 36° (113°); I suppose the vessel transparent, that we may see what takes place in the experiment; and we can easily hold the hands in water at that temperature without inconvenience. Into it I plunged some narrow necked bottles F, G, which were filled with the water, after which they were turned up, so as to rest on their mouths on the bottom of the vessel. Having next put some ether into a very small matrass, with its necka b c, twice bent as in the Plate, I plunged this matrass into the water, so as to have its neck inserted into the mouth of one of the bottles F. Immediately upon feeling the effects of the heat communicated to it by the water in the vessel ABCD it began to boil; and the caloric entering into combination with it, changed it into elastic aëriform fluid, with which I filled several bottles successively, F, G, &c.

This is not the place to enter upon the examination of the nature and properties of this aëriform fluid, which is extremely inflammable; but, confining myself to the object at present in view, without anticipating circumstances, which I am not to suppose the reader to know, I shall only observe, that the ether, from this experiment, is almost only capable of existing in the aëriform state in our world; for, if the weight of our atmosphere was only equal to between 20 and 24 inches of the barometer, instead of 28 inches, we should never be able to obtain ether in the liquid state, at least in summer; and the formation of ether would consequently be impossible upon mountains of a moderate degree of elevation, as it would be converted into gas immediately upon being produced, unless we employed recipients of extraordinary strength, together with refrigeration and compression. And, lastly, the temperature of the blood being nearly that at which ether passes from the liquid to the aëriform state, it must evaporate in the primae viae, and consequently it is very probable the medical properties of this fluid depend chiefly upon its mechanical effect.

These experiments succeed better with nitrous ether, because it evaporates in a lower temperature than sulphuric ether. It is more difficult to obtain alkohol in the aëriform state; because, as it requires 67° (182.75°) to reduce it to vapour,the water of the bath must be almost boiling, and consequently it is impossible to plunge the hands into it at that temperature.

It is evident that, if water were used in the foregoing experiment, it would be changed into gas, when exposed to a temperature superior to that at which it boils. Although thoroughly convinced of this, Mr de la Place and myself judged it necessary to confirm it by the following direct experiment. We filled a glass jar A, (Plate VII. Fig. 5.) with mercury, and placed it with its mouth downwards in a dish B, likewise filled with mercury, and having introduced about two gross of water into the jar, which rose to the top of the mercury at CD; we then plunged the whole apparatus into an iron boiler EFGH, full of boiling sea-water of the temperature of 85° (123.25°), placed upon the furnace GHIK. Immediately upon the water over the mercury attaining the temperature of 80° (212°), it began to boil; and, instead of only filling the small space ACD, it was converted into an aëriform fluid, which filled the whole jar; the mercury even descended below the surface of that in the dish B; and the jar must have been overturned, if it had not been very thick and heavy, and fixed to the dish by means of iron-wire. Immediately after withdrawing the apparatus from the boiler, the vapour in the jar began to condense, and themercury rose to its former station; but it returned again to the aëriform state a few seconds after replacing the apparatus in the boiler.

We have thus a certain number of substances, which are convertible into elastic aëriform fluids by degrees of temperature, not much superior to that of our atmosphere. We shall afterwards find that there are several others which undergo the same change in similar circumstances, such as muriatic or marine acid, ammoniac or volatile alkali, the carbonic acid or fixed air, the sulphurous acid, &c. All of these are permanently elastic in or about the mean temperature of the atmosphere, and under its common pressure.

All these facts, which could be easily multiplied if necessary, give me full right to assume, as a general principle, that almost every body in nature is susceptible of three several states of existence, solid, liquid, and aëriform, and that these three states of existence depend upon the quantity of caloric combined with the body. Henceforwards I shall express these elastic aëriform fluids by the generic termgas; and in each species of gas I shall distinguish between the caloric, which in some measure serves the purpose of a solvent, and the substance, which in combination with the caloric, forms the base of the gas.

To these bases of the different gases, which are hitherto but little known, we have been obliged to assign names; these I shall point out in Chap. IV. of this work, when I have previously given an account of the phenomena attendant upon the heating and cooling of bodies, and when I have established precise ideas concerning the composition of our atmosphere.

We have already shown, that the particles of every substance in nature exist in a certain state of equilibrium, between that attraction which tends to unite and keep the particles together, and the effects of the caloric which tends to separate them. Hence the caloric not only surrounds the particles of all bodies on every side, but fills up every interval which the particles of bodies leave between each other. We may form an idea of this, by supposing a vessel filled with small spherical leaden bullets, into which a quantity of fine sand is poured, which, insinuating into the intervals between the bullets, will fill up every void. The balls, in this comparison, are to the sand which surrounds them exactly in the same situation as the particles of bodies are with respect to the caloric; with this difference only, that the balls are supposed to touch each other, whereas the particles of bodies are not in contact, being retained at a small distance from each other, by the caloric.

If, instead of spherical balls, we substitute solid bodies of a hexahedral, octohedral, or any other regular figure, the capacity of the intervals between them will be lessened, and consequently will no longer contain the same quantity of sand. The same thing takes place, with respect to natural bodies; the intervals left between their particles are not of equal capacity, but vary in consequence of the different figures and magnitude of their particles, and of the distance at which these particles are maintained, according to the existing proportion between their inherent attraction, and the repulsive force exerted upon them by the caloric.

In this manner we must understand the following expression, introduced by the English philosophers, who have given us the first precise ideas upon this subject;the capacity of bodies for containing the matter of heat. As comparisons with sensible objects are of great use in assisting us to form distinct notions of abstract ideas, we shall endeavour to illustrate this, by instancing the phenomena which take place between water and bodies which are wetted and penetrated by it, with a few reflections.

If we immerge equal pieces of different kinds of wood, suppose cubes of one foot each, into water, the fluid gradually insinuates itself into their pores, and the pieces of wood are augmented both in weight and magnitude: Buteach species of wood will imbibe a different quantity of water; the lighter and more porous woods will admit a larger, the compact and closer grained will admit of a lesser quantity; for the proportional quantities of water imbibed by the pieces will depend upon the nature of the constituent particles of the wood, and upon the greater or lesser affinity subsisting between them and water. Very resinous wood, for instance, though it may be at the same time very porous, will admit but little water. We may therefore say, that the different kinds of wood possess different capacities for receiving water; we may even determine, by means of the augmentation of their weights, what quantity of water they have actually absorbed; but, as we are ignorant how much water they contained, previous to immersion, we cannot determine the absolute quantity they contain, after being taken out of the water.

The same circumstances undoubtedly take place, with bodies that are immersed in caloric; taking into consideration, however, that water is an incompressible fluid, whereas caloric is, on the contrary, endowed with very great elasticity; or, in other words, the particles of caloric have a great tendency to separate from each other, when forced by any other power to approach; this difference must of necessity occasionvery considerable diversities in the results of experiments made upon these two substances.

Having established these clear and simple propositions, it will be very easy to explain the ideas which ought to be affixed to the following expressions, which are by no means synonimous, but possess each a strict and determinate meaning, as in the following definitions:

Free caloric, is that which is not combined in any manner with any other body. But, as we live in a system to which caloric has a very strong adhesion, it follows that we are never able to obtain it in the state of absolute freedom.

Combined caloric, is that which is fixed in bodies by affinity or elective attraction, so as to form part of the substance of the body, even part of its solidity.

By the expressionspecific caloricof bodies, we understand the respective quantities of caloric requisite for raising a number of bodies of the same weight to an equal degree of temperature. This proportional quantity of caloric depends upon the distance between the constituent particles of bodies, and their greater or lesser degrees of cohesion; and this distance, or rather the space or void resulting from it, is, as I have already observed, called thecapacity of bodies for containing caloric.

Heat, considered as a sensation, or, in other words, sensible heat, is only the effect produced upon our sentient organs, by the motion or passage of caloric, disengaged from the surrounding bodies. In general, we receive impressions only in consequence of motion, and we might establish it as an axiom,That,without motion, there is no sensation. This general principle applies very accurately to the sensations of heat and cold: When we touch a cold body, the caloric which always tends to become in equilibrio in all bodies, passes from our hand into the body we touch, which gives us the feeling or sensation of cold. The direct contrary happens, when we touch a warm body, the caloric then passing from the body into our hand, produces the sensation of heat. If the hand and the body touched be of the same temperature, or very nearly so, we receive no impression, either of heat or cold, because there is no motion or passage of caloric; and thus no sensation can take place, without some correspondent motion to occasion it.

When the thermometer rises, it shows, that free caloric is entering into the surrounding bodies: The thermometer, which is one of these, receives its share in proportion to its mass, and to the capacity which it possesses for containing caloric. The change therefore which takes place upon the thermometer, only announces achange of place of the caloric in those bodies, of which the thermometer forms one part; it only indicates the portion of caloric received, without being a measure of the whole quantity disengaged, displaced, or absorbed.

The most simple and most exact method for determining this latter point, is that described by Mr de la Place, in the Memoirs of the Academy, No. 1780, p. 364; a summary explanation of which will be found towards the conclusion of this work. This method consists in placing a body, or a combination of bodies, from which caloric is disengaging, in the midst of a hollow sphere of ice; and the quantity of ice melted becomes an exact measure of the quantity of caloric disengaged. It is possible, by means of the apparatus which we have caused to be constructed upon this plan, to determine, not as has been pretended, the capacity of bodies for containing heat, but the ratio of the increase or diminution of capacity produced by determinate degrees of temperature. It is easy with the same apparatus, by means of divers combinations of experiments, to determine the quantity of caloric requisite for converting solid substances into liquids, and liquids into elastic aëriform fluids; and,vice versa, what quantity of caloric escapes from elastic vapours in changing to liquids, and what quantity escapes from liquids during their conversion into solids. Perhaps,when experiments have been made with sufficient accuracy, we may one day be able to determine the proportional quantity of caloric, necessary for producing the several species of gasses. I shall hereafter, in a separate chapter, give an account of the principal results of such experiments as have been made upon this head.

It remains, before finishing this article, to say a few words relative to the cause of the elasticity of gasses, and of fluids in the state of vapour. It is by no means difficult to perceive that this elasticity depends upon that of caloric, which seems to be the most eminently elastic body in nature. Nothing is more readily conceived, than that one body should become elastic by entering into combination with another body possessed of that quality. We must allow that this is only an explanation of elasticity, by an assumption of elasticity, and that we thus only remove the difficulty one step farther, and that the nature of elasticity, and the reason for caloric being elastic, remains still unexplained. Elasticity in the abstract is nothing more than that quality of the particles of bodies by which they recede from each other when forced together. This tendency in the particles of caloric to separate, takes place even at considerable distances. We shall be satisfied of this, when we consider that air is susceptible of undergoing great compression, which supposes that its particleswere previously very distant from each other; for the power of approaching together certainly supposes a previous distance, at least equal to the degree of approach. Consequently, those particles of the air, which are already considerably distant from each other, tend to separate still farther. In fact, if we produce Boyle's vacuum in a large receiver, the very last portion of air which remains spreads itself uniformly through the whole capacity of the vessel, however large, fills it completely throughout, and presses every where against its sides: We cannot, however, explain this effect, without supposing that the particles make an effort to separate themselves on every side, and we are quite ignorant at what distance, or what degree of rarefaction, this effort ceases to act.

Here, therefore, exists a true repulsion between the particles of elastic fluids; at least, circumstances take place exactly as if such a repulsion actually existed; and we have very good right to conclude, that the particles of caloric mutually repel each other. When we are once permitted to suppose this repelling force, therationaleof the formation of gasses, or aëriform fluids, becomes perfectly simple; tho' we must, at the same time, allow, that it is extremely difficult to form an accurate conception of this repulsive force acting upon very minuteparticles placed at great distances from each other.

It is, perhaps, more natural to suppose, that the particles of caloric have a stronger mutual attraction than those of any other substance, and that these latter particles are forced asunder in consequence of this superior attraction between the particles of the caloric, which forces them between the particles of other bodies, that they may be able to reunite with each other. We have somewhat analogous to this idea in the phenomena which occur when a dry sponge is dipt into water: The sponge swells; its particles separate from each other; and all its intervals are filled up by the water. It is evident, that the sponge, in the act of swelling, has acquired a greater capacity for containing water than it had when dry. But we cannot certainly maintain, that the introduction of water between the particles of the sponge has endowed them with a repulsive power, which tends to separate them from each other; on the contrary, the whole phenomena are produced by means of attractive powers; and these are,first, The gravity of the water, and the power which it exerts on every side, in common with all other fluids;2dly, The force of attraction which takes place between the particles of the water, causing them to unite together;3dly, The mutual attraction of the particles of the sponge with each other;and,lastly, The reciprocal attraction which exists between the particles of the sponge and those of the water. It is easy to understand, that the explanation of this fact depends upon properly appreciating the intensity of, and connection between, these several powers. It is probable, that the separation of the particles of bodies, occasioned by caloric, depends in a similar manner upon a certain combination of different attractive powers, which, in conformity with the imperfection of our knowledge, we endeavour to express by saying, that caloric communicates a power of repulsion to the particles of bodies.

FOOTNOTES:[2]Whenever the degree of heat occurs in this work, it is stated by the author according to Reaumur's scale. The degrees within brackets are the correspondent degrees of Fahrenheit's scale, added by the translator. E.[3]Collections of the French Academy of Sciences for that year, p. 420.[4]Chemical Nomenclature.[5]As I shall afterwards give a definition, and explain the properties of the liquor calledether, I shall only premise here, that it is a very volatile inflammable liquor, having a considerably smaller specific gravity than water, or even spirit of wine.—A.[6]It would have been more satisfactory if the Author had specified the degrees of the thermometer at which these heights of the mercury in the barometer are produced.[7]Vide Memoirs of the French Academy, anno 1780, p. 335.—A.

[2]Whenever the degree of heat occurs in this work, it is stated by the author according to Reaumur's scale. The degrees within brackets are the correspondent degrees of Fahrenheit's scale, added by the translator. E.

[2]Whenever the degree of heat occurs in this work, it is stated by the author according to Reaumur's scale. The degrees within brackets are the correspondent degrees of Fahrenheit's scale, added by the translator. E.

[3]Collections of the French Academy of Sciences for that year, p. 420.

[3]Collections of the French Academy of Sciences for that year, p. 420.

[4]Chemical Nomenclature.

[4]Chemical Nomenclature.

[5]As I shall afterwards give a definition, and explain the properties of the liquor calledether, I shall only premise here, that it is a very volatile inflammable liquor, having a considerably smaller specific gravity than water, or even spirit of wine.—A.

[5]As I shall afterwards give a definition, and explain the properties of the liquor calledether, I shall only premise here, that it is a very volatile inflammable liquor, having a considerably smaller specific gravity than water, or even spirit of wine.—A.

[6]It would have been more satisfactory if the Author had specified the degrees of the thermometer at which these heights of the mercury in the barometer are produced.

[6]It would have been more satisfactory if the Author had specified the degrees of the thermometer at which these heights of the mercury in the barometer are produced.

[7]Vide Memoirs of the French Academy, anno 1780, p. 335.—A.

[7]Vide Memoirs of the French Academy, anno 1780, p. 335.—A.

These views which I have taken of the formation of elastic aëriform fluids or gasses, throw great light upon the original formation of the atmospheres of the planets, and particularly that of our earth. We readily conceive, that it must necessarily consist of a mixture of the following substances:First, Of all bodies that are susceptible of evaporation, or, more strictly speaking, which are capable of retaining the state of aëriform elasticity in the temperature of our atmosphere, and under a pressure equal to that of a column of twenty-eight inches of quicksilver in the barometer; and,secondly, Of all substances, whether liquid or solid, which are capable of being dissolved by this mixture of different gasses.

The better to determine our ideas relating to this subject, which has not hitherto been sufficiently considered, let us, for a moment, conceive what change would take place in the varioussubstances which compose our earth, if its temperature were suddenly altered. If, for instance, we were suddenly transported into the region of the planet Mercury, where probably the common temperature is much superior to that of boiling water, the water of the earth, and all the other fluids which are susceptible of the gasseous state, at a temperature near to that of boiling water, even quicksilver itself, would become rarified; and all these substances would be changed into permanent aëriform fluids or gasses, which would become part of the new atmosphere. These new species of airs or gasses would mix with those already existing, and certain reciprocal decompositions and new combinations would take place, until such time as all the elective attractions or affinities subsisting amongst all these new and old gasseous substances had operated fully; after which, the elementary principles composing these gasses, being saturated, would remain at rest. We must attend to this, however, that, even in the above hypothetical situation, certain bounds would occur to the evaporation of these substances, produced by that very evaporation itself; for as, in proportion to the increase of elastic fluids, the pressure of the atmosphere would be augmented, as every degree of pressure tends, in some measure, to prevent evaporation, and as even the most evaporablefluids can resist the operation of a very high temperature without evaporating, if prevented by a proportionally stronger compression, water and all other liquids being able to sustain a red heat in Papin's digester; we must admit, that the new atmosphere would at last arrive at such a degree of weight, that the water which had not hitherto evaporated would cease to boil, and, of consequence, would remain liquid; so that, even upon this supposition, as in all others of the same nature, the increasing gravity of the atmosphere would find certain limits which it could not exceed. We might even extend these reflections greatly farther, and examine what change might be produced in such situations upon stones, salts, and the greater part of the fusible substances which compose the mass of our earth. These would be softened, fused, and changed into fluids, &c.: But these speculations carry me from my object, to which I hasten to return.

By a contrary supposition to the one we have been forming, if the earth were suddenly transported into a very cold region, the water which at present composes our seas, rivers, and springs, and probably the greater number of the fluids we are acquainted with, would be converted into solid mountains and hard rocks, at first diaphanousand homogeneous, like rock crystal, but which, in time, becoming mixed with foreign and heterogeneous substances, would become opake stones of various colours. In this case, the air, or at least some part of the aëriform fluids which now compose the mass of our atmosphere, would doubtless lose its elasticity for want of a sufficient temperature to retain them in that state: They would return to the liquid state of existence, and new liquids would be formed, of whose properties we cannot, at present, form the most distant idea.

These two opposite suppositions give a distinct proof of the following corollaries:First, Thatsolidity,liquidity, andaëriform elasticity, are only three different states of existence of the same matter, or three particular modifications which almost all substances are susceptible of assuming successively, and which solely depend upon the degree of temperature to which they are exposed; or, in other words, upon the quantity of caloric with which they are penetrated[8].2dly, That it is extremely probable that air is a fluid naturally existing in a state of vapour; or, as we may better express it, that our atmosphere is a compound of all the fluidswhich are susceptible of the vaporous or permanently elastic state, in the usual temperature, and under the common pressure.3dly, That it is not impossible we may discover, in our atmosphere, certain substances naturally very compact, even metals themselves; as a metallic substance, for instance, only a little more volatile than mercury, might exist in that situation.

Amongst the fluids with which we are acquainted, some, as water and alkohol, are susceptible of mixing with each other in all proportions; whereas others, on the contrary, as quicksilver, water, and oil, can only form a momentary union; and, after being mixed together, separate and arrange themselves according to their specific gravities. The same thing ought to, or at least may, take place in the atmosphere. It is possible, and even extremely probable, that, both at the first creation, and every day, gasses are formed, which are difficultly miscible with atmospheric air, and are continually separating from it. If these gasses be specifically lighter than the general atmospheric mass, they must, of course, gather in the higher regions, and form strata that float upon the common air. The phenomena which accompany igneous meteors induce me to believe, that there exists in the upper partsof our atmosphere a stratum of inflammable fluid in contact with those strata of air which produce the phenomena of the aurora borealis and other fiery meteors.—I mean hereafter to pursue this subject in a separate treatise.

FOOTNOTES:[8]The degree of pressure which they undergo must be taken into account. E.

[8]The degree of pressure which they undergo must be taken into account. E.

[8]The degree of pressure which they undergo must be taken into account. E.

From what has been premised, it follows, that our atmosphere is composed of a mixture of every substance capable of retaining the gasseous or aëriform state in the common temperature, and under the usual pressure which it experiences. These fluids constitute a mass, in some measure homogeneous, extending from the surface of the earth to the greatest height hitherto attained, of which the density continually decreases in the inverse ratio of the superincumbent weight. But, as I have before observed, it is possible that this first stratum is surmounted by several others consisting of very different fluids.

Our business, in this place, is to endeavour to determine, by experiments, the nature of the elastic fluids which compose the inferior stratum of air which we inhabit. Modern chemistry has made great advances in this research; and it will appear by the following details that the analysis of atmospherical air has been morerigorously determined than that of any other substance of the class. Chemistry affords two general methods of determining the constituent principles of bodies, the method of analysis, and that of synthesis. When, for instance, by combining water with alkohol, we form the species of liquor called, in commercial language, brandy or spirit of wine, we certainly have a right to conclude, that brandy, or spirit of wine, is composed of alkohol combined with water. We can produce the same result by the analytical method; and in general it ought to be considered as a principle in chemical science, never to rest satisfied without both these species of proofs.

We have this advantage in the analysis of atmospherical air, being able both to decompound it, and to form it a new in the most satisfactory manner. I shall, however, at present confine myself to recount such experiments as are most conclusive upon this head; and I may consider most of these as my own, having either first invented them, or having repeated those of others, with the intention of analysing atmospherical air, in perfectly new points of view.

I took a matrass (A, fig. 14. plate II.) of about 36 cubical inches capacity, having a long neck B C D E, of six or seven lines internal diameter, and having bent the neck as in Plate IV. Fig. 2. so as to allow of its being placed inthe furnace M M N N, in such a manner that the extremity of its neck E might be inserted under a bell-glass F G, placed in a trough of quicksilver R R S S; I introduced four ounces of pure mercury into the matrass, and, by means of a syphon, exhausted the air in the receiver F G, so as to raise the quicksilver to L L, and I carefully marked the height at which it stood by pasting on a slip of paper. Having accurately noted the height of the thermometer and barometer, I lighted a fire in the furnace M M N N, which I kept up almost continually during twelve days, so as to keep the quicksilver always almost at its boiling point. Nothing remarkable took place during the first day: The Mercury, though not boiling, was continually evaporating, and covered the interior surface of the vessels with small drops, at first very minute, which gradually augmenting to a sufficient size, fell back into the mass at the bottom of the vessel. On the second day, small red particles began to appear on the surface of the mercury, which, during the four or five following days, gradually increased in size and number; after which they ceased to increase in either respect. At the end of twelve days, seeing that the calcination of the mercury did not at all increase, I extinguished the fire, and allowed the vessels to cool. The bulk of air in the body and neck of the matrass, and in the bell-glass, reduced toa medium of 28 inches of the barometer and 10° (54.5°) of the thermometer, at the commencement of the experiment was about 50 cubical inches. At the end of the experiment the remaining air, reduced to the same medium pressure and temperature, was only between 42 and 43 cubical inches; consequently it had lost about 1/6 of its bulk. Afterwards, having collected all the red particles, formed during the experiment, from the running mercury in which they floated, I found these to amount to 45 grains.

I was obliged to repeat this experiment several times, as it is difficult in one experiment both to preserve the whole air upon which we operate, and to collect the whole of the red particles, or calx of mercury, which is formed during the calcination. It will often happen in the sequel, that I shall, in this manner, give in one detail the results of two or three experiments of the same nature.

The air which remained after the calcination of the mercury in this experiment, and which was reduced to 5/6 of its former bulk, was no longer fit either for respiration or for combustion; animals being introduced into it were suffocated in a few seconds, and when a taper was plunged into it, it was extinguished as if it had been immersed into water.

In the next place, I took the 45 grains of red matter formed during this experiment, which I put into a small glass retort, having a proper apparatus for receiving such liquid, or gasseous product, as might be extracted: Having applied a fire to the retort in a furnace, I observed that, in proportion as the red matter became heated, the intensity of its colour augmented. When the retort was almost red hot, the red matter began gradually to decrease in bulk, and in a few minutes after it disappeared altogether; at the same time 41-1/2 grains of running mercury were collected in the recipient, and 7 or 8 cubical inches of elastic fluid, greatly more capable of supporting both respiration and combustion than atmospherical air, were collected in the bell-glass.

A part of this air being put into a glass tube of about an inch diameter, showed the following properties: A taper burned in it with a dazzling splendour, and charcoal, instead of consuming quietly as it does in common air, burnt with a flame, attended with a decrepitating noise, like phosphorus, and threw out such a brilliant light that the eyes could hardly endure it. This species of air was discovered almost at the same time by Mr Priestley, Mr Scheele, and myself. Mr Priestley gave it the name ofdephlogisticated air, Mr Scheele called itempyreal air. At first I named ithighly respirable air, towhich has since been substituted the term ofvital air. We shall presently see what we ought to think of these denominations.

In reflecting upon the circumstances of this experiment, we readily perceive, that the mercury, during its calcination, absorbs the salubrious and respirable part of the air, or, to speak more strictly, the base of this respirable part; that the remaining air is a species of mephitis, incapable of supporting combustion or respiration; and consequently that atmospheric air is composed of two elastic fluids of different and opposite qualities. As a proof of this important truth, if we recombine these two elastic fluids, which we have separately obtained in the above experiment, viz. the 42 cubical inches of mephitis, with the 8 cubical inches of respirable air, we reproduce an air precisely similar to that of the atmosphere, and possessing nearly the same power of supporting combustion and respiration, and of contributing to the calcination of metals.

Although this experiment furnishes us with a very simple means of obtaining the two principal elastic fluids which compose our atmosphere, separate from each other, yet it does not give us an exact idea of the proportion in which these two enter into its composition: For the attraction of mercury to the respirable part of the air, or rather to its base, is not sufficiently strong to overcome all the circumstances whichoppose this union. These obstacles are the mutual adhesion of the two constituent parts of the atmosphere for each other, and the elective attraction which unites the base of vital air with caloric; in consequence of these, when the calcination ends, or is at least carried as far as is possible, in a determinate quantity of atmospheric air, there still remains a portion of respirable air united to the mephitis, which the mercury cannot separate. I shall afterwards show, that, at least in our climate, the atmospheric air is composed of respirable and mephitic airs, in the proportion of 27 and 73; and I shall then discuss the causes of the uncertainty which still exists with respect to the exactness of that proportion.

Since, during the calcination of mercury, air is decomposed, and the base of its respirable part is fixed and combined with the mercury, it follows, from the principles already established, that caloric and light must be disengaged during the process: But the two following causes prevent us from being sensible of this taking place: As the calcination lasts during several days, the disengagement of caloric and light, spread out in a considerable space of time, becomes extremely small for each particular moment of that time, so as not to be perceptible; and, in the next place, the operation being carried on by means of fire in a furnace, the heatproduced by the calcination itself becomes confounded with that proceeding from the furnace. I might add the respirable part of the air, or rather its base, in entering into combination with the mercury, does not part with all the caloric which it contained, but still retains a part of it after forming the new compound; but the discussion of this point, and its proofs from experiment, do not belong to this part of our subject.

It is, however, easy to render this disengagement of caloric and light evident to the senses, by causing the decomposition of air to take place in a more rapid manner. And for this purpose, iron is excellently adapted, as it possesses a much stronger affinity for the base of respirable air than mercury. The elegant experiment of Mr Ingenhouz, upon the combustion of iron, is well known. Take a piece of fine iron wire, twisted into a spiral, (BC, Plate IV. Fig. 17.) fix one of its extremities B into the cork A, adapted to the neck of the bottle DEFG, and fix to the other extremity of the wire C, a small morsel of tinder. Matters being thus prepared, fill the bottle DEFG with air deprived of its mephitic part; then light the tinder, and introduce it quickly with the wire upon which it is fixed, into the bottle which you stop up with the cork A, as is shown in the figure (17 Plate IV.) The instant thetinder comes into contact with the vital air it begins to burn with great intensity; and, communicating the inflammation to the iron-wire, it too takes fire, and burns rapidly, throwing out brilliant sparks, which fall to the bottom of the vessel in rounded globules, which become black in cooling, but retain a degree of metallic splendour. The iron thus burnt is more brittle even than glass, and is easily reduced into powder, and is still attractable by the magnet, though not so powerfully as it was before combustion. As Mr Ingenhouz has neither examined the change produced on iron, nor upon the air by this operation, I have repeated the experiment under different circumstances, in an apparatus adapted to answer my particular views, as follows.

Having filled a bell-glass (A, Plate IV. Fig. 3.) of about six pints measure, with pure air, or the highly respirable part of air, I transported this jar by means of a very flat vessel, into a quicksilver bath in the bason BC, and I took care to render the surface of the mercury perfectly dry both within and without the jar with blotting paper. I then provided a small capsule of china-ware D, very flat and open, in which I placed some small pieces of iron, turned spirally, and arranged in such a way as seemed most favourable for the combustion being communicated to every part. To the end of one of these pieces of iron wasfixed a small morsel of tinder, to which was added about the sixteenth part of a grain of phosphorus, and, by raising the bell-glass a little, the china capsule, with its contents, were introduced into the pure air. I know that, by this means, some common air must mix with the pure air in the glass; but this, when it is done dexterously, is so very trifling, as not to injure the success of the experiment. This being done, a part of the air is sucked out from the bell-glass, by means of a syphon GHI, so as to raise the mercury within the glass to EF; and, to prevent the mercury from getting into the syphon, a small piece of paper is twisted round its extremity. In sucking out the air, if the motion of the lungs only be used, we cannot make the mercury rise above an inch or an inch and a half; but, by properly using the muscles of the mouth, we can, without difficulty, cause it to rise six or seven inches.

I next took an iron wire, (MN, Plate IV. Fig. 16.) properly bent for the purpose, and making it red hot in the fire, passed it through the mercury into the receiver, and brought it in contact with the small piece of phosphorus attached to the tinder. The phosphorus instantly takes fire, which communicates to the tinder, and from that to the iron. When the pieces have been properly arranged, the whole iron burns, even to the last particle,throwing out a white brilliant light similar to that of Chinese fireworks. The great heat produced by this combustion melts the iron into round globules of different sizes, most of which fall into the China cup; but some are thrown out of it, and swim upon the surface of the mercury. At the beginning of the combustion, there is a slight augmentation in the volume of the air in the bell-glass, from the dilatation caused by the heat; but, presently afterwards, a rapid diminution of the air takes place, and the mercury rises in the glass; insomuch that, when the quantity of iron is sufficient, and the air operated upon is very pure, almost the whole air employed is absorbed.

It is proper to remark in this place, that, unless in making experiments for the purpose of discovery, it is better to be contented with burning a moderate quantity of iron; for, when this experiment is pushed too far, so as to absorb much of the air, the cup D, which floats upon the quicksilver, approaches too near the bottom of the bell-glass; and the great heat produced, which is followed by a very sudden cooling, occasioned by the contact of the cold mercury, is apt to break the glass. In which case, the sudden fall of the column of mercury, which happens the moment the least flaw is produced in the glass, causes such a wave, as throws a great part of the quicksilver from the bason. To avoidthis inconvenience, and to ensure success to the experiment, one gross and a half of iron is sufficient to burn in a bell-glass, which holds about eight pints of air. The glass ought likewise to be strong, that it may be able to bear the weight of the column of mercury which it has to support.

By this experiment, it is not possible to determine, at one time, both the additional weight acquired by the iron, and the changes which have taken place in the air. If it is wished to ascertain what additional weight has been gained by the iron, and the proportion between that and the air absorbed, we must carefully mark upon the bell-glass, with a diamond, the height of the mercury, both before and after the experiment[9]. After this, the syphon (GH, Pl. IV. fig. 3.) guarded, as before, with a bit of paper, to prevent its filling with mercury, is to be introduced under the bell-glass, having the thumb placed upon the extremity, G, of the syphon, to regulate the passage of the air; and by this means the air is gradually admitted, so as to let the mercury fall to its level. This being done, the bell-glass is to be carefully removed, theglobules of melted iron contained in the cup, and those which have been scattered about, and swim upon the mercury, are to be accurately collected, and the whole is to be weighed. The iron will be found in that state calledmartial ethiopsby the old chemists, possessing a degree of metallic brilliancy, very friable, and readily reducible into powder, under the hammer, or with a pestle and mortar. If the experiment has succeeded well, from 100 grains of iron will be obtained 135 or 136 grains of ethiops, which is an augmentation of 35 per cent.

If all the attention has been paid to this experiment which it deserves, the air will be found diminished in weight exactly equal to what the iron has gained. Having therefore burnt 100 grains of iron, which has acquired an additional weight of 35 grains, the diminution of air will be found exactly 70 cubical inches; and it will be found, in the sequel, that the weight of vital air is pretty nearly half a grain for each cubical inch; so that, in effect, the augmentation of weight in the one exactly coincides with the loss of it in the other.

I shall observe here, once for all, that, in every experiment of this kind, the pressure and temperature of the air, both before and after the experiment, must be reduced, by calculation, to a common standard of 10° (54.5°) of the thermometer, and 28 inches of the barometer.Towards the end of this work, the manner of performing this very necessary reduction will be found accurately detailed.

If it be required to examine the nature of the air which remains after this experiment, we must operate in a somewhat different manner. After the combustion is finished, and the vessels have cooled, we first take out the cup, and the burnt iron, by introducing the hand through the quicksilver, under the bell-glass; we next introduce some solution of potash, or caustic alkali, or of the sulphuret of potash, or such other substance as is judged proper for examining their action upon the residuum of air. I shall, in the sequel, give an account of these methods of analysing air, when I have explained the nature of these different substances, which are only here in a manner accidentally mentioned. After this examination, so much water must be let into the glass as will displace the quicksilver, and then, by means of a shallow dish placed below the bell-glass, it is to be removed into the common water pneumato-chemical apparatus, where the air remaining may be examined at large, and with great facility.

When very soft and very pure iron has been employed in this experiment, and, if the combustion has been performed in the purest respirable or vital air, free from all admixture of the noxious or mephitic part, the air which remainsafter the combustion will be found as pure as it was before; but it is difficult to find iron entirely free from a small portion of charry matter, which is chiefly abundant in steel. It is likewise exceedingly difficult to procure the pure air perfectly free from some admixture of mephitis, with which it is almost always contaminated; but this species of noxious air does not, in the smallest degree, disturb the result of the experiment, as it is always found at the end exactly in the same proportion as at the beginning.

I mentioned before, that we have two ways of determining the constituent parts of atmospheric air, the method of analysis, and that by synthesis. The calcination of mercury has furnished us with an example of each of these methods, since, after having robbed the respirable part of its base, by means of the mercury, we have restored it, so as to recompose an air precisely similar to that of the atmosphere. But we can equally accomplish this synthetic composition of atmospheric air, by borrowing the materials of which it is composed from different kingdoms of nature. We shall see hereafter that, when animal substances are dissolved in the nitric acid, a great quantity of gas is disengaged, which extinguishes light, and is unfit for animal respiration, being exactly similar to the noxious or mephitic part of atmospheric air. And, if we take 73 parts, by weight, of this elasticfluid, and mix it with 27 parts of highly respirable air, procured from calcined mercury, we will form an elastic fluid precisely similar to atmospheric air in all its properties.

There are many other methods of separating the respirable from the noxious part of the atmospheric air, which cannot be taken notice of in this part, without anticipating information, which properly belongs to the subsequent chapters. The experiments already adduced may suffice for an elementary treatise; and, in matters of this nature, the choice of our evidences is of far greater consequence than their number.

I shall close this article, by pointing out the property which atmospheric air, and all the known gasses, possess of dissolving water, which is of great consequence to be attended to in all experiments of this nature. Mr Saussure found, by experiment, that a cubical foot of atmospheric air is capable of holding 12 grains of water in solution: Other gasses, as the carbonic acid, appear capable of dissolving a greater quantity; but experiments are still wanting by which to determine their several proportions. This water, held in solution by gasses, gives rise to particular phenomena in many experiments, which require great attention, and which has frequently proved the source of great errors to chemists in determining the results of their experiments.


Back to IndexNext