Chapter 7

As regards the recovery of motor power after lesions of themotor cortex, two processes seem at work which are termed respectivelyrestitutionandcompensation. By the former is understood the recovery obtained when a part of a “centre” is destroyed, and the rest of the centre, although thrown out of function at first, recovers and supplements the deficiency later. An example of restitution would be the recovery from temporary hemianopia caused by a small injury in one occipital lobe. By compensation is understood the improvement of an impaired nervous function, traceable to other centres different from those destroyed supplying means to compass the reaction originally dependent on the centres subsequently destroyed. Instances of such compensation are the recovery of taxis for equilibrium subsequent to destruction of the labyrinth of the ear, where the recovery is traceable to assistance obtained through the eye. It will be noted that these instances of recovery by restitution and by compensation respectively are taken, from cases of injury inflicted on receptive rather than on motor centres. It is doubtful how far they really apply to the undoubted improvement that does within certain limits progress and succeed in partially effacing the paresis immediately consequent on lesions of the motor area. It has to be remembered that in all cases of traumatic injury to the nervous system, especially where the trauma implicates the central nervous organ, the first effects and impairment of function resulting are due to a mixed cause, namely on the one hand the mechanical rupture of conducting paths actually broken by solution of their continuity, and on the other hand the temporary interruption of conducting paths by “shock.” Shock effects are not permanent: they pass off. They are supposed to be due to a change at the synapses connecting neurone with neurone in the grey matter. They amount in effect to a long-lasting and gradually subsiding inhibition.

For diseases of the brain seeNeuropathology,Insanity,Skull(Surgery), &c.

For diseases of the brain seeNeuropathology,Insanity,Skull(Surgery), &c.

(C. S. S.)

1The literature of the pineal region is enormous. Studnicka (inOppels Vergleichende mikrosk. Anat.Teile 4-5, 1904, 1905) gives 285 references. The present conception of the generalized arrangement is: (α) A single glandular median organ from the fore-brain called the paraphysis. (β) A pouch of the ependymal roof of the ventricle called the dorsal sac. (γ) A right and left epiphysis, one of which may be wholly or partially suppressed. These may change their position to anterior and posterior in some animals.

1The literature of the pineal region is enormous. Studnicka (inOppels Vergleichende mikrosk. Anat.Teile 4-5, 1904, 1905) gives 285 references. The present conception of the generalized arrangement is: (α) A single glandular median organ from the fore-brain called the paraphysis. (β) A pouch of the ependymal roof of the ventricle called the dorsal sac. (γ) A right and left epiphysis, one of which may be wholly or partially suppressed. These may change their position to anterior and posterior in some animals.

BRAINERD, DAVID(1718-1747), American missionary among the Indians, was born at Haddam, Connecticut, on the 20th of April 1718. He was orphaned at fourteen, and studied for nearly three years (1739-1742) at Yale. He then prepared for the ministry, being licensed to preach in 1742, and early in 1743 decided to devote himself to missionary work among the Indians. Supported by the Scottish “Society for Promoting Christian Knowledge,” he worked first at Kaunaumeek, an Indian settlement about 20 m. from Stockbridge, Massachusetts, and subsequently, until his death, among the Delaware Indians in Pennsylvania (near Easton) and New Jersey (near Cranbury). His heroic and self-denying labours, both for the spiritual and for the temporal welfare of the Indians, wore out a naturally feeble constitution, and on the 19th of October 1747 he died at the house of his friend, Jonathan Edwards, in Northampton, Massachusetts.

HisJournalwas published in two parts in 1746 by the Scottish Society for Promoting Christian Knowledge; and in 1749, at Boston, Jonathan Edwards publishedAn Account of the Life of the Late Rev. David Brainerd, chiefly taken from his own Diary and other Private Writings, which has become a missionary classic. A new edition, with theJournaland Brainerd’s letters embodied, was published by Sereno E. Dwight at New Haven in 1822; and in 1884 was published what is substantially another edition,The Memoirs of David Brainerd, edited by James M. Sherwood.

HisJournalwas published in two parts in 1746 by the Scottish Society for Promoting Christian Knowledge; and in 1749, at Boston, Jonathan Edwards publishedAn Account of the Life of the Late Rev. David Brainerd, chiefly taken from his own Diary and other Private Writings, which has become a missionary classic. A new edition, with theJournaland Brainerd’s letters embodied, was published by Sereno E. Dwight at New Haven in 1822; and in 1884 was published what is substantially another edition,The Memoirs of David Brainerd, edited by James M. Sherwood.

BRAINERD,a city and the county-seat of Crow Wing county, Minnesota, U.S.A., on the E. bank of the Mississippi river, about 127 m. N.W. of Minneapolis. Pop. (1890) 5703; (1900) 7524, of whom 2193 were foreign-born; (1905) 8133; (1910) 8526. It is served by the Minnesota & International and the Northern Pacific railways. The latter maintains here large car and repair shops, and a sanatorium for its employees. There are also the Sisters of St Joseph hospital, a county court house, a public library and a Y.M.C.A. building. A dam across the Mississippi provides water power (about 60,000 H.P.) which is utilized extensively for manufacturing purposes. Lumbering is an important industry, and there are saw mills and planing mills, and an extensive creosote plant for treating railway ties and timber. There are also flour mills, paper and pulp mills, cigar factories, a brewery, a large foundry and a grain elevator. In 1906 large quantities of iron ore were discovered in the vicinity, the new range, the Cuyuna, running through the city from north-east to south-west. Brainerd, named in honour of David Brainerd, was settled in 1870, and chartered as a city in 1883.

BRAINTREE,a market town in the Maldon parliamentary division of Essex, England; 45 m. N.E. of London by a branch line from Witham of the Great Eastern railway. Pop. of urban district, 5330. The parish church of St Michael is a fine edifice of Early English work with later additions. A corn exchange, mechanics’ institute and public hall may also be mentioned. The bishops of London had formerly a palace in the town, but there are no remains of the building. The manufactures of silk and crape have superseded that of woollen cloth, which was introduced by the Flemings who fled to England to escape the persecution of the duke of Alva. Matting and brushes are also made. On the north lies the large village of BOCKING, with the Perpendicular parish church of St Mary, similar industries, and a population of 3347.

BRAINTREE,a township of Norfolk county, Massachusetts, U.S.A., on the Monatiquot river about 10 m. S. of Boston. Pop. (1890) 4848; (1900) 598l, including 1250 foreign-born; (1905, state census) 6879; (1910) 8066. The New York, New Haven & Hartford railway crosses the town and has stations at its villages of Braintree, South Braintree and East Braintree, which are also served by suburban electric railways. In South Braintree are the Thayer Academy (co-educational; opened 1877) and the Thayer public library, both founded by and named in honour of General Sylvanus Thayer (1785-1872), a well-known military engineer born in Braintree, who was superintendent of the United States Military Academy in 1817-1833 and has been called the “father of West Point.” There are large shoe factories and other manufactories. Bog iron was early found in Braintree, and iron-works, among the first in America, were established here in 1644. Braintree was first incorporated in 1640 from land belonging to Boston and called Mount Wollaston, and was named from the town in England. At Merry Mount, in that part of Braintree which is now Quincy, a settlement was established by Thomas Morton in 1625, but the gay life of the settlers and their selling rum and firearms to the Indians greatly offended the Pilgrims of Plymouth, who in 1627 arrested Morton; soon afterward Governor John Endecott of Massachusetts Bay visited Merry Mount, rebuked the inhabitants and cut down their Maypole. Later the place was abandoned, and in 1634 a Puritan settlement was made here. In 1708 the town was divided into the North Precinct and the South Precinct, and it was in the former, now Quincy, that John Adams, John Hancock and John Quincy Adams were born. Quincy was separated from Braintree in 1792 (there were further additions to Quincy from Braintree in 1856), and Randolph in 1793.

See D.M. Wilson,Quincy, Old Braintree and Merry Mount(Boston, 1906); C.F. Adams, Jr.,Three Episodes of Massachusetts History(Boston, 1892 and 1896); W.S. Pattee,History of Old Braintree and Quincy(Quincy, 1878).

See D.M. Wilson,Quincy, Old Braintree and Merry Mount(Boston, 1906); C.F. Adams, Jr.,Three Episodes of Massachusetts History(Boston, 1892 and 1896); W.S. Pattee,History of Old Braintree and Quincy(Quincy, 1878).

BRAKE,a town of Germany, in the grand duchy of Oldenburg, on the left bank of the Weser, about halfway between Bremen and the mouth of the river. Pop. 5000. It was for centuries the port of Bremen; and though, since the founding of Bremerhaven, it no longer possesses a monopoly of the river traffic as before, it still continues to flourish. Large docks have been constructed, and the place has a considerable import trade in English coal. Shipbuilding and weaving are carried on to some extent.

Brake in Oldenburg must be distinguished from the village of the same name in the principality of Lippe, known as Brake bei Limgo, which gave its name to the cadet line of the counts of Lippe-Brake (1621-1709).

BRAKE.(1) A term for rough-tangled undergrowth, connected, according to theNew English Dictionary, with “break,” to separate. The “brake-fern” (Pteris aquilina) is the common “bracken,” and is a shortened form of that northern Eng. word, derived from a Scand. word for “fern” (cf. Swed.bräken), though often confused with “brake,” undergrowth. (2) A termapplied to many implements and mechanical and other appliances, often spelled “break.” Here there are probably several words, difficult to separate in origin, connected either with “break,” to separate, and its derived meanings, or with the Fr.braquer(appearing in such expressions asbraquer un canon, to turn or point a gun), from O. Fr.brac, modernbras, an arm, Lat.bracchium. The word is thus used of a toothed instrument for separating the fibre of flax and hemp; of the “break-rolls” employed in flour manufacture; of a heavy wheeled vehicle used for “breaking in” horses, and hence of a large carriage of the wagonette type; of an arm or lever, and so of the winch of a crossbow and of a pump handle, cf. “brake-pump”; of a curb or bridle for a horse; and of a mechanical appliance for checking the speed of moving vehicles, &c. It is noteworthy that the two last meanings are also possessed by the Fr.freinand the Ger.Bremse.

Brakes, in engineering, are instruments by means of which mechanical energy may be expended in overcoming friction. They are used for two main classes of purpose: (1) to limit or decrease the velocity of a moving body, or to bring it completely to rest; and (2) to measure directly the amount of frictional resistance between two bodies, or indirectly the amount of energy given out by a body or bodies in motion. Machines in which brakes are employed for purposes of the second class are commonly known as dynamometers (q.v.). The other class is exemplified in the brakes used on wheeled vehicles and on cranes, lifts, &c. Here a body, or system of bodies, originally at rest, has been set in motion and has received acceleration up to a certain velocity, the work which has been done in that acceleration being stored up as “actual energy” in the body itself. Before the body can be brought to rest it must part with this energy, expending it in overcoming some external resistance. If the energy be great in proportion to the usual resistance tending to stop the body, the motion will continue for a long time, or through a long distance, before the energy has been completely expended and the body brought to rest. But in certain cases considerations of safety or convenience require that this time or distance be greatly shortened, and this is done by artificially increasing the external resistance for the time being, by means of a brake.

A simple method of obtaining this increased resistance is by pressing a block or shoe of metal or wood against the rim of a moving wheel, or by tightening a flexible strap or band on a rotating pulley or drum. In wheeled road vehicles, a wheel may be prevented from rotating by a chain passed through its spokes and attached to the body of the vehicle, when the resistance is increased by the substitution of a rubbing for a rolling action; or the same effect may be produced by fixing a slipper or skid under the wheel. Other forms of brake depend, not on the friction between two solid bodies, but on the frictional resistance of a fluid, as in “fan” and “pump” brakes. Thus the motion of revolving blades may be opposed by the resistance of the air or of a liquid in which they are made to work, or the motion of a plunger fitting tightly in a cylinder filled with a fluid may be checked by the fluid being prevented from escape except through a narrow orifice. The fly used to regulate the speed of the striking train in a clock is an example of a fan brake, while a pump brake is utilized for controlling the recoil of guns and in the hydraulic buffers sometimes fitted at terminal railway stations to stop trains that enter at excessive speed. On electric tramcars a braking effect is sometimes obtained by arranging the connexions of the motors so that they act as generators driven by the moving car. In this way a counter-torque is exerted on the axles. The current produced is expended by some means, as by being made to operate some frictional braking device, or to magnetize iron shoes carried on the car just over, but clear of, the running rails, to which they are then magnetically attracted (seeTraction).

The simplest way of applying a brake is by muscular force, exerted through a hand or foot lever or through a screw, by which the brake block is pressed against the rim of the wheel or the band brake tightened on its drum. This method is sufficient in the case of most road vehicles, and is largely used on railway vehicles. But the power thus available is limited, and becomes inadequate for heavy vehicles moving at high speeds. Moreover, on a train consisting of a number of vehicles, the hand brakes on each of which are independent of all others, either a brakesman must be carried on each, or a number of the brakes must be left unused, with consequent loss of stopping power; while even if there is a brakesman on every vehicle it is impossible to secure that all the brakes throughout the train are applied with the promptness that is necessary in case of emergency.

Considerations of this sort led to the development of power brakes for railway trains. Of these there are five main classes:—

(1) Mechanical brakes, worked by springs, friction wheels on the axle, chains wound on drums, or other mechanical devices, or by the force produced when, by reason of a sudden checking of the speed of the locomotive, the momentumRailway power brakes.of the cars causes pressure on the draw-bars or buffing devices. (2) Hydraulic brakes, worked by means of water forced through pipes into proper mechanism for transmitting its force to the brake-shoes. (3) Electric brakes. (4) Air and vacuum brakes, worked by compressed air or by air at atmospheric pressure operating on a vacuum. (5) Brakes worked by steam or water from the boiler of the engine, operating by means of a cylinder; the use of these is generally limited to the locomotive. Of this kind is the counter-pressure or water brake of L. le Chatelier. If the valve gear of a locomotive in motion be reversed and the steam regulator be left open, the cylinders act as compressors, pumping air from the exhaust pipe into the boiler against the steam pressure. A retarding effect is thus exercised, but at the cost of certain inconveniences due to the passage of hot air and cinders from the smoke box through the cylinders. To remedy these, le Chatelier arranged that a jet of hot water from the boiler should be delivered into the exhaust pipe, so that steam and not the hot flue gases should be pumped back.

Power brakes may be either continuous or independent—continuous if connected throughout the train and with the locomotive by pipes, wires, &c., as the compressed air, vacuum and electric brakes; independent if not so connected, as the buffer-brakes and hand-brakes. Continuous brakes may be divided into two other great classes—automatic and non-automatic. The former are so arranged that they are applied automatically on all the coaches of the train if any important part of the apparatus is broken, or the couplings between cars are ruptured; in an emergency they can be put on by the guard, or (in some cases) by a passenger. Non-automatic brakes can be applied only by the person (usually the engine-driver) to whom the management of them is given; they may become inoperative on all the coaches, and always on those which have become detached, if a coupling or other important and generally essential part is broken. Many mechanical and several hydraulic and electrical continuous brakes have been invented and tried; but experience has shown them so inadequate in practice that they have all practically disappeared, leaving the field to the air and the vacuum brakes. At first these were non-automatic, but in 1872 the automatic air-brake was invented by George Westinghouse, and the automatic vacuum-brake was developed a few years later.

Those respects in which non-automatic brakes are inadequate will be understood from the following summary of the requirements most important in a train-braking apparatus: (1) It must be capable of application to every wheel throughout the train. (2) It must be so prompt in action that the shortest possible time shall elapse between its first application and the moment when the full power can be exerted throughout the train. (3) It must be capable of being applied by the engine-driver or by any of the officials in charge of the train, either in concert or independently. (4) The motion of the train must be arrested in the shortest possible distance. (5) The failure of a vital part must declare itself by causing the brake to be applied and to remain applied until the cause of failure is removed. (6) The breaking of the train in two or more parts must cause immediate automatic application of the brakes on all the coaches. (7)When used in ordinary service stops it must be capable of gradual and uniform application (followed, if necessary, by a full emergency application at any part of the service application) and of prompt release under all conditions of application. (8) It must be simple in operation and construction, not liable to derangement, and inexpensive in maintenance.

The Westinghouse non-automatic or “straight” air-brake, patented in 1869, consists in its simplest form of a direct-acting, steam-driven air-pump, carried on the locomotive, which forces compressed air into a reservoir, usually placedSimple air-brake.under the foot-plate of the locomotive. From this reservoir a pipe is led through the engine cab, where it is fitted with a three-way cock, to the rear of the locomotive tender, where it terminates in a flexible hose, on the end of which is a coupling. The coaches are furnished with a similar pipe, having hose and coupling at each end, which communicates with one end of a cylinder containing a piston, to the rod of which the brake-rods and levers are connected. The application of the brakes is effected by the engine-driver turning the three-way cock, so that compressed air flows through the pipe and, acting against one side of the brake-cylinder piston, applies the brake-shoes to the wheels by the movement of this piston and the rods and levers connected to it. To release the brakes the three-way cock is turned to cut off communication between the main reservoir and the train-pipe, and to open a port permitting the escape of the compressed air in the train-pipe and brake-cylinders. This brake was soon found defective and inadequate in many ways. An appreciable time was required for the air to flow through the pipes from the locomotive to the car-cylinders, and this time increased quickly with the length of the trains. Still more objectionable, however, was the fact that on detached coaches the air-brakes could not be applied, the result being sometimes serious collisions between the front and rear portions of the train.Fig.1.—Westinghouse Air-Brake.Section through Triple-Valve and Brake-Cylinder.In the Westinghouse “ordinary” automatic air-brake a main air reservoir on the engine is kept charged with compressed air at 80 ℔ per sq. in. by means of the steam-pump, which may be controlled by an automatic governor. On electricAutomatic air-brake.railways a pump, driven by an electric motor, is generally employed; but occasionally, on trains which run short distances, no pump is carried, the main reservoir being charged at the terminal points with sufficient compressed air for the journey. Conveniently placed to the driver’s hand is the driver’s valve, by means of which he controls the flow of air from the main reservoir to the train-pipe, or from the train-pipe to the atmosphere. A reducing-valve is attached to the driver’s valve, and in the normal or running position of the latter reduces the pressure of the air flowing from the main reservoir to the train-pipe by 10 or 15 ℔ per sq. in. From the engine a train-pipe runs the whole length of the train, being rendered continuous between each vehicle and between the engine and the rest of the train by flexible hose couplings. Each vehicle is provided with a brake-cylinder H (fig. 1), containing a piston, the movement of which applies the brake blocks to the wheels, an “auxiliary air-reservoir” G, and an automatic “triple-valve” F. The auxiliary reservoir receives compressed air from the train-pipe and stores it for use in the brake-cylinder of its own vehicle, and both the auxiliary reservoir and the triple-valve are connected directly or indirectly with the train-pipe through the pipe E. The automatic action of the brake is due to the construction of the triple-valve, the principal parts of which are a piston and slide-valve, so arranged that the air in the auxiliary reservoir acts at all times on the side of the piston to which the slide-valve is attached, while the air in the train-pipe exerts its pressure on the opposite side. So long as the brakes are not in operation, the pressures in the train-pipe, triple-valve and auxiliary reservoir are all equal, and there is no compressed air in the brake-cylinder. But when, in order to apply the brake, the driver discharges air from the train-pipe, this equilibrium is destroyed, and the greater pressure in the auxiliary reservoir forces the triple-valve to a position which allows air from the auxiliary reservoir to pass directly into the brake-cylinder. This air forces out the piston of the brake-cylinder and applies the brakes, connexion being made with the brake-rigging at R. The purpose of the small groovenwhich establishes communication between the two sides of the piston when the brakes are off, is to prevent their unintended application through slight leakage from the train-pipe. To release the brakes, the driver, by moving the handle of his valve to the release position, admits air from the main reservoir to the train-pipe, the pressure in which thus becomes greater than that in the auxiliary reservoir; the piston and slide-valve of the triple-valve are thereby forced back to their normal position, the compressed air in the brake-cylinder is discharged, and the piston is brought back by the coiled spring, thus releasing the brakes. At the same time the auxiliary reservoir is recharged.With this “ordinary” brake, since an appreciable time is required for the reduction of pressure to travel along the train-pipe from the engine, the brakes are applied sensibly sooner at the front than at the end of the train, and with long trains thisQuick-acting air-brake.difference in the time of application becomes a matter of importance. The “quick-acting” brake was introduced to remedy this defect. For it the triple valve is provided with a supplementary mechanism, which, when the air pressure in the train-pipe is suddenly or violently reduced, opens a passage whereby air from the train-pipe is permitted to enter the brake-cylinder directly. The result is twofold: not only is the pressure from the auxiliary reservoir acting in the brake-cylinder reinforced by the pressure in the train-pipe, but the pressure in the train-pipe is reduced locally in every vehicle in extremely rapid succession instead of at the engine only, and in consequence all the brakes are applied almost simultaneously throughout the train. The same effect is produced should the train break in two, or a hose or any part of the train-pipe burst; but during ordinary or “service” stops the triple-valve acts exactly as in the ordinary brake, the quick-acting portion, that is, the vertical piston and valve seen in fig. 1, not coming into operation. When the handle Z is turned to the position X the quick-acting mechanism is rendered inoperative, and when it is at Y the brake on the vehicle concerned is wholly cut out of action.A further improvement introduced in the Westinghouse brake in 1906 was designed to give quick action for service as well as emergency stops. In this the triple-valve is substantially the same as in the ordinary brake. The additional mechanism of the quick-acting portion is dispensed with, but instead, a small chamber, normally containing air at atmospheric pressure, is provided on each vehicle, and is so arranged that it is put into communication with the train-pipe by the first movement of the triple-valve. As soon, therefore, as the driver, by lowering the pressure in the train-pipe, causes the triple-valve in the foremost vehicle of the train to operate, a certain quantity of air rushes out of the train-pipe into the small chamber; a further local reduction in the pressure of the train-pipe in that vehicle is thereby effected, and this almost instantaneously actuates the triple-valve of the succeeding vehicle, and so on throughout the train. In this way, on a train 1800 ft. long, consisting of sixty 30-ft. vehicles, the brake-blocks may be applied, with equal force, on the last vehicle about 2½ seconds later than on the first.Brake-blocks can be applied, without skidding the wheels, with greater pressure at high speeds than at low. Advantage is taken of this fact in the design of the Westinghouse “high-speed” brake, invented in 1894, which consists ofHigh-speed air-brake.attachments enabling the pressure in the train-pipe and reservoirs to be increased at the will of the driver. The increased pressure acting in the brake-cylinder increases in the same proportion the pressure of the brake-shoes against the wheels. Attached to the brake cylinder is a valve for automatically reducingthe pressure therein proportionately to the reduction in speed, until the maximum pressure under which the brakes are operated in making ordinary stops is reached, when this valve closes and the maximum safe pressure for operating the brakes at ordinary speeds is retained until a stop is made.Fig.2—Automatic Vacuum-Brake, showing its general arrangement.In the automatic vacuum-brake, the exhausting apparatus generally consists of a combined large and small ejector (a form of jet-pump) worked by steam and under the control of the driver, though sometimes a mechanical air-pump, drivenAutomatic Vacuum-Brake.from the crosshead of the locomotive, is substituted for the small ejector. These ejectors, of which the small one is at work continuously while the large one is only employed when it is necessary to create vacuum quickly,e.g.to take off the brakes after a short stop, produce in the train-pipe a vacuum equal to about 20 in. of mercury, or in other words reduce the pressure within it to about one-third of an atmosphere. The train-pipe extends the whole length of the train and communicates under each vehicle with a cylinder, to the piston of which, by suitable rods and levers, the brake-shoes are connected. The communication between the train-pipe and the cylinder is controlled by a ball-valve, one form of which is shown in fig. 2. The release-valve is for the purpose of withdrawing the ball from its seat when it is necessary to take off the brakes by hand; it is made air-tight by a small diaphragm, the pressure of which, when there is vacuum in the pipe, pulls in the spindle and allows the ball to fall freely into its seat. When air is exhausted through the train-pipe it travels out from below the piston direct, and from above it past the ball, which is thus forced off its seat, to roll back again when the exhaustion is complete. In this state of affairs the piston is held in equilibrium and the brake-blocks are free of the wheels. To apply them, air is admitted to the train-pipe, either purposely by the guard or driver, or accidentally by the rupture of the train-pipe or coupling-hose between the vehicles. The air passes to the lower side of the piston, but is prevented from gaining access to the upper side by the ball-valve which blocks the passage; hence the pressure becomes different on the two sides of the piston, which in consequence is forced upwards and thus applies the brakes. They are released by the re-establishment of equilibrium (by the use of the large ejector if necessary); when this is done the piston falls and the brakes drop off. The general arrangement of the apparatus is shown in fig. 2. To render the application of the brakes nearly simultaneous throughout a long train, the valve in the guard’s van is arranged to open automatically when the driver suddenly lets in air to the train-pipe. This valve has a small hole through its stem, and is secured at the top by a diaphragm to a small dome-like chamber, which is exhausted when a vacuum is created in the train-pipe. A gradual application destroys the vacuum in the chamber as quickly as in the pipe and the diaphragm remains unmoved; but with a sudden one the vacuum below the valve is destroyed more quickly, and with the difference of pressure the diaphragm lifts the valve and admits air. A rapid-acting valve (fig. 3) is sometimes interposed between the train-pipe and the cylinder on each vehicle. In the normal or running position, a vacuum is maintained below the valve A and above the diaphragm B, while the chamber below B and above A is at atmospheric pressure. For an emergency application of the brake, air is suddenly admitted to the train-pipe and thus to the lower side of A, and the pressure acting on the under side of B is sufficient to cause it to lift the valve A, and to admit air from the atmosphere, both to the brake-cylinder and the train-pipe, through the clappet-valve D, which also rises because of the difference of pressure on its two sides. In a graduated application, neither D nor A rises from its seat, but air from the train-pipe finds access to the brake-cylinder by passing around the peg C, which is so proportioned as to allow the necessary amount of air to enter the brake-cylinder, and so obtain simultaneous action of the brake throughout the train. When the handle E is turned so as to prevent the clappet D from rising, the rapid action is cut out and the brake acts as an ordinary vacuum automatic brake. A modification of the device for obtaining accelerated action, described above in connexion with the Westinghouse brake, is also applicable. Accelerating chambers, again containing air at atmospheric pressure, are provided on each vehicle and are connected with the train-pipe by valves which open as the vacuum in the latter begins to decrease with the operation of the driver’s valve. The air thus admitted into the train-pipe effects a still further local reduction of the vacuum, which is sufficient to actuate the accelerating valve of each next succeeding vehicle and is thus rapidly propagated throughout the train.Famous tests of railway brakes were those made by Sir Douglas Galton and Mr George Westinghouse on the London, Brighton and South Coast railway, in England, in 1878, and by a committee of the Master Car Builders’ Association,Brake trials.near Burlington, Iowa, in 1886 and 1887. The object of the former series (for accounts of which seeProc. Inst. Mech. Eng., 1878, 1879) was to determine the co-efficient of friction between the brake-shoe and the wheel, and between the wheel and rail at different velocities when the wheels were revolving and when skidded,i.e.stopped in their rotation and caused to slide. These experiments were the first of their kind ever undertaken, and for many years their results furnished most of the trustworthy data obtainable on the friction of motion. It was found that the co-efficient of friction between cast-iron shoes and steel-tired wheels increased as the speed of the train decreased, varying from 0.111 at 55 m. an hour to 0.33 when the train was just moving. It also decreased with the time during which the brakes were applied; thus at 20 m. an hour theco-efficient was at the beginning 0.182, after ten seconds 0.133, after twenty seconds 0.099. Generally speaking, especially at moderate speeds, the decrease in the co-efficient of friction due to time is less than the increase due to decrease of speed, although when the time is long the reverse may be true. When the wheels are skidded the retardation of the train is always reduced; therefore, for the greatest braking effect, the pressures on the brake-shoes should never be sufficient to cause the wheels to slide on the rails. The Burlington brake tests were undertaken to determine the practicability of using power brakes on long and heavy freight trains. In the 1886 tests there were five competitors—three buffer-brakes, one compressed-air brake, and one vacuum-brake. The tests comprised stops with trains of twenty-five and fifty vehicles, at 20 and 40 m. an hour, on the level and on gradients of 1 in 100. They demonstrated that the buffer-brakes were inadequate for long trains, and that considerable improvements in the continuous brakes, both compressed-air and vacuum, would be needed to make them act quickly enough to avoid excessive shocks in the rear vehicles. In 1887 the trials of the year before were repeated by the same committee, and at the same place. Trains of fifty vehicles, about 2000 ft. long and fitted with each brake, were again provided, and there were again five competitors, but they all entered continuous brakes—three compressed-air brakes, one vacuum and one electric. The results of the first day’s test of the train equipped with Westinghouse brakes are shown in Table I., the distances in which are the feet run by the train after the brakes were set, and the times the seconds that elapsed from the application of the brakes to full stop.Fig.3—Rapid-acting Vacuum-Brake Valve.Table I.—Stops of a Train of Fifty Empty Cars, 1887—Automatic Air-Brakes.Speed inMiles perHour.Distance inFeet.Time inSeconds.Equivalent Distanceat 20 m. and 40.19½1869¾196· ·19¼21511233· ·36½58817· ·693The remarkable shortness of these stops is the more evident when they are compared with the best results obtained in 1886, as shown in Table II.Table II.—Stops of a Train of Fifty Empty Cars, 1886—Automatic Air-Brakes.Speed inMiles.Distance inFeet.Time inSeconds.Equivalent Distanceat 20 m. and 40.23.542417½307· ·20.335416340· ·4092222½· ·9224092722¾· ·927The time that elapsed between the application of the brakes on the engine and on the fiftieth vehicle was almost twice as great in 1886 as in 1887, being in the latter tests only five to six seconds, and in 1887 the stops were made in less than two-thirds the distance required in 1886. Still, violent shocks were caused by the rear vehicles running against those in front, before the brakes on the former were applied with sufficient force to hold them, and these shocks were so severe as to make the use of the brakes in practice impossible on long trains. When the triple-valves were actuated electrically, however, the stops were still further improved, as shown in Table III.Table III.—Stops of a Train of Fifty Empty Cars— Electric Application of Air-Brakes.Speed inMiles.Distance inFeet.Time inSeconds.Equivalent Distanceat 20 m. and 40.21½1607139· ·231838138· ·3847514½· ·51936½46014· ·545Although the same levers, shoes, rods and other connexions were used, there were no shocks in the fiftieth car of the train on any stop, whether on the level or on a gradient. The committee in charge reported that the best type of brake for long freight trains was one operated by air, in which the valves were actuated by electricity, but they expressed doubt of the practicability of using electricity on freight trains. The Westinghouse Company then proceeded to quicken the action of the triple-valve, operated by air only, so that stops with fifty-car trains could be made without shock, and without electrically operated valves; and they were so successful in this respect that, towards the end of the same year, 1887, with a train of fifty vehicles, stops were made without shock, fully equalling in quickness and shortness of distance run any that had been made at the trials by the electrically operated brakes.In 1889 some further tests were made by Sir Douglas Galton with the automatic vacuum-brake, on a practically level portion of the Manchester, Sheffield & Lincolnshire railway (now the Great Central). The train was composed of an engine, tender and forty carriages, the total length over buffers being 1464 ft., and the total weight 574 tons, of which 423 tons were braked. At a speed of about 32 m. an hour this train was brought to a standstill in twelve seconds after the application of the brakes, in a distance of 342 ft.

The Westinghouse non-automatic or “straight” air-brake, patented in 1869, consists in its simplest form of a direct-acting, steam-driven air-pump, carried on the locomotive, which forces compressed air into a reservoir, usually placedSimple air-brake.under the foot-plate of the locomotive. From this reservoir a pipe is led through the engine cab, where it is fitted with a three-way cock, to the rear of the locomotive tender, where it terminates in a flexible hose, on the end of which is a coupling. The coaches are furnished with a similar pipe, having hose and coupling at each end, which communicates with one end of a cylinder containing a piston, to the rod of which the brake-rods and levers are connected. The application of the brakes is effected by the engine-driver turning the three-way cock, so that compressed air flows through the pipe and, acting against one side of the brake-cylinder piston, applies the brake-shoes to the wheels by the movement of this piston and the rods and levers connected to it. To release the brakes the three-way cock is turned to cut off communication between the main reservoir and the train-pipe, and to open a port permitting the escape of the compressed air in the train-pipe and brake-cylinders. This brake was soon found defective and inadequate in many ways. An appreciable time was required for the air to flow through the pipes from the locomotive to the car-cylinders, and this time increased quickly with the length of the trains. Still more objectionable, however, was the fact that on detached coaches the air-brakes could not be applied, the result being sometimes serious collisions between the front and rear portions of the train.

In the Westinghouse “ordinary” automatic air-brake a main air reservoir on the engine is kept charged with compressed air at 80 ℔ per sq. in. by means of the steam-pump, which may be controlled by an automatic governor. On electricAutomatic air-brake.railways a pump, driven by an electric motor, is generally employed; but occasionally, on trains which run short distances, no pump is carried, the main reservoir being charged at the terminal points with sufficient compressed air for the journey. Conveniently placed to the driver’s hand is the driver’s valve, by means of which he controls the flow of air from the main reservoir to the train-pipe, or from the train-pipe to the atmosphere. A reducing-valve is attached to the driver’s valve, and in the normal or running position of the latter reduces the pressure of the air flowing from the main reservoir to the train-pipe by 10 or 15 ℔ per sq. in. From the engine a train-pipe runs the whole length of the train, being rendered continuous between each vehicle and between the engine and the rest of the train by flexible hose couplings. Each vehicle is provided with a brake-cylinder H (fig. 1), containing a piston, the movement of which applies the brake blocks to the wheels, an “auxiliary air-reservoir” G, and an automatic “triple-valve” F. The auxiliary reservoir receives compressed air from the train-pipe and stores it for use in the brake-cylinder of its own vehicle, and both the auxiliary reservoir and the triple-valve are connected directly or indirectly with the train-pipe through the pipe E. The automatic action of the brake is due to the construction of the triple-valve, the principal parts of which are a piston and slide-valve, so arranged that the air in the auxiliary reservoir acts at all times on the side of the piston to which the slide-valve is attached, while the air in the train-pipe exerts its pressure on the opposite side. So long as the brakes are not in operation, the pressures in the train-pipe, triple-valve and auxiliary reservoir are all equal, and there is no compressed air in the brake-cylinder. But when, in order to apply the brake, the driver discharges air from the train-pipe, this equilibrium is destroyed, and the greater pressure in the auxiliary reservoir forces the triple-valve to a position which allows air from the auxiliary reservoir to pass directly into the brake-cylinder. This air forces out the piston of the brake-cylinder and applies the brakes, connexion being made with the brake-rigging at R. The purpose of the small groovenwhich establishes communication between the two sides of the piston when the brakes are off, is to prevent their unintended application through slight leakage from the train-pipe. To release the brakes, the driver, by moving the handle of his valve to the release position, admits air from the main reservoir to the train-pipe, the pressure in which thus becomes greater than that in the auxiliary reservoir; the piston and slide-valve of the triple-valve are thereby forced back to their normal position, the compressed air in the brake-cylinder is discharged, and the piston is brought back by the coiled spring, thus releasing the brakes. At the same time the auxiliary reservoir is recharged.

With this “ordinary” brake, since an appreciable time is required for the reduction of pressure to travel along the train-pipe from the engine, the brakes are applied sensibly sooner at the front than at the end of the train, and with long trains thisQuick-acting air-brake.difference in the time of application becomes a matter of importance. The “quick-acting” brake was introduced to remedy this defect. For it the triple valve is provided with a supplementary mechanism, which, when the air pressure in the train-pipe is suddenly or violently reduced, opens a passage whereby air from the train-pipe is permitted to enter the brake-cylinder directly. The result is twofold: not only is the pressure from the auxiliary reservoir acting in the brake-cylinder reinforced by the pressure in the train-pipe, but the pressure in the train-pipe is reduced locally in every vehicle in extremely rapid succession instead of at the engine only, and in consequence all the brakes are applied almost simultaneously throughout the train. The same effect is produced should the train break in two, or a hose or any part of the train-pipe burst; but during ordinary or “service” stops the triple-valve acts exactly as in the ordinary brake, the quick-acting portion, that is, the vertical piston and valve seen in fig. 1, not coming into operation. When the handle Z is turned to the position X the quick-acting mechanism is rendered inoperative, and when it is at Y the brake on the vehicle concerned is wholly cut out of action.

A further improvement introduced in the Westinghouse brake in 1906 was designed to give quick action for service as well as emergency stops. In this the triple-valve is substantially the same as in the ordinary brake. The additional mechanism of the quick-acting portion is dispensed with, but instead, a small chamber, normally containing air at atmospheric pressure, is provided on each vehicle, and is so arranged that it is put into communication with the train-pipe by the first movement of the triple-valve. As soon, therefore, as the driver, by lowering the pressure in the train-pipe, causes the triple-valve in the foremost vehicle of the train to operate, a certain quantity of air rushes out of the train-pipe into the small chamber; a further local reduction in the pressure of the train-pipe in that vehicle is thereby effected, and this almost instantaneously actuates the triple-valve of the succeeding vehicle, and so on throughout the train. In this way, on a train 1800 ft. long, consisting of sixty 30-ft. vehicles, the brake-blocks may be applied, with equal force, on the last vehicle about 2½ seconds later than on the first.

Brake-blocks can be applied, without skidding the wheels, with greater pressure at high speeds than at low. Advantage is taken of this fact in the design of the Westinghouse “high-speed” brake, invented in 1894, which consists ofHigh-speed air-brake.attachments enabling the pressure in the train-pipe and reservoirs to be increased at the will of the driver. The increased pressure acting in the brake-cylinder increases in the same proportion the pressure of the brake-shoes against the wheels. Attached to the brake cylinder is a valve for automatically reducingthe pressure therein proportionately to the reduction in speed, until the maximum pressure under which the brakes are operated in making ordinary stops is reached, when this valve closes and the maximum safe pressure for operating the brakes at ordinary speeds is retained until a stop is made.

In the automatic vacuum-brake, the exhausting apparatus generally consists of a combined large and small ejector (a form of jet-pump) worked by steam and under the control of the driver, though sometimes a mechanical air-pump, drivenAutomatic Vacuum-Brake.from the crosshead of the locomotive, is substituted for the small ejector. These ejectors, of which the small one is at work continuously while the large one is only employed when it is necessary to create vacuum quickly,e.g.to take off the brakes after a short stop, produce in the train-pipe a vacuum equal to about 20 in. of mercury, or in other words reduce the pressure within it to about one-third of an atmosphere. The train-pipe extends the whole length of the train and communicates under each vehicle with a cylinder, to the piston of which, by suitable rods and levers, the brake-shoes are connected. The communication between the train-pipe and the cylinder is controlled by a ball-valve, one form of which is shown in fig. 2. The release-valve is for the purpose of withdrawing the ball from its seat when it is necessary to take off the brakes by hand; it is made air-tight by a small diaphragm, the pressure of which, when there is vacuum in the pipe, pulls in the spindle and allows the ball to fall freely into its seat. When air is exhausted through the train-pipe it travels out from below the piston direct, and from above it past the ball, which is thus forced off its seat, to roll back again when the exhaustion is complete. In this state of affairs the piston is held in equilibrium and the brake-blocks are free of the wheels. To apply them, air is admitted to the train-pipe, either purposely by the guard or driver, or accidentally by the rupture of the train-pipe or coupling-hose between the vehicles. The air passes to the lower side of the piston, but is prevented from gaining access to the upper side by the ball-valve which blocks the passage; hence the pressure becomes different on the two sides of the piston, which in consequence is forced upwards and thus applies the brakes. They are released by the re-establishment of equilibrium (by the use of the large ejector if necessary); when this is done the piston falls and the brakes drop off. The general arrangement of the apparatus is shown in fig. 2. To render the application of the brakes nearly simultaneous throughout a long train, the valve in the guard’s van is arranged to open automatically when the driver suddenly lets in air to the train-pipe. This valve has a small hole through its stem, and is secured at the top by a diaphragm to a small dome-like chamber, which is exhausted when a vacuum is created in the train-pipe. A gradual application destroys the vacuum in the chamber as quickly as in the pipe and the diaphragm remains unmoved; but with a sudden one the vacuum below the valve is destroyed more quickly, and with the difference of pressure the diaphragm lifts the valve and admits air. A rapid-acting valve (fig. 3) is sometimes interposed between the train-pipe and the cylinder on each vehicle. In the normal or running position, a vacuum is maintained below the valve A and above the diaphragm B, while the chamber below B and above A is at atmospheric pressure. For an emergency application of the brake, air is suddenly admitted to the train-pipe and thus to the lower side of A, and the pressure acting on the under side of B is sufficient to cause it to lift the valve A, and to admit air from the atmosphere, both to the brake-cylinder and the train-pipe, through the clappet-valve D, which also rises because of the difference of pressure on its two sides. In a graduated application, neither D nor A rises from its seat, but air from the train-pipe finds access to the brake-cylinder by passing around the peg C, which is so proportioned as to allow the necessary amount of air to enter the brake-cylinder, and so obtain simultaneous action of the brake throughout the train. When the handle E is turned so as to prevent the clappet D from rising, the rapid action is cut out and the brake acts as an ordinary vacuum automatic brake. A modification of the device for obtaining accelerated action, described above in connexion with the Westinghouse brake, is also applicable. Accelerating chambers, again containing air at atmospheric pressure, are provided on each vehicle and are connected with the train-pipe by valves which open as the vacuum in the latter begins to decrease with the operation of the driver’s valve. The air thus admitted into the train-pipe effects a still further local reduction of the vacuum, which is sufficient to actuate the accelerating valve of each next succeeding vehicle and is thus rapidly propagated throughout the train.

Famous tests of railway brakes were those made by Sir Douglas Galton and Mr George Westinghouse on the London, Brighton and South Coast railway, in England, in 1878, and by a committee of the Master Car Builders’ Association,Brake trials.near Burlington, Iowa, in 1886 and 1887. The object of the former series (for accounts of which seeProc. Inst. Mech. Eng., 1878, 1879) was to determine the co-efficient of friction between the brake-shoe and the wheel, and between the wheel and rail at different velocities when the wheels were revolving and when skidded,i.e.stopped in their rotation and caused to slide. These experiments were the first of their kind ever undertaken, and for many years their results furnished most of the trustworthy data obtainable on the friction of motion. It was found that the co-efficient of friction between cast-iron shoes and steel-tired wheels increased as the speed of the train decreased, varying from 0.111 at 55 m. an hour to 0.33 when the train was just moving. It also decreased with the time during which the brakes were applied; thus at 20 m. an hour theco-efficient was at the beginning 0.182, after ten seconds 0.133, after twenty seconds 0.099. Generally speaking, especially at moderate speeds, the decrease in the co-efficient of friction due to time is less than the increase due to decrease of speed, although when the time is long the reverse may be true. When the wheels are skidded the retardation of the train is always reduced; therefore, for the greatest braking effect, the pressures on the brake-shoes should never be sufficient to cause the wheels to slide on the rails. The Burlington brake tests were undertaken to determine the practicability of using power brakes on long and heavy freight trains. In the 1886 tests there were five competitors—three buffer-brakes, one compressed-air brake, and one vacuum-brake. The tests comprised stops with trains of twenty-five and fifty vehicles, at 20 and 40 m. an hour, on the level and on gradients of 1 in 100. They demonstrated that the buffer-brakes were inadequate for long trains, and that considerable improvements in the continuous brakes, both compressed-air and vacuum, would be needed to make them act quickly enough to avoid excessive shocks in the rear vehicles. In 1887 the trials of the year before were repeated by the same committee, and at the same place. Trains of fifty vehicles, about 2000 ft. long and fitted with each brake, were again provided, and there were again five competitors, but they all entered continuous brakes—three compressed-air brakes, one vacuum and one electric. The results of the first day’s test of the train equipped with Westinghouse brakes are shown in Table I., the distances in which are the feet run by the train after the brakes were set, and the times the seconds that elapsed from the application of the brakes to full stop.

Table I.—Stops of a Train of Fifty Empty Cars, 1887—Automatic Air-Brakes.

The remarkable shortness of these stops is the more evident when they are compared with the best results obtained in 1886, as shown in Table II.

Table II.—Stops of a Train of Fifty Empty Cars, 1886—Automatic Air-Brakes.

The time that elapsed between the application of the brakes on the engine and on the fiftieth vehicle was almost twice as great in 1886 as in 1887, being in the latter tests only five to six seconds, and in 1887 the stops were made in less than two-thirds the distance required in 1886. Still, violent shocks were caused by the rear vehicles running against those in front, before the brakes on the former were applied with sufficient force to hold them, and these shocks were so severe as to make the use of the brakes in practice impossible on long trains. When the triple-valves were actuated electrically, however, the stops were still further improved, as shown in Table III.

Table III.—Stops of a Train of Fifty Empty Cars— Electric Application of Air-Brakes.

Although the same levers, shoes, rods and other connexions were used, there were no shocks in the fiftieth car of the train on any stop, whether on the level or on a gradient. The committee in charge reported that the best type of brake for long freight trains was one operated by air, in which the valves were actuated by electricity, but they expressed doubt of the practicability of using electricity on freight trains. The Westinghouse Company then proceeded to quicken the action of the triple-valve, operated by air only, so that stops with fifty-car trains could be made without shock, and without electrically operated valves; and they were so successful in this respect that, towards the end of the same year, 1887, with a train of fifty vehicles, stops were made without shock, fully equalling in quickness and shortness of distance run any that had been made at the trials by the electrically operated brakes.

In 1889 some further tests were made by Sir Douglas Galton with the automatic vacuum-brake, on a practically level portion of the Manchester, Sheffield & Lincolnshire railway (now the Great Central). The train was composed of an engine, tender and forty carriages, the total length over buffers being 1464 ft., and the total weight 574 tons, of which 423 tons were braked. At a speed of about 32 m. an hour this train was brought to a standstill in twelve seconds after the application of the brakes, in a distance of 342 ft.

BRAKELOND, JOCELYN DE(fl. 1200), English monk, and author of a chronicle narrating the fortunes of the monastery of Bury St Edmunds between 1173 and 1202. He is only known to us through his own work. He was a native of Bury St Edmunds; he served his novitiate under Samson of Tottington, who was at that time master of the novices, but afterwards sub-sacrist, and, from 1182, abbot of the house. Jocelyn took the habit of religion in 1173, during the time of Abbot Hugo (1157-1180), through whose improvidence and laxity the abbey had become impoverished and the inmates dead to all respect for discipline. The fortunes of the abbey changed for the better with the election of Samson as Hugo’s successor. Jocelyn, who became abbot’s chaplain within four months of the election, describes the administration of Samson at considerable length. He tells us that he was with Samson night and day for six years; the picture which he gives of his master, although coloured by enthusiastic admiration, is singularly frank and intimate. It is all the more convincing since Jocelyn is no stylist. His Latin is familiar and easy, but the reverse of classical. He thinks and writes as one whose interests are wrapped up in his house; and the unique interest of his work lies in the minuteness with which it describes the policy of a monastic administrator who was in his own day considered as a model.

Jocelyn has also been credited with an extant but unprinted tract on the election of Abbot Hugo (Harleian MS. 1005, fo. 165); from internal evidence this appears to be an error. He mentions a (non-extant) work which he wrote, before theCronica, on the miracles of St Robert, a boy whom the Jews of Bury St Edmunds were alleged to have murdered (1181).

See the editions of theCronica Jocelini de Brakelondaby T. Arnold (inMemorials of St Edmund’s Abbey, vol. i. Rolls series, 1890), and by J.G. Rokewood (Camden Society, 1840); also Carlyle’sPast and Present, book ii. A translation and notes are given in T.E. Tomlin’sMonastic and Social Life in the Twelfth Century in the Chronicle of Jocelyn de Brakelond(1844). There is also a translation of Jocelyn by Sir E. Clarke (1907).

See the editions of theCronica Jocelini de Brakelondaby T. Arnold (inMemorials of St Edmund’s Abbey, vol. i. Rolls series, 1890), and by J.G. Rokewood (Camden Society, 1840); also Carlyle’sPast and Present, book ii. A translation and notes are given in T.E. Tomlin’sMonastic and Social Life in the Twelfth Century in the Chronicle of Jocelyn de Brakelond(1844). There is also a translation of Jocelyn by Sir E. Clarke (1907).

BRAMAH, JOSEPH(1748-1814), English engineer and inventor, was the son of a farmer, and was born at Stainborough, Yorkshire, on the 13th of April 1748. Incapacitated for agricultural labour by an accident to his ankle, on the expiry of his indentures he worked as a cabinet-maker in London, where he subsequently started business on his own account. His first patent for some improvements in the mechanism of water-closets was taken out in 1778. In 1784 he patented the lock known by his name, and in 1795 he invented the hydraulic press. For an important part of this, the collar which secured water-tightness between the plunger and the cylinder in which itworked, he was indebted to Henry Maudslay, one of his workmen, who also helped him in designing machines for the manufacture of his locks. In 1806 he devised for the Bank of England a numerical printing machine, specially adapted for bank-notes. Other inventions of his included the beer-engine for drawing beer, machinery for making aerated waters, planing machines, and improvements in steam-engines and boilers and in paper-making machinery. In 1785 he suggested the possibility of screw propulsion for ships, and in 1802 the hydraulic transmission of power; and he constructed waterworks at Norwich in 1790 and 1793. He died in London on the 9th of December 1814.

BRAMANTE,orBramante Lazzari(c.1444-1514), Italian architect and painter, whose real name was Donate d’Augnolo, was born at Monte-Asdrualdo in Urbino, in July 1444. He showed a great taste for drawing, and was at an early age placed under Fra Bartolommeo, called Fra Carnavale. But though he afterwards gained some fame as a painter, his attention was soon absorbed by architecture. He appears to have studied under Scirro Scirri, an architect in his native place, and perhaps under other masters. He then set out from Urbino, and proceeded through several of the towns of Lombardy, executing works of various magnitudes, and examining patiently all remains of ancient art. At last, attracted by the fame of the great Duomo, he reached Milan, where he remained from 1476 to 1499. He seems to have left Milan for Rome about 1500. He painted some frescoes at Rome, and devoted himself to the study of the ancient buildings, both in the city and as far south as Naples. About this time the Cardinal Caraffa commissioned him to rebuild the cloister of the Convent della Pace. Owing to the celerity and skill with which Bramante did this, the cardinal introduced him to Pope Alexander VI. He began to be consulted on nearly all the great architectural operations in Rome, and executed for the pope the palace of the Cancelleria or chancery. Under Julius II., Alexander’s successor, Bramante’s talents began to obtain adequate sphere of exercise. His first large work was to unite the straggling buildings of the palace and the Belvedere. This he accomplished by means of two long galleries or corridors enclosing a court. The design was only in part completed before the death of Julius and of the architect. So impatient was the pope and so eager was Bramante, that the foundations were not sufficiently well attended to; great part of it had, therefore, soon to be rebuilt, and the whole is now so much altered that it is hardly possible to decipher the original design.

Besides executing numerous smaller works at Rome and Bologna, among which is specially mentioned by older writers a round temple in the cloister of San Pietro-a-Montorio, Bramante was called upon by Pope Julius to take the first part in one of the greatest architectural enterprises ever attempted—the rebuilding of St Peter’s. Bramante’s designs were complete, and he pushed on the work so fast that before his death he had erected the four great piers and their arches, and completed the cornice and the vaulting in of this portion. He also vaulted in the principal chapel. After his death on the 11th of March 1514, his design was much altered, in particular by Michelangelo.

See Pungileoni,Memoire intorno alla vita ed alle opere di Bramante(Rome, 1836); H. Semper,Donato Bramante(Leipzig, 1879).

See Pungileoni,Memoire intorno alla vita ed alle opere di Bramante(Rome, 1836); H. Semper,Donato Bramante(Leipzig, 1879).

BRAMPTON, HENRY HAWKINS,Baron(1817-1907), English judge, was born at Hitchin, on the 14th of September 1817. He received his education at Bedford school. The son of a solicitor, he was early familiarized with legal principles. Called to the bar at the Middle Temple in 1843, he at once joined the old home circuit, and after enjoying a lucrative practice as a junior, took silk in 1859. His name is identified with many of the famous trials of the reign of Queen Victoria. He was engaged in the Simon Bernard case (of the Orsini plot celebrity), in that ofRoupellv.Waite, and in the Overend-Gurney prosecutions. The twocauses célèbres, however, in which Hawkins attained his highest legal distinction were the Tichborne trials and the great will case ofSugdenv.Lord St Leonards. In both of these he was victorious. In the first his masterly cross-examination of the witness Baigent was one of the great features of the trial. He did a lucrative business in references and arbitrations, and acted for the royal commissioners in the purchase of the site for the new law courts. Election petitions also formed another branch of his extensive practice. Hawkins was raised to the bench in 1876, and was assigned to the then exchequer division of the High Court, not as baron (an appellation which was being abolished by the Judicature Act), but with the title of Sir Henry Hawkins. He was a great advocate rather than a great lawyer. His searching voice, his manner, and the variety of his facial expression, gave him an enormous influence with juries, and as a cross-examiner he was seldom, if ever, surpassed. He was an excellent judge in chambers, where he displayed a clear and vigorous grasp of details and questions of fact. His knowledge of the criminal law was extensive and intimate, the reputation he gained as a “hanging” judge making him a terror to evil-doers; and the court for crown cases reserved was never considered complete without his assistance. In 1898 he retired from the bench, and was raised to the peerage under the title of Baron Brampton. He frequently took part in determining House of Lords appeals, and his judgments were distinguished by their lucidity and grasp. He held for many years the office of counsel to the Jockey Club, and as an active member of that body found relaxation from his legal and judicial duties at the leading race meetings, and was considered a capable judge of horses. In 1898 he was received into the Roman Catholic Church, and in 1903 he presented, in conjunction with Lady Brampton (his second wife), the chapel of SS. Augustine and Gregory to the Roman Catholic cathedral of Westminster, which was consecrated in that year. In 1904 he published hisReminiscences. He died in London on the 6th of October 1907, and Lady Brampton in the following year.

BRAMPTON,a market town in the Eskdale parliamentary division of Cumberland, England, 9 m. E.N.E. of Carlisle, on a branch of the North Eastern railway. Pop. (1901) 2494. It is picturesquely situated in a narrow valley opening upon that of the Irthing. The town has an agricultural trade, breweries, and manufactures of cotton and tweeds. The neighbourhood is rich in historical associations. Two miles N.E. of Brampton is the castle of Naworth, a fine example of a Border fortress. It was built in the reign of Edward III., by a member of the family of Dacre, who for many generations had had their stronghold here. Overlooking a deep wooded ravine, with streams to the east and west, the great quadrangular castle was naturally defended except on the south, where it was rendered secure by a double moat and drawbridge. By marriage in 1577 with Lady Elizabeth Dacre it passed into the hands of William Howard, afterwards lord warden of the Marches, the “Belted Will” of Sir Walter Scott and the Border ballads, who acquired great fame by his victories over the Scottish moss-troopers. The castle, the walls of which have many secret passages and hiding-places, is inhabited, and in its hall are numerous fine pictures, including a portrait of Charles I. by Van Dyck. Not far distant is Lanercost Priory, where in 1169 an Augustinian monastery was established. In 1311 Robert Bruce and his army were quartered here, and the priory was pillaged in 1346 by David, king of Scotland. From this time its prosperity declined, and at its dissolution under Henry VIII. it consisted only of a prior and seven canons. The Early English church has a restored nave, but retains much fine carving. The chancel is ruined, but the interesting crypt is preserved.

BRAMWELL, GEORGE WILLIAM WILSHERE BRAMWELL,Baron(1808-1892), English judge, was born in London on the 12th of June 1808, being the eldest son of George Bramwell, of the banking firm of Dorrien, Magens, Dorrien & Mello. He was educated privately, and at the age of sixteen he entered Dorriens’ bank. In 1830 he gave up this business for the law, being admitted as a student at Lincoln’s Inn in 1830, and at the Inner Temple in 1836. At first he practised as a special pleader, but was eventually called to the bar at both Inns in 1838. He soon worked his way into a good practice both in London and the home circuit, his knowledge of law and procedure being so well recognized that in 1850 he was appointed a memberof the Common Law Procedure Commission, which resulted in the Common Law Procedure Act of 1852. This act he drafted jointly with his friend Mr (afterwards Mr Justice) Willes, and thus began the abolition of the system of special pleading. In 1851 Lord Cranworth made Bramwell a queen’s counsel, and the Inner Temple elected him a bencher—he had ceased to be a member of Lincoln’s Inn in 1841. In 1853 he served on the royal commission to inquire into the assimilation of the mercantile laws of Scotland and England and the law of partnership, which had as its result the Companies Act of 1862. It was he who, during the sitting of this commission, suggested the addition of the word “limited” to the title of companies that sought to limit their liability, in order to prevent the obvious danger to persons trading with them in ignorance of their limitation of liability. As a queen’s counsel Bramwell enjoyed a large and steadily increasing practice, and in 1856 he was raised to the bench as a baron of the court of exchequer. In 1867, with Mr Justice Blackburn and Sir John Coleridge, he was made a member of the judicature commission. In 1871 he was one of the three judges who refused the seat on the judicial committee of the privy council to which Sir Robert Collier, in evasion of the spirit of the act creating the appointment, was appointed; and in 1876 he was raised to the court of appeal, where he sat till the autumn of 1881. As a puisne judge he had been conspicuous as a sound lawyer, with a strong logical mind unfettered by technicalities, but endowed with considerable respect for the common law. His rulings were always clear and decisive, while the same quality marked his dealings with fact, and, coupled with a straightforward, unpretentious manner, gave him great influence with juries. In the court of appeal he was perhaps not so entirely in his element as atnisi prius, but the same combination of sound law, strong common sense and clear expression characterized his judgments. His decisions during the three stages of his practical career are too numerous to be referred to particularly, althoughRyderv.Wombwell(L. R. 3 Ex. 95);R.v.Bradshaw(14 Cox C. C. 84);Household Fire Insurance Companyv.Grant(4 Ex. Div. 216);Stonorv.Fowle(13 App. Cas. 20),The Bank of Englandv.Vagliano Brothers(App. Cas. 1891) are good examples. Upon his retirement, announced in the long vacation of 1881, twenty-six judges and a huge gathering of the bar entertained him at a banquet in the Inner Temple hall. In December of the same year he was raised to the peerage, taking the title Baron Bramwell of Hever, from his home in Kent. In private life Bramwell had simple tastes and enjoyed simple pleasures. He was musical and fond of sports. He was twice married: in 1830 to Jane (d. 1836), daughter of Bruno Silva, by whom he had one daughter, and in 1861 to Martha Sinden. He died on the 9th of May 1892.

His younger brother, Sir Frederick Bramwell (1818-1903), was a well-known consulting engineer and “expert witness.”


Back to IndexNext