Fig. 53.--Cutting cast-iron pipe.Fig. 53.—Cutting cast-iron pipe.
Fig. 53.--Cutting cast-iron pipe.Fig. 53.—Cutting cast-iron pipe.
Cutting Cast-iron Pipe.—To cut cast-iron pipe, a sharp cold chisel and hammer are needed. The pipe is marked all around, just where it is to be cut. Then it is laid with the part of the pipe that is to be cut resting on a block of wood. A groove is cut with the hammer and chisel around the pipe. One person can turn the pipe while the other does the cutting. After a little experience one man cancut and roll the pipe alone. This groove is cut deeper and deeper until the pipe breaks apart. If standard pipe is being cut, a file is generally resorted to for cutting the groove. On account of the lightness of the pipe, a hammer and chisel will crack the pipe lengthwise. When cutting extra heavy cast-iron pipe, a good heavy blow must be struck to cause the chisel to cut into the iron. After a few cuts, the beginner will understand the weight of blow that must be struck to cut the pipe quickly.
The term "soil pipes" means pipe that receives the discharge from water closets. The size of a soil pipe for ordinary dwellings should be 4 inches.
One to three closets—4-inch XX cast-iron.Four to eight closets—5-inch XX cast-iron.Eight to twelve closets—6-inch XX cast-iron.
There are cases when 3-inch XX cast-iron pipe is used, but the practice is not recommended.
The soil pipe should be well supported and held in place. The connection between soil pipe and closet should be of lead to allow for any expansion of settling that might take place.
Material of Soil Pipes.—Soil pipe in common use today is made of light cast iron, tar-coated, extra heavy cast iron uncoated and coated, galvanized wrought-iron pipe, and steel pipe. The best kind to use depends upon the job and place where it is to be used. All kinds of bends and fittings can be had in any of the above-mentioned materials. In choosing the material of the pipe that is best to use, the following points should be carefully considered.
Location of Soil Pipe.—The location of the soil pipe depends to a great extent upon the location of the toilets. The soil stack should be located on an inside partition. The horizontal pipe should not run over expensively decorated ceilings unless run inside of a trough made of copper or sheet lead. As far as possible, the pipes should be confined, to runs short, and the number of bends reduced.
Soil-pipe fittings can be had from stock almost to suit the conditions. I will enumerate a few. The names of these fittings should be familiar to the mechanic so that when ordering he can give the correct name.1⁄16,1⁄8,1⁄6,1⁄4bend, sanitary tee, tapped tee, side outlet fitting, return bend, cross branches, double Y, double TY, traps. The uses of these cast-iron fittings perhaps are obvious, but a word about the use of each one will be of service.
The1⁄4bend is used to change the direction of run of pipe 90°. A long-sweep1⁄4bend is used on work requiring the best practice.1⁄8,1⁄16, and1⁄6bends are used to change the direction of pipe 45°, 221⁄2°, and 162⁄3°. Two1⁄8bends should be used in preference to one1⁄4bend where there is sufficient room. Side outlet1⁄4bend is used for waste connection. They can be had with an outlet on either side of the heel. Their use is not recommended.
Return bends are used on fresh-air inlets. Tees are used for vents only. Ys are used wherever possible. The use of a Y-branch together with an1⁄8bend for a 90° connection with the main line is always preferable to a TY or, as they are commonly called, sanitary T. A tapped fitting gets its name because it is tapped for iron pipe thread. Tapped fittings are used for venting and should not be used forwaste unless the tap enters the fitting at an angle of 45°.
These fittings and pipe are joined by first caulking with oakum and pouring, with one continuous pour, the hub full of molten metal. When cool, the lead should be set and then caulked around the pipe and around the hub.
The amount of lead and oakum required for various-sized joints is as follows:
Pipe size.............234568101215Pounds of lead....11⁄221⁄4333⁄441⁄2671⁄29111⁄4Oakum (ounce)...468101216202430
Rust Joints.—The plumber is called upon to run cast-iron pipe in places where lead and oakum will not be of service for the joints. In cases of this kind, a rust joint is made. This "rust" is made according to the following formula:
This mixture is made the consistency of cement, using water to mix thoroughly and bring all parts into contact with each other. When it hardens, it becomes very hard and makes a tight joint which overcomes the objections to lead and oakum joints.
This pipe comes in about 18-foot lengths and fittings of the following makes and shapes, and their use is fully explained. The lengths of pipe come with a thread on each end and a coupling screwed on one end. The lengths come in bundles up to 11⁄2-inches and in single lengths over that size. Screw pipe fittings, it will be noted, are called by a different name than cast-iron ones. The fittings in common use today are the 90 degree ell, 45, 22, and 162⁄3. The Y and TY, tucker fittings, and inverted Ys are used inpractically the same way as the cast-iron fittings. The 90 degree ell, 45, 22, and 162⁄3are used to change the run of pipe that many degrees. All 90 degree fittings, ells, and Ts are tapped to give the pipe a pitch of1⁄4inch to the foot. Itis better to use two 45 ells to make a 90 bend when it is possible.
CAST-IRON SCREW FITTINGS Fig. 54.CAST-IRON SCREW FITTINGS Fig. 54.
CAST-IRON SCREW FITTINGS Fig. 54.CAST-IRON SCREW FITTINGS Fig. 54.
Inverted Y.—The inverted Y is used in venting to good advantage. The use of these fittings is illustrated in the sketches.
Waste Pipes.—Waste pipes are the pipes that run to or convey the discharge of waste matter to the house drain, from wash trays, baths, lavatories, sinks, and showers.
The usual size of waste pipes is 2 inches. Waste pipes are made of the same material as soil pipe. Lead and brass pipe are also in common use. All exposed waste pipes in bath and toilet rooms are brass, nickel-plated. The waste pipes under kitchen sinks and wash trays are either lead or plain heavy brass. All waste pipes are run with a pitch towards the house trap and should be properly vented as explained under venting. The pipes should be easy of access, with clean-outs in convenient places. The waste pipes under a tile or cement floor should be covered with waterproof paper and a metal V-shaped shield over the entire length. If the waste pipes are over a decorated ceiling they should be in a copper-lined or lead-lined box. This box should have a tell-tale pipe running to the open cellar with the end of the tell-tale pipe left open. If waste pipes are to take the discharge from sinks in which chemicals are thrown, either chemical lead or terra-cotta pipe should be used. If terra-cotta is used, it should have at least 6 inches reinforced concrete around it and the joints of pipe made of keisilgar.
Urinals...................2 inchesKitchen sink...........2 inchesSlop sink................3 inchesReceptacles............11⁄2inchesBath tubs................11⁄2inchesLavatories..............11⁄2or 11⁄4inchesWash trays.............2 inches
Tell-tale Pipe.—The tell-tale pipe is a small pipe thatextends from the trough, pan, or box that is under a line of pipe or fixtures to the open cellar. When water is seen running out of this pipe, it shows that a leak exists somewhere in the line of pipe that is in the box or trough. The use of this pipe saves the destruction of walls and ceilings.
Fig. 55.--Circuit vent.Fig. 55.—Circuit vent.
Fig. 55.--Circuit vent.Fig. 55.—Circuit vent.
Vents are the most important pipes in the plumbing system. Modern plumbing successfully attempts to make living in crowded and thickly populated districts, as well as in isolated buildings, free from all unpleasant odors and annoyances. This could not be accomplished without the use of vents. Vents relieve all pressure in the system by furnishing an outlet for the air that is displaced by the waste discharged from the fixtures. Another of its functions is to supply air when syphonic action starts, thereby stoppingthe action that would break the seal of the trap under fixtures. The pipe extending from top fixture connection, up to and through the roof, is called the ventilation pipe. All vents that do not pass directly through the roof terminate in this ventilation pipe.
Fig. 56.--Loop vent.Fig. 56.—Loop vent.
To explain the use of vents, we might well start in the basement of a dwelling house. Suppose there is a set of wash trays in the laundry; the 2-inch trap of these trays should have a 11⁄4-inch vent pipe leading from the crown of the trap up along side of the stack. On the first floor a 11⁄4-inch pipe from the crown of the kitchen sink trap will lead into it. Here the pipe should be increased to 2 inches. On the second floor the 11⁄4-inch pipes leading from the lavatory and bath traps come into it. The vent stack now extends up into the attic and connects with the ventilation pipe. In a general way, the above is an example of venting. The old method of venting was very complicated and is almost beyond describing with the pen.
In common use today, there are several kinds of venting, namely: circuit and loop venting, crown venting, and continuous venting. Thecircuit venting,Fig. 55, is used in connection with the installation of closets. Take a row of toilets in which the waste connection of each closet discharges into a Y-branch, and there will be a series of Y-branches. One end of this series of branches discharges into the main stack while the other end continues and turns up at least to the height of the top of the closet and then enters the main vent stack. When this main vent runs up along side of the main stack and forces the vent pipe connected to the series of Y-branches to travel back, it iscalled a loop vent. This type of vent supplies air to the complete line of toilets and is very efficient.
Fig. 57.--Continuous vent.Fig. 57.—Continuous vent.Fig. 58.Fig. 58.
Fig. 57.--Continuous vent.Fig. 57.—Continuous vent.Fig. 58.Fig. 58.
Fig. 57.--Continuous vent.Fig. 57.—Continuous vent.
Fig. 58.Fig. 58.
Continuous venting,Figs. 57and58, applies more to fixtures other than toilets. A P-trap is used and enters a T in the stack. The lower part of the T acts as and connects with the waste pipe while the upper half is and connects with the vent pipe. A study of the figures will aid the reader to understand thoroughly the above explanations. In continuous venting the waste of the lowest fixture is discharged into the vent pipe and extended to the main waste stack where it is connected. This is done to allow anyrust scales that occasionally drop down the vent pipe, and render it unfit to perform its duty, to be washed away into the sewer.
Crown venting,Fig. 59, is as its name implies, a vent that is taken from the crown of the trap, thence into the main vent.
Each one of these methods of venting is used and considered good practice, provided it is properly installed and correctly connected with the use of proper fittings.
Fig. 59.--Crown venting.Fig. 59.—Crown venting.
Fig. 59.--Crown venting.Fig. 59.—Crown venting.
Things to Remember.—
Thehouse trapis a deep seal trap placed inside the foundation wall, and intersects the house drain and house sewer. The trap is placed at this point for a number of reasons: first, to keep sewer gases from entering the pipes in the house; second, this location is where the house drain ends. This trap should have two clean-outs, one on each side of the seal. The clean-outs should be of extra heavy cast-iron body with a heavy brass screw cap. The cap should have a square nut for a wrench to tighten or unscrew the cap. This cap should be brought up flush with the floor. When a house trap is being set, it is necessary to set it perfectly level, otherwise the seal of the trap is weakened and sewer gases can enter.
Sometimes the trap is located on the house sewer just outside of the foundation wall. In this case, a pit should be built large enough for a workman to get down to it to clean it out when necessary.
A mason's trapwas formerly used to a considerable extent, but is very poor practice to use today on modern work. This trap was built square of brick with a center partition. The brick soon became foul and the trap would be better termed a small cesspool than a trap.
Points to Remember about House Traps.—
The term "fresh-air inlet" is, as its name implies, an inlet for fresh air. It is placed directly on the house side of the main trap. The connections made vary considerably. A few good connections in common use are explained below.
When the trap is in place, one of the clean-outs can be used for the fresh air. If this is done, a Y-branch should be placed in the hub of the clean-out. The Y-branch should be used for the fresh air and the run should be used for a clean-out.
A Y-fitting can be inserted directly back of the trap and the branch used for the fresh air. An inverted Y makes a good fitting to use directly back of the trap. These branches should be taken off the top of the pipe. The branch taken off for the fresh-air inlet should not have any waste discharge into it and should not be used for a drain pipe of any description.
The fresh-air inlet should run as directly as possible into the outer air, at least 15 feet from any window. The pipes terminate in a number of different ways, some with a return bend, above the ground, some with a cowl cap, some with a strainer. When necessary to run pipe through the sidewalk, a box of brick is made with a heavy brass strainer fitted level with the sidewalk into which the pipe runs. If the pipe is run into the box on the side a little up from the bottom, the possibility of becoming stopped up or filled up is not great. The fresh-air inlet sometimes terminates above the roof of the building.
Special care should be given this fresh-air inlet as itsupplies fresh air to the entire system and thus keeps the pipes in a much better sanitary condition.
Sometimes when the house drain is full of sewage, air is pushed out of the fresh-air inlet and disagreeable odors are evident. This is why it should be located as far as possible from any window. Special care should be taken on the part of the plumber not to locate the fresh-air inlet nearer than 15 feet to the fresh-air intake of the heating system.
Fig. 60.--Fresh-air inlet.Fig. 60.—Fresh-air inlet.
Fig. 60.--Fresh-air inlet.Fig. 60.—Fresh-air inlet.
When the pipe passes through the foundation wall, the same care should be exercised as with other pipes. That is, if the pipe is 4 inches, a sleeve 6 inches should be cut in the wall for the 4-inch pipe to pass through.
Points to Remember about Fresh Air.—
The use of the drum trap is very handy to the plumber as well as efficient and practicable when installed. The trap can be purchased without any outlets or inlets, so the plumber can put them in according to the necessary measurements. The making of these traps with lead is explained in the chapter on Wiping Joints. The open end has a brass clean-out screw on it. When this clean-out screw comes below the floor, another brass screw cap and flange is screwed on the floor above the trap so that the clean-out screw in the trap is easily accessible.
Fig. 61.--Drum trap.Fig. 61.—Drum trap.
Fig. 61.--Drum trap.Fig. 61.—Drum trap.
These drum traps are called bath traps as they are used mostly on bath wastes. They should never be installed with the clean-out exposed to the sewer side of the trap. In the best practice, heavy brass drum traps are used.
Fig. 62.--Flask trap.Fig. 62.—Flask trap.Fig. 63.--Clean-sweep trap.Fig. 63.—Clean-sweep trap.
Fig. 62.--Flask trap.Fig. 62.—Flask trap.
Fig. 63.--Clean-sweep trap.Fig. 63.—Clean-sweep trap.
After years of experimenting to produce a trap that would not syphon without venting, we find in use today a large variety of non-syphoning traps. Traps that will hold theirseal against all practical forms of syphonic action, or other threatening features, have been made and used and serve the purpose for which they are intended. Various means to prevent the breaking of the seal of these traps are employed. While some depend on a ball or other kind of valve, others rely on partitions and deflections of various kinds. All of these perform the functions for which they are designed, yet the devices employed offer an excellent obstruction for the free passage of waste; therefore, in time, these traps become inoperative. It should be borne in mind that any traps with a mechanical seal or an inside partition are not considered sanitary. The inside partition might wear out or be destroyed and thus break the seal without the knowledge of anyone and allow sewer gas to enter the room. The mechanical device may also be displaced or destroyed, leaving the trap without a seal. If the trap were cleaned out often or examined occasionally, these traps could be used with a greater degree of safety. Some of the forms of non-syphon traps in common use are:
TheFlask Trap,Fig. 62. This trap gets its name fromits shape. There is an inside wall upon which the seal depends. This trap is like the bag trap, only the two inside walls of the pipe are combined into one. This wall should be of heavy cast brass, free from sand holes.Clean Sweep Trap,Fig. 63. Some clean sweep traps are dependent upon an inside wall for their seals. They are made of1⁄2-S,3⁄4-S, and full S.
TheFlask Trap,Fig. 62. This trap gets its name fromits shape. There is an inside wall upon which the seal depends. This trap is like the bag trap, only the two inside walls of the pipe are combined into one. This wall should be of heavy cast brass, free from sand holes.
Clean Sweep Trap,Fig. 63. Some clean sweep traps are dependent upon an inside wall for their seals. They are made of1⁄2-S,3⁄4-S, and full S.
Fig. 64.--Mechanical-seal trap.Fig. 64.—Mechanical-seal trap.Fig. 65.--Standard "S" trap.Fig. 65.—Standard "S" trap.Fig. 66.--Bag trap.Fig. 66.—Bag trap.
Fig. 64.--Mechanical-seal trap.Fig. 64.—Mechanical-seal trap.
Fig. 65.--Standard "S" trap.Fig. 65.—Standard "S" trap.
Fig. 66.--Bag trap.Fig. 66.—Bag trap.
Sure Seal Trap.The sure seal trap is designed to be non-syphoning. This trap also has an interior waterway. If this waterway leaks, the trap is unfit for use. If these traps are made as shown in the second sketch with the way inside of a larger pipe, it can be detected if the interior wall leaks.Centrifugal Trap.The centrifugal trap is made similar to the clean sweep, except that the wall of the inlet pipe is entirely separate from the body of the trap. The inlet enters the body of the trap on a tangent, thus making the trap self-scouring which is a good feature.
Sure Seal Trap.The sure seal trap is designed to be non-syphoning. This trap also has an interior waterway. If this waterway leaks, the trap is unfit for use. If these traps are made as shown in the second sketch with the way inside of a larger pipe, it can be detected if the interior wall leaks.
Centrifugal Trap.The centrifugal trap is made similar to the clean sweep, except that the wall of the inlet pipe is entirely separate from the body of the trap. The inlet enters the body of the trap on a tangent, thus making the trap self-scouring which is a good feature.
The proper cutting of threads on pipe is overlooked by some mechanics. There are many different kinds of dies and different kinds of pipe to contend with. Steel pipe threads very hard and the adjustable dies should be used on it. These dies cut more easily and leave a cleaner thread than other dies when used on steel pipe. When threads are cut on wrought-iron pipe the adjustable dies should be used as they cut a better and cleaner thread than other dies. To preserve the life of the dies and the quality of the thread, oil is used freely while the dies are cutting.
Threads.—The standard thread on pipe and fittings is a right-handed thread. Left threads can be cut on the pipe and the fitting can be tapped with a left thread. When a fitting is tapped with a left thread it is marked so. The following table gives the standard number of threads that a die will or should be allowed to cut on the pipe:
SizeLength, inchesThreads per inchThreads per end3⁄89⁄161810.8251⁄23⁄41410.5003⁄43⁄41410.500115⁄16111⁄210.80011⁄41111⁄211.50011⁄21111⁄211.500211⁄8111⁄212.930
To acquaint the beginner with iron pipe work, the followingexercise is given. In it there are a great many of the actual problems that come up when the pipe is put in on a job. This is the last exercise that is required in this book. The sketch shows clearly just what the job is and below I have gone over each operation that is necessary to complete the job.
Fig. 67.Fig. 67.
Fig. 67.Fig. 67.
Materials Necessary.—Six feet of 1-inch black pipe; four 1-inch black ells; two 1-inch tee; one 1-inch right and left coupling; oil.
Tools Necessary.—Two 14-inch pipe wrenches, vise, pipe cutters, stock and 1-inch follower right and left die and reamer.
The vise is made secure on a bench or post, care being taken before it is put in place to provide room enough to swing the stocks. A length of 1-inch pipe is put into the vise and the vise clamped around it. The end of the pipe that is to be threaded should stick out through the viseabout 9 inches. If there is a thread on this end, the dies should be run over it to make sure that it is a standard thread and to clean the threads. Before proceeding further with this exercise the dies and stocks will be described and their use shown.
Dies.—A full set of dies is taken. The full set of stocks and dies is composed of right and left dies from1⁄8inch up to 1 inch, with a guide for each size, also a small wrench with which to turn the set screws. The dies come in sets, two in a set. These are the Armstrong patent that I am describing. Take the stock and the handles, and a set of 1-inch right dies with the guides out of the box. The dies will have marked on them 1" R (if 1-inch left were wanted, the mark would be 1" L). The set screws are taken out of the stock and the dies inserted in their proper place. There is a deep mark on the edge of each die and under it a letter S. This letter means "standard." This mark on the die is set even with a similar mark on the stock and when the set screws are in place and tightened, a standard thread will be cut. There is an adjusting screw on the stock to make the proper adjustment on the dies.
Stock.—The stock is taken and the handles are put into it. There are two sets of set screws on the stock, one set for holding the dies in place and the other set for adjusting the dies. On the stock there is a deep mark to correspond with the standard thread mark on the dies. On the opposite side of the stock there is a place for the follower and a set screw to hold it in place. After the stocks have been looked over and examined thoroughly, the 1-inch right dies are taken and inserted. Then the 1-inch follower is put in place. The tool is now ready to cut a 1-inch thread. Now take a piece of 1-inch pipe at least 15 inches long and put it in the vise, letting it extend out from the vise about 9 inches. The stock is now taken and the follower end is put on the pipe first and the dies brought up in placeto cut. The end of the pipe is allowed to enter in between the two dies so that the teeth of each die rest on the pipe. Now, holding the handles of the stock about 6 inches from the body of the stock and standing directly in front of the pipe, push and turn to the right at the same time and the dies will be started. Now put some oil on the dies and turn the stock, taking hold of the ends of the handles and standing at one side. The dies are run up on the pipe until the pipe extends through the face of the dies one thread. Oil is put on the pipe and the dies at least twice during the cutting. When the thread is long enough the stock is turned back a little and then forward a little and the loose chips are blown out from between the dies and pipe. If the dies are set right, a good clean standard thread will have been cut. This thread can now be cut off with the pipe cutters.
Pipe Cutters.—To cut pipe with a one-wheel pipe cutter is a simple matter. I will not dwell at length on the cutter itself. There are one-wheel and three-wheel cutters. We will use a one-wheel cutter tool. This cutter is forced into the surface of the pipe with a set screw having a long tee handle. The pressure that is brought to bear on the pipe while being cut is sufficient to cause a large burr to form on the inside of the pipe. Sometimes the pipe is completely crushed and rendered unfit for use. Therefore the user of these cutters should exercise care when cutting pipe. The pipe is put in the vise and the cutters are so put on the pipe that the pipe will be between the two rollers and the cutter wheel, the cutter resting on the mark that indicates the point at which the pipe is to be cut. The handle is screwed down and the cutters turned around the pipe; each time the cutters make a complete turn the handle is screwed down more. This procedure is continued until the furrow has been cut clear through the pipe.
Cutting and Threading Nipples.—Nipples are shortpieces of pipe threaded on each end. Pieces of pipe longer than 6 inches are not called nipples. When a nipple is so short that the threads cut on each end meet in the center of the piece, the nipple is called a "close nipple." When there is a space of about1⁄4inch between the threads, it is called a "space or shoulder" nipple. To cut and thread these nipples a nipple chuck or nipple holder is necessary.
Fig. 68.--Nipple chuck and nipples.Fig. 68.—Nipple chuck and nipples.
Fig. 68.--Nipple chuck and nipples.Fig. 68.—Nipple chuck and nipples.
Nipple Holders.—Take a piece of 1-inch pipe about 12 inches long and on one end cut a thread that is 2 inches long. Take a 1-inch coupling and screw it on this end until the end of the pipe is almost through the end of the coupling. At least four threads should be allowed at this end of the coupling. Now we have a piece of pipe 12 inches long having a thread 2 inches long on one end with a coupling on the thread. This is called a nipple holder. Now, to cut a nipple, cut a thread on a piece of pipe and cut the pipe off at any desired length, say 2 inches. Put the nipple holder in the vise with the coupling out from the vise about 8 inches. Take the 2-inch piece of pipe with a thread on one end, screw this thread into the coupling until it touches the pipe that has been screwed through from the other end. Now the stocks having the 1 dies and the follower in are put on the pipe. The follower will not go over the coupling, therefore take the follower out of the stock. Now thestock will slip over the coupling and the thread can be cut. With this procedure a nipple of any length can be cut. There are a number of patented nipple chucks on the market, but as they are not always at hand the above method is resorted to and serves every purpose.
Long Screws.—To cut a long screw which comes in use frequently on vent pipe work, a piece of pipe 12 inches long is taken and a regular length thread is cut on one end, and a thread 4 inches long is cut on the other end. Then a coupling is cut while screwed on a pipe, so that a lock nut about1⁄2inch wide is made. The description and use of these long screws will come under screw pipe venting.
Now that the proper use of the tools has been explained, we will proceed with the exercise according to the sketch. With a length of pipe in the vise and the 1-inch dies in the stock, run over the thread on the pipe. Note that all the measurements are center to center. Screw an elbow on the pipe and measure off the first length, which we will take as 12 inches center to center. Place the rule on the pipe with one end of it at the center of the opening of the elbow just screwed on. Mark 12 inches off on the pipe. This mark represents the center of another ell. Now take another ell and hold the center of one outlet on this mark. It will readily be seen that to have the measurement come right, the pipe must be cut off at a point where it will make up tight when screwed into the ell. Therefore, about 1 inch will have to be cut off, making the pipe 1 inch shorter than where it was first marked. Cut the pipe, and before taking it out of the vise make a thread on the pipe still in the vise. After the thread is cut, take the reamer and ream out the burr that is on the inside of the pipe caused by the pipe cutter. An elbow can be screwed on this pipe. The next measurement is marked off as explained, the pipe cut, then the piece in the vise threaded and reamed. The measurements must be accurate and the dies should beadjusted to cut all threads the same depth. When the measurements are all out, there should be seven pieces of pipe, each piece having one thread. Now the threads on the other end can be cut except the 12 inch piece that screws into the right and left coupling. This thread is a left-handed thread and must be cut with the left dies. Change the dies now to the 1-inch left dies; turn the stock in the opposite direction of the right-hand thread, and the dies will cut the left thread. The pipe and the fittings can easily be put together as shown in the sketch by following the center to center measurements. The right and left coupling is the only fitting that will cause the beginner trouble. A right and left coupling can be used only when there is sufficientgiveto the pipe, that is, the two ends of the pipe to be coupled together are only1⁄2inch apart. To get the coupling in place to start the threads, the pipe must spread apart at least 2 inches. If the pipe cannot be spread that much, a right and left coupling cannot be used. The proper way to make up a right and left coupling is as follows:
Fig. 69.--F reads center of ell to end, C reads center of ell to center of valve, D reads center of valve to center of T, E reads center of T to center of ell.Fig. 69.—F reads center of ell to end, C reads center of ell to center of valve, D reads center of valve to center of T, E reads center of T to center of ell.
Fig. 69.--F reads center of ell to end, C reads center of ell to center of valve, D reads center of valve to center of T, E reads center of T to center of ell.Fig. 69.—F reads center of ell to end, C reads center of ell to center of valve, D reads center of valve to center of T, E reads center of T to center of ell.
Screw home the coupling on the right thread. Mark with a piece of chalk on the coupling and the pipe showing a point on each where the coupling makes tight. Take off the coupling and count the turns and make note of the number. Now do the same on the left thread and make a note of thenumber of threads. If the left thread has six turns and the right has four and one-half, then to insure that the left thread will be tight when the right thread is, the coupling must be put on the left thread one and one-half turns before it is started on the right thread. Now with four and one-half turns, the right and the left threads will both be tight. A little thought and practice will make this connection clear. If all the measurements in this exercise are not cut accurately, the right and left coupling will not go together.
The supplying of cold water to buildings and then piping it to the various fixtures makes a very interesting study. We have gone over the methods of laying and piping for the house service pipe. We will go over the different systems now employed to supply the water, quickly.
Underground Water.—In thinly populated districts the well is still employed to supply water to the building. The water is brought to the surface by means of a large bucket or by means of a pump. A well point can be driven into the ground until water is reached and then the water can be brought to the surface by means of a pump operated by hand or by power. The water can be forced to a tank that is open and elevated, or forced into a tank that is closed and put under pressure. From either tank the water will flow to any desired outlets. A windmill can be employed to furnish power to operate the pump. Water supply that is received directly from underground is by far the best to use. A cesspool or outhouse must not be allowed on the premises with a well, otherwise the well will be contaminated and unfit for domestic use. An open well is not as sanitary as a driven well, as the surface water and leaves, etc., get into it and decay and pollute the water, and soon make it unfit for domestic use.
Streams and Brooks.—The brooks and streams furnish a good source of supply for water to a building or community of buildings. The writer recently worked on a system of piping that supplied 15 or 20 buildings. The water supply came from a brook that was higher than the houses.Each house had a separate pipe leading down from the brook into a tank from which the house was piped. The owner of the brook applied business ethics to the privileges of taking water from it. He had a scale of prices, and the highest-priced location was an inch or so below the bed of the brook, the next price was level with the bottom, the next cheaper 2 inches above the bottom. As the surface was reached, the privilege cost less. In the dry time of the year those at the bottom of the brook always had water while those at the top location had to wait for the water to rise, and had to do without water during the dry time. Where the stream is on a lower level than the building a hydraulic ram can be used.
Rivers and Lakes.—Rivers and lakes make an abundant supply for water systems. A sluggish-moving river is bad, also a river that is used for carrying off the sewage of a town. Special provision is now made for the using of water that is polluted. A lake that is supplied by springs is by far the best source of supply. The water is pumped from the river or lake into a reservoir and then flows by gravity into mains and from the mains into the buildings. The water should always be filtered before it is allowed to enter the distributing mains.
Water Pressure.—Pressure at a fixture or outlet so that the water will flow is generally obtained by the force of gravity. When this method is not sufficient, a pneumatic system is employed. This method is employed to force the water to the top floors or to supply the whole building in high structures. The pneumatic system requires a pump, an air-tight tank, and pipes to the various outlets. The water pumped into the air-tight tank will occupy part of the space generally occupied by the air. The air cannot escape and is, therefore, compressed. Continued pumping will compress the air until the limit of the apparatus is reached. If a valve or faucet that is connected with thetank is opened, the air will expand and force the water out of the opening. This explains in a general way the operation of a pneumatic water-supply system. Water can be pumped into this air-tight tank from a well, cistern, river, lake, or from the city supply mains.