CHAPTER VI.
Direct relations of Geology to Agriculture—Origin of Soils—Causes of their Diversity—Relation to the Rocks on which they rest—Constancy in the relative Position and Character of the Stratified Rocks—Relation of this fact to Practical Agriculture—General Character of the Soils upon these Rocks.
Direct relations of Geology to Agriculture—Origin of Soils—Causes of their Diversity—Relation to the Rocks on which they rest—Constancy in the relative Position and Character of the Stratified Rocks—Relation of this fact to Practical Agriculture—General Character of the Soils upon these Rocks.
Geology is that branch of knowledge which embodies all ascertained facts in regard to the nature and internal structure, both physical and chemical, of the solid parts of our globe. This science has many close relations with practical agriculture, and especially throws much light on the nature and origin of soils,—on the cause of their diversity,—on the kind of materials by the admixture of which they may be permanently improved,—and on the sources from which these materials may be derived.
If we dig down through the soil and subsoil to a sufficient depth, we always come sooner or later to the solid rock. In many places the rock actually reaches the surface, or rises in cliffs, hills, or ridges, far above it. The surface (or crust) of our globe, therefore, consists everywhere of a solid mass of rock, overlaid with a covering, generally thin, of loose materials. The upper or outer part of these loose materials forms the soil.
The geologist has travelled over great part of the earth’s surface, has examined the nature of the rocks, which everywhere repose beneath the soil, and has found them to be very unlike in character, in composition, and in hardness—in different countries and districts. In some places he has met with a sandstone, in other places a limestone, in others a slate or hardened rock of clay. But a careful comparison of all the kinds of rock he has observed, has led him to the general conclusion,that they are all either sandstones, limestones, or clays of different degrees of hardness, or a mixture in different proportions of two or more of these kinds of matter.
When the loose covering of earth is removed from the surface of any of these rocks, and it is left exposed, summer and winter, to the action of the winds and rains and frosts, it may be seen gradually to crumble away. Such is the case even with many of those which, on account of their greater hardness, are employed as building-stones, and are kept generally dry; how much more with such as are less hard, and, beneath a covering of moist earth, are continually exposed to the action of water. The natural crumbling of a naked rock thus gradually covers it with loose materials, in which seeds fix themselves and vegetate, and which eventually forms a soil. The soil thus produced partakes necessarily of the character of the rock on which it rests, and to the crumbling of which it owes its origin. If the rock be a sandstone the soil is sandy; if a claystone, it is a more or less stiff clay; if a limestone, it is more or less calcareous; and if the rock consist of any peculiar mixture of those three substances, a similar mixture is observed in the earthy matter into which it has crumbled.
Led by this observation, the geologist, after comparing the rocks of different countries with one another, compared next the soils of various districts with the rocks on which they immediately rest. Thegeneralresult of this comparison has been, that in almost every country the soils have as close a resemblance to the rocks beneath them—as the loose earth derived from the crumbling of a rock before our eyes, bears to the rock of which it lately formed a part. The conclusion therefore is irresistible, that soils, generally speaking, have been formed by the crumbling or decay of the solid rocks,—that there was a time when these rocks were uncovered by any loose materials,—and that the accumulation of soil has been the slow result of the natural degradation (wearing away) of the solid crust of the globe.
The cause of the diversity of soils in different districts, therefore, is no longer obscure. If the subjacent rocks in two localities differ, the soils met with there must differ also, and in an equal degree.
But why, it may be asked, do we find the soil in some countries uniform, in mineral[12]character and general fertility, over hundreds or thousands of squaremiles, while in others it varies from field to field,—the same farm often presenting many well marked differences both in mineral character and in agricultural value? The cause of this is to be found in the mode in which the different rocks are observed to lie, one upon or by the side of the other.
Geologists distinguish rocks into two classes, thestratifiedand theunstratified. The former are found lying over each other in separate beds orstrata, like the leaves of a book, when laid on its side, or like the layers of stones in the wall of a building; the latter form hills, mountains, or sometimes ridges of mountains, consisting of one more or less solid mass of the same material, in which no layers or strata are any where distinctly perceptible. Thus, in the following diagram, (No. 1), A and B representunstratifiedmasses, in connection with a series ofstratifieddeposits, 1, 2, 3, lying over each other in a horizontal position. On A one kind of soil will be formed, on C another, on B a third, and on D a fourth,—the rocks being all different from each other.
No. 1.
No. 1.
If from A to D be a wide valley of many miles in extent, the undulating plain at the bottom of the valley, resting in great part on the same rock (2), will be covered by a similar soil. On B the soil will be different for a short space; and again at C, and on the first ascent to A, where the rock (3) rises to the surface. In this case the stratified rocks lie horizontally; and it is the undulating nature of the country which, bringing different kinds of rock to the surface, causes a necessary diversity of soil.
But the degree ofinclination, which the beds possess, is a more frequent cause of variation in the characters of the soil in the same district, and even at shorter distances. This is shewn in the annexed diagram (No. 2), where A, B, C, D, E, represent the mode in which the stratified rocks of a district of country not unfrequently occur in connection with each other.
No. 2.
No. 2.
Proceeding from E in the plain, the soil would change when we came upon the rock D, but would then continue uniform till we reached the layerC. Each of these layers may stretch over a comparatively level tract of perhaps hundreds of miles in extent. Again, on climbing the hill-side, another soil would present itself, which would not change till we arrived at B. Then, however, we begin to walk over the edges of the beds, and the soil may vary with every newstratum(or bed) we pass over, till we gain the ascent to A, where the beds are much thinner, and where, therefore, still more frequent variations may present themselves.
Everywhere over the British islands valleys are hollowed out, as in the former of these diagrams (No. 1), by which the rocks beneath are exposed, and differences of soil produced,—or the beds are more or less inclined, as in the latter diagram (No. 2), causing still more frequent variations of the land to appear. By a reference to these facts, nearly all thegreatdiversities which the soils of the country present may be satisfactorily accounted for.
Another fact alike important to agriculture and to geology, is the natural order or mode of arrangement in which the stratified rocks areobserved to occur in the crust of the globe. Thus, if 1, 2, 3, indiagram No. 1represent three different kinds of rock, a limestone, for example, a sandstone, and a hard clay rock (a shale or slate), lying over each other, in the order here represented; then, in whatever part of the country nay, in whatever part of the world, these same rocks are met with, they will always be found in the same relative position. The bed 2 or 3 will never be observed to lie over the bed 1.
This fact is important to geology, because it enables this science to arrange all the stratified rocks in a certain invariable order,—which order indicates their relative age or antiquity,—since that which is lowest, like the lowest layer of stones in the wall of a building, must generally have been the first deposited, or must be the oldest. It also enables the geologist, on observing the kind of rock which forms the surface in any country, to predict at once, whether certain other rocks are likely to be met with in that country or not. Thus at C (diagram, No. 1), where the rock (3) comes to the surface, he knows it would be in vain, either by sinking or otherwise, to seek for the rock (1), the natural place of which is far above it; while at D he knows that by sinking he is likely to find either 2 or 3, if it be worth his while to seek for them.
To the agriculturist this fact is important, among other reasons,—
1. Because it enables him to predict whether certain kinds of rock, which might be used with advantage in improving his soil, are likely to be met with within a reasonable distance or at an accessible depth. Thus if the bed D (diagram No. 2) be a limestone, the instructed farmer at E knows that it is not to be found by sinking into his own land, and, therefore, brings it from D; while, to the farmer upon C, it may be less expensive to dig down to the bed D in one of his own fields, than to cart it from a distant spot where it occurs on the surface. Or if the farmer requires clay, or marl, or sand, to ameliorate his soil, this knowledge of the constant relative position of beds enables him to say where these materials are to be got, or where they are to be looked for, and whether the advantage to be derived is likely to repay the cost of procuring them.
2. It is observed, that when the soil on the surface of each of a series of rocks, such as C, or D, or E, in the same diagram, is uniformly bad, it is almost invariably of better quality at the point where the two rocks meet. Thus C may be dry, sandy, and barren; D may be cold, unproductive clay; and E a more or less unfruitful limestonesoil: yet at either extremity of the tract D, where the soil is made up of an admixture of the decayed portions of the two adjacent rocks, the land may be of average fertility—the sand of C may adapt the adjacent clay to the growth of turnips, while the lime of E may cause it to yield large returns of wheat.[13]Thus, to the tenant in looking out for a farm, or to the capitalist in seeking an eligible investment, a knowledge of the mutual relations of geology and agriculture will often prove of the greatest assistance. Yet how little is such really useful knowledge diffused among either class of men—how little are either tenants or proprietors guided by it in their choice of the localities in which they desire to live!
And yet here and there the agricultural practice of more or less extended districts, if not really founded upon or directed by, is yet to be explained only by principles such as those I have above illustrated. I shall mention only one example. The chalk in Yorkshire, in Suffolk, and in other southern counties, consists of a vast number of beds, which, taken all together, form a deposit of very great thickness. Now, the upper beds of the chalk form poor, thin, dry soils, producing a scanty herbage, and only under the most skilful cultureyielding profitable crops of corn. The lower beds, on the contrary, are marly; produce a more stiff, tenacious, and even fertile soil; and are found in a remarkable degree to enrich the soils of the upper chalk, when laid on as a top-dressing in autumn, and allowed to crumble under the action of the winter’s frost. Hence in Yorkshire, Wiltshire, Hampshire, and Kent, where the lower chalk covers the surface, or is found at no great depth beneath it, it is dug out of the sides of the hills, or pits are sunk for it, and it is immediately laid upon the land with great benefit to the soil. But in parts of Suffolk, where the soil equally rests upon the upper chalk, there is no other chalk in the neighbourhood, or to be met with at any reasonable depth, which will materially improve the land. The farmers find it, from long experience, to be more economical to bring chalk by sea from Kent to lay on their lands in Suffolk, than to cover them with any portion of the same material from their own farms. The following imaginary section will fully explain the fact here mentioned:—
No. 3.Suffolk.Mouth of the Thames.Kent.
No. 3.
Suffolk.Mouth of the Thames.Kent.
In this diagram 1 represents the London clay; 2, the plastic clay which is below it; 3, the upper chalk with flints, rising to the surface in Suffolk; and 4, the lower chalk, without flints, which is too deep to be reached in Suffolk, but which rises to the surface in Kent,—where it is abundant, is easily accessible, and whence it is transmitted across the estuary of the Thames into Suffolk.
3. The further fact that the several stratified rocks are remarkably constant in their mineral character, renders this knowledge of the order of relative superposition still more valuable to the agriculturist. Thousands of different beds are known to geologists to occur on various parts of the earth’s surface—each occupying its own unvarying place in the series. Most of these beds also, when they crumble or are worn down, produce soils possessed of some peculiarity by which their general agricultural capabilities are more or less affected,—and these peculiarities may generally be observed in soils formed from rocks of the same age—that is, occupying the same place in the series—in whatever part of the world we find them. Hence if the agricultural geologist be informed that his friend has bought, or is in treaty for a farm or an estate, and that it is situated upon such andsuch a rock, or geological formation, he can immediately give a very probable opinion in regard to the agricultural value of the soil, whether the property be in England, in Australia, or in New Zealand. If he knows the nature of the climate also, he will be able to estimate with tolerable correctness how far the soil is likely to repay the labours of the practical farmer,—nay, even whether it is likely to suit better for arable land or for pasture, and if for arable, what species of white crops it may be expected to produce most abundantly.
These facts are so very curious, and illustrate so beautifully the value of geological knowledge—if not to A and B, the holders or proprietors of this and that small farm, yet to enlightened agriculturists,—to scientific agriculture in general,—that I shall explain this part of the subject more fully in a separate section. To those who are now embarking in such numbers in quest of new homes in our numerous colonies, who hope to find, if not a more willing, at least a more attainable soil in new countries, no kind of agricultural knowledge can at the outset,—I may say, even through life,—be so valuable as that to which the rudiments of geology will lead them. Those who prepare themselves the best for becoming farmers orproprietors in Canada, in New Zealand, or in wide Australia, yet leave their native land in general without a particle of that preliminarypracticalknowledge, which would qualify them to say, when they reach the land of their adoption, “On this spot, rather than that,—in this district, rather than that,—will I purchase my allotment, because, though both appear equally inviting, yet I know from the geological structure of the country, that here I shall have the more permanently productive soil; here I am more within reach of the means of agricultural improvement; here, in addition to the riches of the surface, my descendants may hope to derive the means of wealth from mineral riches beneath.” And this oversight has arisen chiefly from the value of such knowledge not being understood—often from the very nature of it being unknown, even to otherwise well instructed practical men. It is not to men well skilled merely in the details of local farming, and who are therefore deservedly considered as authorities and good teachers in regard to local or district practice, that we are to look for an exposition, often not even for a correct appreciation, of those general principles on which a universal system of agriculture must be based—without which principles, indeed, it must ever remain a mere collection of empirical rules, to be studied and laboriouslymastered in every new district we go to—as the traveller in foreign lands must acquire a new language every successive frontier he passes. England, the mistress of so many wide and unpeopled lands, over which the dwellings of her adventurous sons are hereafter to be scattered, on which their toil is to be expended, and the glory of their motherland by their exertions to be perpetuated—England should especially encourage all such learning, and the sons of English farmers willingly avail themselves of every opportunity of acquiring it.
The thousands of beds or strata of which I have spoken as lying one over the other in the crust of the globe, have, partly for convenience, and partly in consequence of certain remarkably distinctive characters observed among them, been separated by geologists into three great divisions—theprimary, which are the lowest and the oldest; thesecondary, which lie over them; and thetertiary, which are uppermost, and have been most recently formed. The strata, in theseseveral divisions, have again been subdivided into groups, calledformations. The following table exhibits the names and thicknesses of these formations, and the mineralogical characters of the rocks of which they severally consist.
1. TheLondon and Plastic clays, 500 to 900 feet thick, consist of stiff, almost impervious, dark-coloured clays,—chiefly in pasture. The lower beds are mixed with sand, and produce an arable soil, but extensive heaths and wastes rest upon them in Berkshire, Hampshire, and Dorset.
2.The Chalk, about 600 feet in thickness, consists in the upper part (see diagram, No. 3, p. 88) of a purer chalk with layers of flint; in the lower, of a marly chalk without flints. The soil of the upper chalk is chiefly in sheep-walks, that of the lower chalk is very productive of corn.
3. TheGreen Sand, 500 feet thick, consists of 150 feet of clay, with about 100 feet of sand above, and 250 feet below it. The upper sand forms a very productive arable soil, and the clay impervious, wetand cold lands chiefly in pasture. The lower sand is generally unproductive.
It is an important agricultural remark, that where the clay (plastic clay) comes in contact with the top of the chalk, an improved soil is produced, and that where the chalk and the green sand mix, extremely fertile patches of country present themselves. (See pages 86 and 87.)
4. TheWealden formation, nearly 1000 feet thick, consists of 400 feet of sand, covered by 300 of clay, and resting upon 250 of marls and limestones. The clay forms the poor wet pastures of Sussex and Kent. On the sands below the clay rest heaths and brushwood; but where the marls and limestones come to the surface, the land is of better quality, and is susceptible of profitable arable culture.
5. In theUpper Oolite, of 600 feet in thickness, we have a bed of clay (Kimmeridge clay) 500 feet thick, covered by 100 feet of sandy limestones. The clay lands are difficult and expensive to work, and are chiefly in old pasture. The sandy limestone soils above the clay are also poor, but where they rest immediately upon, and are intermixed with the clay, excellent arable land is produced.
6. TheMiddle Ooliteof 500 feet consists also of a clay (Oxford clay) dark-blue, adhesive, and nearly 1000 feet thick, covered by 100 feet of limestones and sandstones. These latter produce good arable land where the lime happens to abound; the clays form close heavy compact soils, most difficult and expensive to work. The extensive pasture lands of Bedford, Huntingdon, Northampton, Lincoln, Wilts, Oxford, and Gloucester, rest chiefly upon this clay, as do also the fenny tracts of Lincoln and Cambridge.
7. TheLower or Bath Oolite, of 500 feet in thickness, consists of many beds of limestone and sandstone, with about 200 feet of clay in the centre of the formation. The soils are very various in quality, according as the sandstone or limestone predominates. The clays are chiefly in pasture,—the rest is more or less productive, easily worked, arable land. In Gloucester, Northampton, Oxford, the east of Leicester, and in Yorkshire, this formation is found to lie immediately beneath the surface, and a little patch of it occurs also on the south-eastern coast of Sutherland.
6. TheLiasis an immense deposit of blue clay from 500 to 1000 feet in thickness, which produces cold, blue, unproductive, clay soils.It forms a long stripe of land from the mouth of the Tees, in Yorkshire, to Lyme Regis in Dorset. It is chiefly in old, and often very valuable pasture.
9. TheNew Red Sandstone, though only 500 feet in thickness, forms the surface of nearly the whole central plain of England, and stretches north through Cheshire to Carlisle and Dumfries. It consists of red sandstones and marls,—the soils on which are easily and cheaply worked, and form some of the richest and most productive arable lands in the island. In whatever part of the world the red soils of this formation have been met with, they have been found to possess in general the same agricultural capabilities.
10. TheMagnesian Limestone, from 100 to 500 feet in thickness, forms a stripe of generally poor thin soil from Durham to Nottingham, capable of improvement as arable land by high farming, but bearing naturally a poor pasture, intermingled with sometimes magnificent furze.
11. TheCoal Measures, from 300 to 3000 feet thick, consist of beds of sandstones and dark-blue shales (hard clays), intermingled (interstratified) with beds of coal. Where the sands come to the surface, the soil is thin, poor, hungry, sometimes almost worthless. The shales, on the other hand, produce stiff, wet, almost unmanageableclays;—not unworkable, yet expensive to work, and requiring draining, lime, skill, capital, and a zeal for improvement, to be applied to them, before they can be made to yield the remunerating crops of corn they are capable of producing.
12. To theMillstone Gritsof 600 feet or upwards in thickness the same remarks apply. They are often only a repetition of the sandstones and shales of the coal measures, forming in many cases soils still more worthless. When the sandstones prevail, large tracts lie naked, or bear a thin and stunted heath; where the shales abound, the naturally difficult soils of the coal shales again recur. These rocks are generally found on the outskirts of our coal-fields.
13. TheMountain Limestone, 800 to 1000 feet thick, is a hard blue limestone rock, separated here and there into distinct beds by layers of sandstones, of sandy slates, or of blue shales like those of the coal measures. The soil upon the limestone is generally thin, but produces a naturally sweet herbage. When the limestone and clay (shale) adjoin each other, arable land occurs, which is naturally productive of oats, yet, when the climate is favourable, capable of being converted into good wheat land. In the north of England a considerable tract ofcountry is covered by these rocks, but in Ireland they form nearly the whole of the interior of the island.
14. TheOld Red Sandstonevaries in thickness from 500 to 10,000 feet. It possesses many of the valuable agricultural qualities of thenew red, consisting, like it, of red sandstones and marls, which crumble down into rich red soils. Such are the soils of Brecknock, Hereford, and part of Monmouth; of part of Berwick and Roxburgh; of Haddington and Lanark; of southern Perth; of either shore of the Moray Firth; and of the county of Sutherland. In Ireland, also, these rocks abound in Tyrone, Fermanagh, and Monaghan; in Waterford, in Mayo, and in Tipperary. In all these places, the soils they form are generally the best in their several neighbourhoods, though here and there,—where the sandstones are harder, more siliceous and impervious to water,—tracts, sometimes extensive, of heath and bog occur.
15.The Upper Silurian systemis nearly 4000 feet in thickness, and forms the soils over the lower border counties of Wales. It consists of sandstones and shales, with occasional limestones; but thesoils formed from these beds take their character from the general abundance of clay. They are cold, usually unmanageable,muddyclays, with the remarkably inferior agricultural value of which the traveller is immediately struck, as he passes westward off the red sandstones of Hereford on to the upper silurian rocks of Radnor.
16. TheLower Silurianrocks are also nearly 4000 feet in thickness, and in Wales lie to the west of the upper silurian rocks. They consist of about 2500 feet of sandstone, on which, when the surface is not naked, barren heaths alone rest.
Beneath these sandstones lie 1200 feet of sandy and earthy limestones, from the decay of which, as may be seen on the southern edge of Caermarthen, fertile arable lands are produced.
17. TheCambrian System, of many thousand yards in thickness, consists in great part of clay slates, more or less hard, which often weather slowly, and almost always produce either poor and thin soils, or cold, difficultly manageable clays, expensive to work, and requiringhigh farmingto bring them into profitable arable cultivation. Cornwall, western Wales, and the mountains of Cumberland, in England; the high country which stretches from the Lammermuir hillsto Portpatrick, in Scotland; the mountains of Tipperary, and a large tract on the extreme south of Ireland,—on its east coast, and far inland from the bay of Dundalk,—are covered by these slate rocks. Patches of rich, well cultivated land occur here and there on this formation, with much also that is improvable; but the greater part of it is usurped by worthless heath and extensive bogs.
18. TheMica Slate and Gneiss systemsare of unknown thickness, and consist chiefly of hard and slaty rocks, crumbling slowly, forming poor, thin soils, which rest on an impervious rock, and which, from the height to which this formation generally rises, are rendered more unproductive by an unpropitious climate. They form extensive heathy tracts in Perth and Argyle, and on the north and west of Ireland. Here and there only, in the valleys or sheltered slopes, and by the margins of the lakes, spots of bright green meet the eye, and patches of a willing soil, fertile in corn.
A careful perusal of the preceding sketch of the general agricultural capabilities of the soils formed from the several classes of stratified rocks, will have presented to the reader many illustrations of the facts stated in the preceding section; he will have drawn for himself—to specify a few examples—the following among other conclusions.
1. That some formations, like the new red sandstone, yield a soil almost always productive; others, as the coal measures and millstone grits, a soil almost alwaysnaturallyunproductive.
2. That good, or better land at least, than generally prevails in a district, may be expected where two formations or two different kinds of rock meet,—as when a limestone and a clay mingle their mutual ruins for the formation of a common soil.
3. That in almost every country extensive tracts of land on certain formations will be found laid down to natural grass,in consequence of the original difficulty and expense of working. Such are the Lias, the Oxford, the Kimmeridge, and the London clays. In raising corn, it is natural that the lands which are easiest and cheapest worked should be first subjected to the plough; it is not till implements are improved, skill increased, capital accumulated, and population presses, that the heavier lands will be rescued from perennial grass, and made to produce that greatly increased amount of food for both man and beast, which they are easily capable of yielding.
The turnip soils of Great Britain are in many districts, it may be, but indifferently farmed; and the state has reason to complain of muchindividual neglect of known and certain methods of increasing their productiveness; but the nextgreatachievement which British agriculture has to effect, is to subdue the stubborn clays, and to convert them into what many of them are yet destined to become, the richest corn-bearing lands in the kingdom.