FOOTNOTES:

FOOTNOTES:[22]This termalloy, which we have from the language of the arts, serves exceedingly well for distinguishing all the combinations or intimate unions of metals with each other, and is adopted in our new nomenclature for that purpose.—A.[23]By these are meant the supporters of the phlogistic theory, who at present consider hydrogen, or the base of inflammable air, as the phlogiston of the celebrated Stahl.—E.

[22]This termalloy, which we have from the language of the arts, serves exceedingly well for distinguishing all the combinations or intimate unions of metals with each other, and is adopted in our new nomenclature for that purpose.—A.

[22]This termalloy, which we have from the language of the arts, serves exceedingly well for distinguishing all the combinations or intimate unions of metals with each other, and is adopted in our new nomenclature for that purpose.—A.

[23]By these are meant the supporters of the phlogistic theory, who at present consider hydrogen, or the base of inflammable air, as the phlogiston of the celebrated Stahl.—E.

[23]By these are meant the supporters of the phlogistic theory, who at present consider hydrogen, or the base of inflammable air, as the phlogiston of the celebrated Stahl.—E.

We have, in Chap. V. and VIII. examined the products resulting from the combustion of the four simple combustible substances, sulphur, phosphorus, charcoal, and hydrogen: We have shown, in Chap. X that the simple combustible substances are capable of combining with each other into compound combustible substances, and have observed that oils in general, and particularly the fixed vegetable oils, belong to this class, being composed of hydrogen and charcoal. It remains, in this chapter, to treat of the oxygenation of these compound combustible substances, and to show that there exist acids and oxyds having double and triple bases. Nature furnishes us with numerous examples of this kind of combinations, by means of which, chiefly, she is enabled to produce a vast variety of compounds from a very limited number of elements, or simple substances.

It was long ago well known, that, when muriatic and nitric acids were mixed together, a compound acid was formed, having properties quite distinct from those of either of the acids taken separately. This acid was calledaqua regia, from its most celebrated property of dissolving gold, calledking of metalsby the alchymists. Mr Berthollet has distinctly proved that the peculiar properties of this acid arise from the combined action of its two acidifiable bases; and for this reason we have judged it necessary to distinguish it by an appropriate name: That ofnitro-muriaticacid appears extremely applicable, from its expressing the nature of the two substances which enter into its composition.

This phenomenon of a double base in one acid, which had formerly been observed only in the nitro-muriatic acid, occurs continually in the vegetable kingdom, in which a simple acid, or one possessed of a single acidifiable base, is very rarely found. Almost all the acids procurable from this kingdom have bases composed of charcoal and hydrogen, or of charcoal, hydrogen, and phosphorus, combined with more or less oxygen. All these bases, whether double or triple, are likewise formed into oxyds, having less oxygen than is necessary to give them the properties of acids. The acids and oxyds from the animal kingdom are still more compound, as their bases generally consist of a combinationof charcoal, phosphorus, hydrogen, and azote.

As it is but of late that I have acquired any clear and distinct notions of these substances, I shall not, in this place, enlarge much upon the subject, which I mean to treat of very fully in some memoirs I am preparing to lay before the Academy. Most of my experiments are already performed; but, to be able to give exact reports of the resulting quantities, it is necessary that they be carefully repeated, and increased in number: Wherefore, I shall only give a short enumeration of the vegetable and animal acids and oxyds, and terminate this article by a few reflections upon the composition of vegetable and animal bodies.

Sugar, mucus, under which term we include the different kinds of gums, and starch, are vegetable oxyds, having hydrogen and charcoal combined, in different proportions, as their radicals or bases, and united with oxygen, so as to bring them to the state of oxyds. From the state of oxyds they are capable of being changed into acids by the addition of a fresh quantity of oxygen; and, according to the degrees of oxygenation, and the proportion of hydrogen and charcoal in their bases, they form the several kinds of vegetable acids.

It would be easy to apply the principles of our nomenclature to give names to these vegetableacids and oxyds, by using the names of the two substances which compose their bases: They would thus become hydro-carbonous acids and oxyds: In this method we might indicate which of their elements existed in excess, without circumlocution, after the manner used by Mr Rouelle for naming vegetable extracts: He calls these extracto-resinous when the extractive matter prevails in their composition, and resino-extractive when they contain a larger proportion of resinous matter. Upon that plan, and by varying the terminations according to the formerly established rules of our nomenclature, we have the following denominations: Hydro-carbonous, hydro-carbonic; carbono-hydrous, and carbono-hydric oxyds. And for the acids: Hydro-carbonous, hydro carbonic, oxygenated hydro-carbonic; carbono-hydrous, carbono-hydric, and oxygenated carbono-hydric. It is probable that the above terms would suffice for indicating all the varieties in nature, and that, in proportion as the vegetable acids become well understood, they will naturally arrange themselves under these denominations. But, though we know the elements of which these are composed, we are as yet ignorant of the proportions of these ingredients, and are still far from being able to class them in the above methodical manner; wherefore, we have determined to retainthe ancient names provisionally. I am somewhat farther advanced in this inquiry than at the time of publishing our conjunct essay upon chemical nomenclature; yet it would be improper to draw decided consequences from experiments not yet sufficiently precise: Though I acknowledge that this part of chemistry still remains in some degree obscure, I must express my expectations of its being very soon elucidated.

I am still more forcibly necessitated to follow the same plan in naming the acids, which have three or four elements combined in their bases; of these we have a considerable number from the animal kingdom, and some even from vegetable substances. Azote, for instance, joined to hydrogen and charcoal, form the base or radical of the Prussic acid; we have reason to believe that the same happens with the base of the Gallic acid; and almost all the animal acids have their bases composed of azote, phosphorus, hydrogen, and charcoal. Were we to endeavour to express at once all these four component parts of the bases, our nomenclature would undoubtedly be methodical; it would have the property of being clear and determinate; but this assemblage of Greek and Latin substantives and adjectives, which are not yet universally admitted by chemists, would have the appearance of abarbarous language, difficult both to pronounce and to be remembered. Besides, this part of chemistry being still far from that accuracy it must arrive to, the perfection of the science ought certainly to precede that of its language; and we must still, for some time, retain the old names for the animal oxyds and acids. We have only ventured to make a few slight modifications of these names, by changing the termination intoous, when we have reason to suppose the base to be in excess, and intoic, when we suspect the oxygen predominates.

The following are all the vegetable acids hitherto known:

1. Acetous acid.2. Acetic acid.3. Oxalic acid.4. Tartarous acid.5. Pyro-tartarous acid.6. Citric acid.7. Malic acid.8. Pyro-mucous acid.9. Pyro-lignous acid.10. Gallic acid.11. Benzoic acid.12. Camphoric acid.13. Succinic acid.

1. Acetous acid.2. Acetic acid.3. Oxalic acid.4. Tartarous acid.5. Pyro-tartarous acid.6. Citric acid.7. Malic acid.8. Pyro-mucous acid.9. Pyro-lignous acid.10. Gallic acid.11. Benzoic acid.12. Camphoric acid.13. Succinic acid.

Though all these acids, as has been already said, are chiefly, and almost entirely, composed of hydrogen, charcoal, and oxygen, yet, properly speaking, they contain neither water carbonic acid nor oil, but only the elements necessary for forming these substances. The power of affinity reciprocally exerted by the hydrogen, charcoal, and oxygen, in these acids, is in a stateof equilibrium only capable of existing in the ordinary temperature of the atmosphere; for, when they are heated but a very little above the temperature of boiling water, this equilibrium is destroyed, part of the oxygen and hydrogen unite, and form water; part of the charcoal and hydrogen combine into oil; part of the charcoal and oxygen unite to form carbonic acid; and, lastly, there generally remains a small portion of charcoal, which, being in excess with respect to the other ingredients, is left free. I mean to explain this subject somewhat farther in the succeeding chapter.

The oxyds of the animal kingdom are hitherto less known than those from the vegetable kingdom, and their number is as yet not at all determined. The red part of the blood, lymph, and most of the secretions, are true oxyds, under which point of view it is very important to consider them. We are only acquainted with six animal acids, several of which, it is probable, approach very near each other in their nature, or, at least, differ only in a scarcely sensible degree. I do not include the phosphoric acid amongst these, because it is found in all the kingdoms of nature. They are,

1. Lactic acid.2. Saccholactic acid.3. Bombic acid.4. Formic acid.5. Sebacic acid.6. Prussic acid.

1. Lactic acid.2. Saccholactic acid.3. Bombic acid.4. Formic acid.5. Sebacic acid.6. Prussic acid.

The connection between the constituent elements of the animal oxyds and acids is not more permanent than in those from the vegetable kingdom, as a small increase of temperature is sufficient to overturn it. I hope to render this subject more distinct than has been done hitherto in the following chapter.

Before we can thoroughly comprehend what takes place during the decomposition of vegetable substances by fire, we must take into consideration the nature of the elements which enter into their composition, and the different affinities which the particles of these elements exert upon each other, and the affinity which caloric possesses with them. The true constituent elements of vegetables are hydrogen, oxygen, and charcoal: These are common to all vegetables, and no vegetable can exist without them: Such other substances as exist in particular vegetables are only essential to the composition of those in which they are found, and do not belong to vegetables in general.

Of these elements, hydrogen and oxygen have a strong tendency to unite with caloric, and be converted into gas, whilst charcoal is a fixed element, having but little affinity with caloric. On the other hand, oxygen, which, in the usual temperature, tends nearly equally to unite with hydrogen and with charcoal, has a much strongeraffinity with charcoal when at the red heat[24], and then unites with it to form carbonic acid.

Although we are far from being able to appreciate all these powers of affinity, or to express their proportional energy by numbers, we are certain, that, however variable they may be when considered in relation to the quantity of caloric with which they are combined, they are all nearly in equilibrium in the usual temperature of the atmosphere; hence vegetables neither contain oil[25], water, nor carbonic acid, tho' they contain all the elements of these substances. The hydrogen is neither combined with the oxygen nor with the charcoal, and reciprocally; the particles of these three substances form a triple combination, which remains in equilibriumwhilst undisturbed by caloric but a very slight increase of temperature is sufficient to overturn this structure of combination.

If the increased temperature to which the vegetable is exposed does not exceed the heat of boiling water, one part of the hydrogen combines with the oxygen, and forms water, the rest of the hydrogen combines with a part of the charcoal, and forms volatile oil, whilst the remainder of the charcoal, being set free from its combination with the other elements, remains fixed in the bottom of the distilling vessel.

When, on the contrary, we employ a red heat, no water is formed, or, at least, any that may have been produced by the first application of the heat is decomposed, the oxygen having a greater affinity with the charcoal at this degree of heat, combines with it to form carbonic acid, and the hydrogen being left free from combination with the other elements, unites with caloric, and escapes in the state of hydrogen gas. In this high temperature, either no oil is formed, or, if any was produced during the lower temperature at the beginning of the experiment, it is decomposed by the action of the red heat. Thus the decomposition of vegetable matter, under a high temperature, is produced by the action of double and triple affinities; while the charcoal attracts the oxygen,on purpose to form carbonic acid, the caloric attracts the hydrogen, and converts it into hydrogen gas.

The distillation of every species of vegetable substance confirms the truth of this theory, if we can give that name to a simple relation of facts. When sugar is submitted to distillation, so long as we only employ a heat but a little below that of boiling water, it only loses its water of cristallization, it still remains sugar, and retains all its properties; but, immediately upon raising the heat only a little above that degree, it becomes blackened, a part of the charcoal separates from the combination, water slightly acidulated passes over accompanied by a little oil, and the charcoal which remains in the retort is nearly a third part of the original weight of the sugar.

The operation of affinities which take place during the decomposition, by fire, of vegetables which contain azote, such as the cruciferous plants, and of those containing phosphorus, is more complicated; but, as these substances only enter into the composition of vegetables in very small quantities, they only, apparently, produce slight changes upon the products of distillation; the phosphorus seems to combine with the charcoal, and, acquiring fixity from that union, remains behind in the retort, while theazote, combining with a part of the hydrogen, forms ammoniac, or volatile alkali.

Animal substances, being composed nearly of the same elements with cruciferous plants, give the same products in distillation, with this difference, that, as they contain a greater quantity of hydrogen and azote, they produce more oil and more ammoniac. I shall only produce one fact as a proof of the exactness with which this theory explains all the phenomena which occur during the distillation of animal substances, which is the rectification and total decomposition of volatile animal oil, commonly known by the name of Dippel's oil. When these oils are procured by a first distillation in a naked fire they are brown, from containing a little charcoal almost in a free state; but they become quite colourless by rectification. Even in this state the charcoal in their composition has so slight a connection with the other elements as to separate by mere exposure to the air. If we put a quantity of this animal oil, well rectified, and consequently clear, limpid, and transparent, into a bell-glass filled with oxygen gas over mercury, in a short time the gas is much diminished, being absorbed by the oil, the oxygen combining with the hydrogen of the oil forms water, which sinks to the bottom, at the same time the charcoal which was combined with the hydrogen being set free, manifests itselfby rendering the oil black. Hence the only way of preserving these oils colourless and transparent, is by keeping them in bottles perfectly full and accurately corked, to hinder the contact of air, which always discolours them.

Successive rectifications of this oil furnish another phenomenon confirming our theory. In each distillation a small quantity of charcoal remains in the retort, and a little water is formed by the union of the oxygen contained in the air of the distilling vessels with the hydrogen of the oil. As this takes place in each successive distillation, if we make use of large vessels and a considerable degree of heat, we at last decompose the whole of the oil, and change it entirely into water and charcoal. When we use small vessels, and especially when we employ a slow fire, or degree of heat little above that of boiling water, the total decomposition of these oils, by repeated distillation, is greatly more tedious, and more difficultly accomplished. I shall give a particular detail to the Academy, in a separate memoir, of all my experiments upon the decomposition of oil; but what I have related above may suffice to give just ideas of the composition of animal and vegetable substances, and of their decomposition by the action of fire.

FOOTNOTES:[24]Though this term, red heat, does not indicate any absolutely determinate degree of temperature, I shall use it sometimes to express a temperature considerably above that of boiling water.—A.[25]I must be understood here to speak of vegetables reduced to a perfectly dry state; and, with respect to oil, I do not mean that which is procured by expression either in the cold, or in a temperature not exceeding that of boiling water; I only allude to the empyreumatic oil procured by distillation with a naked fire, in a heat superior to the temperature of boiling water; which is the only oil declared to be produced by the operation of fire. What I have published upon this subject in the Memoirs of the Academy for 1786 may be consulted.—A.

[24]Though this term, red heat, does not indicate any absolutely determinate degree of temperature, I shall use it sometimes to express a temperature considerably above that of boiling water.—A.

[24]Though this term, red heat, does not indicate any absolutely determinate degree of temperature, I shall use it sometimes to express a temperature considerably above that of boiling water.—A.

[25]I must be understood here to speak of vegetables reduced to a perfectly dry state; and, with respect to oil, I do not mean that which is procured by expression either in the cold, or in a temperature not exceeding that of boiling water; I only allude to the empyreumatic oil procured by distillation with a naked fire, in a heat superior to the temperature of boiling water; which is the only oil declared to be produced by the operation of fire. What I have published upon this subject in the Memoirs of the Academy for 1786 may be consulted.—A.

[25]I must be understood here to speak of vegetables reduced to a perfectly dry state; and, with respect to oil, I do not mean that which is procured by expression either in the cold, or in a temperature not exceeding that of boiling water; I only allude to the empyreumatic oil procured by distillation with a naked fire, in a heat superior to the temperature of boiling water; which is the only oil declared to be produced by the operation of fire. What I have published upon this subject in the Memoirs of the Academy for 1786 may be consulted.—A.

The manner in which wine, cyder, mead, and all the liquors formed by the spiritous fermentation, are produced, is well known to every one. The juice of grapes or of apples being expressed, and the latter being diluted with water, they are put into large vats, which are kept in a temperature of at least 10° (54.5°) of the thermometer. A rapid intestine motion, or fermentation, very soon takes place, numerous globules of gas form in the liquid and burst at the surface; when the fermentation is at its height, the quantity of gas disengaged is so great as to make the liquor appear as if boiling violently over a fire. When this gas is carefully gathered, it is found to be carbonic acid perfectly pure, and free from admixture with any other species of air or gas whatever.

When the fermentation is completed, the juice of grapes is changed from being sweet, and full of sugar, into a vinous liquor which no longer contains any sugar, and from which we procure, by distillation, an inflammable liquor,known in commerce under the name of Spirit of Wine. As this liquor is produced by the fermentation of any saccharine matter whatever diluted with water, it must have been contrary to the principles of our nomenclature to call it spirit of wine rather than spirit of cyder, or of fermented sugar; wherefore, we have adopted a more general term, and the Arabic wordalkoholseems extremely proper for the purpose.

This operation is one of the most extraordinary in chemistry: We must examine whence proceed the disengaged carbonic acid and the inflammable liquor produced, and in what manner a sweet vegetable oxyd becomes thus converted into two such opposite substances, whereof one is combustible, and the other eminently the contrary. To solve these two questions, it is necessary to be previously acquainted with the analysis of the fermentable substance, and of the products of the fermentation. We may lay it down as an incontestible axiom, that, in all the operations of art and nature, nothing is created; an equal quantity of matter exists both before and after the experiment; the quality and quantity of the elements remain precisely the same; and nothing takes place beyond changes and modifications in the combination of these elements. Upon this principle the whole art of performing chemical experimentsdepends: We must always suppose an exact equality between the elements of the body examined and those of the products of its analysis.

Hence, since from must of grapes we procure alkohol and carbonic acid, I have an undoubted right to suppose that must consists of carbonic acid and alkohol. From these premises, we have two methods of ascertaining what passes during vinous fermentation, by determining the nature of, and the elements which compose, the fermentable substances, or by accurately examining the produces resulting from fermentation; and it is evident that the knowledge of either of these must lead to accurate conclusions concerning the nature and composition of the other. From these considerations, it became necessary accurately to determine the constituent elements of the fermentable substances; and, for this purpose, I did not make use of the compound juices of fruits, the rigorous analysis of which is perhaps impossible, but made choice of sugar, which is easily analysed, and the nature of which I have already explained. This substance is a true vegetable oxyd with two bases, composed of hydrogen and charcoal brought to the state of an oxyd, by a certain proportion of oxygen; and these three elements are combined in such a way, that a very slight force is sufficient to destroy the equilibrium of their connection. Bya long train of experiments, made in various ways, and often repeated, I ascertained that the proportion in which these ingredients exist in sugar, are nearly eight parts of hydrogen, 64 parts of oxygen, and 28 parts of charcoal, all by weight, forming 100 parts of sugar.

Sugar must be mixed with about four times its weight of water, to render it susceptible of fermentation; and even then the equilibrium of its elements would remain undisturbed, without the assistance of some substance, to give a commencement to the fermentation. This is accomplished by means of a little yeast from beer; and, when the fermentation is once excited, it continues of itself until completed. I shall, in another place, give an account of the effects of yeast, and other ferments, upon fermentable substances. I have usually employed 10libs.of yeast, in the state of paste, for each 100libs.of sugar, with as much water as is four times the weight of the sugar. I shall give the results of my experiments exactly as they were obtained, preserving even the fractions produced by calculation.

libs.oz.grosgrs.Water400000Sugar100000Yeast in paste, 10libs.composed of{ Water73644{ Dry yeast212128————————Total510

libs.oz.grosgrs.407libs, 3oz.6gros44grs.of water, composed of{Hydrogen611271.40{ Oxygen3462344.60{Hydrogen8000100libs.sugar, composed of{Oxygen64000{Charcoal28000{Hydrogen0459.302libs.12oz.1gros28grs.of dry yeast, composed of{Oxygen110228.76{ Charcoal012459{ Azote0052.94———————————Total weight510000

libs.oz.grosgrs.Oxygen:of the water340000}libs.oz.grosgrs.of the water in the yeast62344.60}4111261.36of the sugar64000}of the dry yeast110228.76}Hydrogen:of the water60000}of the water in the yeast11271.40}69608.70of the sugar8000}of the dry yeast0459.30}Charcoal:of the sugar28000}of the yeast012459.00}2812459.00Azote of the yeast----    }0052.94———————————In all510000

Having thus accurately determined the nature and quantity of the constituent elements of the materials submitted to fermentation, we have next to examine the products resulting from that process. For this purpose, I placed the above 510libs.of fermentable liquor in a proper[26]apparatus, by means of which I could accurately determine the quantity and quality of gas disengaged during the fermentation, and could even weigh every one of the productsseparately, at any period of the process I judged proper. An hour or two after the substances are mixed together, especially if they are kept in a temperature of from 15° (65.75°) to 18° (72.5°) of the thermometer, the first marks of fermentation commence; the liquor turns thick and frothy, little globules of air are disengaged, which rise and burst at the surface; the quantity of these globules quickly increases, and there is a rapid and abundant production of very pure carbonic acid, accompanied with a scum, which is the yeast separating from the mixture. After some days, less or more according to the degree of heat, the intestine motion and disengagement of gas diminish; but these do not cease entirely, nor is the fermentation completed for a considerable time. During the process, 35libs.5oz.4gros19grs.of dry carbonic acid are disengaged, which carry alongst with them 13libs.14oz.5grosof water. There remains in the vessel 460libs.11oz.6gros53grs.of vinous liquor, slightly acidulous. This is at first muddy, but clears of itself, and deposits a portion of yeast. When we separately analise all these substances, which is effected by very troublesome processes, we have the results as given in the following Tables. This process, with all the subordinate calculations and analyses, will be detailed at large in the Memoirs of the Academy.

libs.oz.grosgrs.35libs.5oz.4gros19grs.of carbonic acid, composed of{Oxygen257134{Charcoal914257408libs.15oz.5gros14grs.of water, composed of{Oxygen34710059{Hydrogen615427{Oxygen, combined with hydrogen31616457libs.11oz.1gros58grs.of dry alkohol, composed of{Hydrogen, combined with oxygen5853{Hydrogen, combined with charcoal4050{Charcoal, combined with hydrogen16115632libs.8oz.of dry acetous acid, composed of{Hydrogen0240{Oxygen11140{Charcoal010004libs.1 oz.4gros3grs.of residuum of sugar, composed of{Hydrogen05167{Oxygen29727{Charcoal12253{Hydrogen022411lib.6oz.0gros5grs.of dry yeast, composed of{Oxygen013114{ Charcoal06230{Azote00237————————510libs.Total510000

libs.oz.grosgrs.409 libs. 10 oz. 0 gros 54 grs.of oxygen contained in theWater34710059Carbonic acid257134Alkohol316164Acetous acid11140Residuum of sugar29727Yeast01311428 libs. 12 oz. 5 gros 59 grs.of charcoal contained in theCarbonic acid914257Alkohol1611563Acetous acid01000Residuum of sugar12253Yeast0623071 libs. 8 oz. 6 gros 66 grs.of hydrogen contained in theWater615427Water of the alkohol5853Combined with the charcoal of the alko.4050Acetous acid0240Residuum of sugar05167Yeast022412 gros 37 grs.of azote in the yeast00237——————————————510libs.Total510000

In these results, I have been exact, even to grains; not that it is possible, in experiments of this nature, to carry our accuracy so far, but as the experiments were made only with a few pounds of sugar, and as, for the sake of comparison, I reduced the results of the actual experiments to the quintal or imaginary hundredpounds, I thought it necessary to leave the fractional parts precisely as produced by calculation.

When we consider the results presented by these tables with attention, it is easy to discover exactly what occurs during fermentation. In the first place, out of the 100libs.of sugar employed, 4libs.1oz.4gros3grs.remain, without having suffered decomposition; so that, in reality, we have only operated upon 95libs.14oz.3gros69grs.of sugar; that is to say, upon 61libs.6oz.45grs.of oxygen, 7libs.10oz.6gros6grs.of hydrogen, and 26libs.13oz.5gros19grs.of charcoal. By comparing these quantities, we find that they are fully sufficient for forming the whole of the alkohol, carbonic acid and acetous acid produced by the fermentation. It is not, therefore, necessary to suppose that any water has been decomposed during the experiment, unless it be pretended that the oxygen and hydrogen exist in the sugar in that state. On the contrary, I have already made it evident that hydrogen, oxygen and charcoal, the three constituent elements of vegetables, remain in a state of equilibrium or mutual union with each other which subsists so long as this union remains undisturbed by increased temperature, or by some new compound attraction; and that thenonly these elements combine, two and two together, to form water and carbonic acid.

The effects of the vinous fermentation upon sugar is thus reduced to the mere separation of its elements into two portions; one part is oxygenated at the expence of the other, so as to form carbonic acid, whilst the other part, being deoxygenated in favour of the former, is converted into the combustible substance alkohol; therefore, if it were possible to reunite alkohol and carbonic acid together, we ought to form sugar. It is evident that the charcoal and hydrogen in the alkohol do not exist in the state of oil, they are combined with a portion of oxygen, which renders them miscible with water; wherefore these three substances, oxygen, hydrogen, and charcoal, exist here likewise in a species of equilibrium or reciprocal combination; and in fact, when they are made to pass through a red hot tube of glass or porcelain, this union or equilibrium is destroyed, the elements become combined, two and two, and water and carbonic acid are formed.

I had formally advanced, in my first Memoirs upon the formation of water, that it was decomposed in a great number of chemical experiments, and particularly during the vinous fermentation. I then supposed that water existed ready formed in sugar, though I am now convinced that sugar only contains the elementsproper for composing it. It may be readily conceived, that it must have cost me a good deal to abandon my first notions, but by several years reflection, and after a great number of experiments and observations upon vegetable substances, I have fixed my ideas as above.

I shall finish what I have to say upon vinous fermentation, by observing, that it furnishes us with the means of analysing sugar and every vegetable fermentable matter. We may consider the substances submitted to fermentation, and the products resulting from that operation, as forming an algebraic equation; and, by successively supposing each of the elements in this equation unknown, we can calculate their values in succession, and thus verify our experiments by calculation, and our calculation by experiment reciprocally. I have often successfully employed this method for correcting the first results of my experiments, and to direct me in the proper road for repeating them to advantage. I have explained myself at large upon this subject, in a Memoir upon vinous fermentation already presented to the Academy, and which will speedily be published.

FOOTNOTES:[26]The above apparatus is described in the Third Part.—A.

[26]The above apparatus is described in the Third Part.—A.

[26]The above apparatus is described in the Third Part.—A.

The phenomena of putrefaction are caused, like those of vinous fermentation, by the operation of very complicated affinities. The constituent elements of the bodies submitted to this process cease to continue in equilibrium in the threefold combination, and form themselves anew into binary combinations[27], or compounds, consisting of two elements only; but these are entirely different from the results produced by the vinous fermentation. Instead of one part of the hydrogen remaining united with part of the water and charcoal to form alkohol, as in the vinous fermentation, the whole of the hydrogen is dissipated, during putrefaction, in the form of hydrogen gas, whilst, at the same time, the oxygen and charcoal, uniting with caloric, escape in the form of carbonic acid gas; so that, when the whole process is finished, especiallyif the materials have been mixed with a sufficient quantity of water, nothing remains but the earth of the vegetable mixed with a small portion of charcoal and iron. Thus putrefaction is nothing more than a complete analysis of vegetable substance, during which the whole of the constituent elements is disengaged in form of gas, except the earth, which remains in the state of mould[28].

Such is the result of putrefaction when the substances submitted to it contain only oxygen, hydrogen, charcoal and a little earth. But this case is rare, and these substances putrify imperfectly and with difficulty, and require a considerable time to complete their putrefaction. It is otherwise with substances containing azote, which indeed exists in all animal matters, and even in a considerable number of vegetable substances. This additional element is remarkably favourable to putrefaction; and for this reason animal matter is mixed with vegetable, when the putrefaction of these is wished to be hastened. The whole art of forming composts and dunghills, for the purposes of agriculture, consists in the proper application of this admixture.

The addition of azote to the materials of putrefaction not only accelerates the process,that element likewise combines with part of the hydrogen, and forms a new substance calledvolatile alkaliorammoniac. The results obtained by analysing animal matters, by different processes, leave no room for doubt with regard to the constituent elements of ammoniac; whenever the azote has been previously separated from these substances, no ammoniac is produced; and in all cases they furnish ammoniac only in proportion to the azote they contain. This composition of ammoniac is likewise fully proved by Mr Berthollet, in the Memoirs of the Academy for 1785, p. 316. where he gives a variety of analytical processes by which ammoniac is decomposed, and its two elements, azote and hydrogen, procured separately.

I already mentioned in Chap. X. that almost all combustible bodies were capable of combining with each other; hydrogen gas possesses this quality in an eminent degree, it dissolves charcoal, sulphur, and phosphorus, producing the compounds namedcarbonated hydrogen gas,sulphurated hydrogen gas, andphosphorated hydrogen gas. The two latter of these gasses have a peculiarly disagreeable flavour; the sulphurated hydrogen gas has a strong resemblance to the smell of rotten eggs, and the phosphorated smells exactly like putrid fish. Ammoniac has likewise a peculiar odour, not less penetrating, or less disagreeable, than these other gasses. Fromthe mixture of these different flavours proceeds the fetor which accompanies the putrefaction of animal substances. Sometimes ammoniac predominates, which is easily perceived by its sharpness upon the eyes; sometimes, as in feculent matters, the sulphurated gas is most prevalent; and sometimes, as in putrid herrings, the phosphorated hydrogen gas is most abundant.

I long supposed that nothing could derange or interrupt the course of putrefaction; but Mr Fourcroy and Mr Thouret have observed some peculiar phenomena in dead bodies, buried at a certain depth, and preserved to a certain degree, from contact with air; having found the muscular flesh frequently converted into true animal fat. This must have arisen from the disengagement of the azote, naturally contained in the animal substance, by some unknown cause, leaving only the hydrogen and charcoal remaining, which are the elements proper for producing fat or oil. This observation upon the possibility of converting animal substances into fat may some time or other lead to discoveries of great importance to society. The faeces of animals, and other excrementitious matters, are chiefly composed of charcoal and hydrogen, and approach considerably to the nature of oil, of which they furnish a considerable quantity by distillation with a naked fire; but the intolerable foetor which accompanies all the productsof these substances prevents our expecting that, at least for a long time, they can be rendered useful in any other way than as manures.

I have only given conjectural approximations in this Chapter upon the composition of animal substances, which is hitherto but imperfectly understood. We know that they are composed of hydrogen, charcoal, azote, phosphorus, and sulphur, all of which, in a state of quintuple combination, are brought to the state of oxyd by a larger or smaller quantity of oxygen. We are, however, still unacquainted with the proportions in which these substances are combined, and must leave it to time to complete this part of chemical analysis, as it has already done with several others.


Back to IndexNext