Chapter 2

(A. N.)

1This is the spelling of the old law-books, as given by Pennant, the zoologist, who, on something more than mere report, first included this bird among the British fauna. The only one of the “Scots Acts,” however, in which the present writer has been able to ascertain that the bird is named is No. 30 of James VI. (1621), which was passed to protect “powties, partrikes, moore foulles, blakcoks, gray hennis, termigantis, quailzies,capercailzies,” &c.2Not to be confounded with the bird so named previously by Prof. Nilsson, which is a hybrid.

1This is the spelling of the old law-books, as given by Pennant, the zoologist, who, on something more than mere report, first included this bird among the British fauna. The only one of the “Scots Acts,” however, in which the present writer has been able to ascertain that the bird is named is No. 30 of James VI. (1621), which was passed to protect “powties, partrikes, moore foulles, blakcoks, gray hennis, termigantis, quailzies,capercailzies,” &c.

2Not to be confounded with the bird so named previously by Prof. Nilsson, which is a hybrid.

CAPERN, EDWARD(1819-1894), English poet, was born at Tiverton, Devonshire, on the 21st of January 1819. From an early age he worked in a lace factory, but owing to failing eyesight he had to abandon this occupation in 1847 and he was in dire distress until he secured an appointment to be “the Rural Postman of Bideford,” by which name he is usually known. He occupied his leisure in writing occasional poetry which struck the popular fancy. Collected in a volume and published by subscription in 1856, it received the warm praise of the reviews and many distinguished people.Poems, by Edward Capern, was followed byBallads and Songs(1858),The Devonshire Melodist(a collection of the author’s songs, some of them to his own music) andWayside Warbles(1865), and resulted in a civil list pension being granted him by Lord Palmerston. He died on the 5th of June 1894.

CAPERNAUM(Καπερναούμ; probably, “the village of Naḥum”), an ancient city of Galilee. More than any other place, it was the home of Jesus after he began his mission; there he preached, called several of his disciples, and did many works, but without meeting with much response from the inhabitants, over whom he pronounced the heavy denunciation:—“And thou, Capernaum, which art exalted unto heaven, shalt be brought down to hell.” The site of the city has been a matter of much dispute,—one party, headed by Dr E. Robinson, maintaining an identification with Khan Minyeh at the north-west corner of the Sea of Galilee, and another, represented especially by Sir C.W. Wilson, supporting the claims of Tell Hum, midway between Khan Minyeh and the mouth of the Jordan. Khan Minyeh is beautifully situated in a “fertile plain formed by the retreat of the mountains about the middle of the western shore” of the Sea of Galilee. Its ruins are not very extensive, though they may have been despoiled for building the great Saracenic Khan from which they take their name. In the neighbourhood is a water-source,Ain et-Tābighah, an Arabic corruption ofHeptapegonor Seven Springs (referred to by Josephus as being near Capernaum). Tell Hum lies about 3 m. north of Khan Minyeh, and its ruins, covering an area of “half a mile long by a quarter wide,” prove it to have been the site of no small town. It must be admitted that if it be not Capernaum it is impossible to say what ancient place it represents. But it is doubtful whether Tell Hūm can be considered as a corruption ofKefr Naḥum, the Semitic name which the Greek represents: and there is not here, as at Khan Minyeh, any spring that can be equated to the Heptapegon of Josephus. On the whole the probabilities of the two sites seem to balance, and it is practically impossible without further discoveries to decide between them. The sites of the neighbouring cities of Bethsaida and Chorazin are probably to be sought respectively at El-Bateiha, a grassy plain in the north-east corner of the lake, and at Kerazeh, 2 m. north of Tell Hum. According to the so-calledPseudo-Methodiusthere was a tradition that Antichrist would be born at Chorazin, educated at Bethsaida and rule at Capernaum—hence the curse of Jesus upon these cities.

On the site of Capernaum see especially W. Sanday inJournal of Theological Studies, vol. v. p. 42.

On the site of Capernaum see especially W. Sanday inJournal of Theological Studies, vol. v. p. 42.

(R. A. S. M.)

CAPERS,the unexpanded flower-buds ofCapparis spinosa, prepared with vinegar for use as a pickle. The caper plant is a trailing shrub, belonging to the Mediterranean region, resembling in habit the common bramble, and having handsome flowers of a pinkish white, with four petals, and numerous long tassel-like stamens. The leaves are simple and ovate, with spiny stipules. The plant is cultivated in Sicily and the south of France; and in commerce capers are valued according to the period at which the buds are gathered and preserved. The finest are the young tender buds called “nonpareil,” after which, gradually increasing in size and lessening in value, come “superfine,” “fine,” “capucin” and “capot.” Other species ofCapparisare similarly employed in various localities, and in some cases the fruit is pickled.

CAPET,the name of a family to which, for nearly nine centuries, the kings of France, and many of the rulers of the most powerful fiefs in that country, belonged, and which mingled with several of the other royal races of Europe. The original significance of the name remains in dispute, but the first of the family to whom it was applied was Hugh, who was elected king of the Franks in 987. The real founder of the house, however, was Robert the Strong (q.v.), who received from Charles the Bald, king of the Franks, the countships of Anjou and Blois, and who is sometimes called duke, as he exercised some military authority in the district between the Seine and the Loire. According to Aimoin of Saint-Germain-des-Prés, and the chronicler, Richer, he was a Saxon, but historians question this statement. Robert’s two sons, Odo or Eudes, and Robert II., succeeded their father successively as dukes, and, in 887, some of the Franks chose Odo as their king. A similar step was taken, in 922, in the case of Robert II., this too marking the increasing irritation felt at the weakness of the Carolingian kings. When Robert died in 923, he was succeeded by his brother-in-law, Rudolph, duke of Burgundy, and not by his son Hugh, who is known in history as Hugh the Great, duke of France and Burgundy, and whose domain extended from the Loire to the frontiers of Picardy. When Louis V., king of the Franks, died in 987, the Franks, setting aside the Carolingians, passed over his brother Charles, and elected Hugh Capet, son of Hugh the Great, as their king, and crowned him at Reims. Avoiding the pretensions which had been made by the Carolingian kings, the Capetian kings were content, for a time, with a more modest position, and the story of the growth of their power belongs to the history of France. They had to combat the feudal nobility, and later, the younger branches of the royal house established in the great duchies, and the main reason for the permanence of their power was, perhaps, the fact that there were few minorities among them. The direct line ruled in France from 987 to 1328, when, at the death of King Charles IV., it was succeeded by the younger, or Valois, branch of the family. Philip VI., the first of the Valois kings, was a son of Charles I., count of Valois and grandson of King Philip III. (seeValois). The Capetian-Valois dynasty lasted until 1498, when Louis, duke of Orleans, became king as Louis XII., on the death of King Charles VIII. (seeOrleans). Louis XII. dying childless, the house of Valois-Angoulême followed from Francis I. to the death of Henry III. in 1589 (seeAngoulême), when the last great Capetian family, the Bourbons (q.v.) mounted the throne.

Scarcely second to the royal house is the branch to which belonged the dukes of Burgundy. In the 10th century the duchy of Burgundy fell into the hands of Hugh the Great, father of Hugh Capet, on whose death in 956 it passed to his son Otto, and, in 965, to his son Henry. In 1032 Robert, the second son of Robert the Pious, king of the Franks, and grandson of Hugh Capet, founded the first ducal house, which ruled until 1361. For two years the duchy was in the hands of the crown, but in 1363, the second ducal house, also Capetian, was founded by Philip the Bold, son of John II., king of France. This branchof the Capetians is also distinguished by its union with the Habsburgs, through the marriage of Mary, daughter of Charles the Bold, duke of Burgundy, with Maximilian, afterwards the emperor Maximilian I. Of great importance also was the house of the counts of Anjou, which was founded in 1246, by Charles, son of the French king Louis VIII., and which, in 1360, was raised to the dignity of a dukedom (seeAnjou). Members of this family sat upon the thrones of two kingdoms. The counts and dukes of Anjou were kings of Naples from 1265 to 1442. In 1308 Charles Robert of Anjou was elected king of Hungary, his claim being based on the marriage of his grandfather Charles II., king of Naples and count of Anjou, with Maria, daughter of Stephen V., king of Hungary. A third branch formed the house of the counts of Artois, which was founded in 1238 by Robert, son of King Louis VIII. This house merged in that of Valois in 1383, by the marriage of Margaret, daughter of Louis, count of Artois, with Philip the Bold, duke of Burgundy. The throne of Navarre was also filled by the Capetians. In 1284 Jeanne, daughter and heiress of Henry I., king of Navarre, married Philip IV., king of France, and the two kingdoms were united until Philip of Valois became king of France as Philip VI. in 1328, when Jeanne, daughter of King Louis X., and heiress of Navarre, married Philip, count of Evreux (seeNavarre).

In the 13th century the throne of Constantinople was occupied by a branch of the Capetians. Peter, grandson of King Louis VI., obtained that dignity in 1217 as brother-in-law of the two previous emperors, Baldwin, count of Flanders, and his brother Henry. Peter was succeeded successively by his two sons, Robert and Baldwin, from whom in 1261 the empire was recovered by the Greeks.

The counts of Dreux, for two centuries and a half (1132-1377), and the counts of Evreux, from 1307 to 1425, also belonged to the family of the Capets,—other members of which worthy of mention are the Dunois and the Longuevilles, illegitimate branches of the house of Valois, which produced many famous warriors and courtiers.

CAPE TOWN,the capital of the Cape Province, South Africa, in 33° 56′ S., 18° 28′ E. It is at the north-west extremity of the Cape Peninsula on the south shore of Table Bay, is 6181 m. by sea from London and 957 by rail south-west of Johannesburg. Few cities are more magnificently situated. Behind the bay the massive wall of Table Mountain, 2 m. in length, rises to a height of over 3500 ft., while on the east and west projecting mountains enclose the plain in which the city lies. The mountain to the east, 3300 ft. high, which projects but slightly seawards, is the Devil’s Peak, that to the west the Lion’s Head (over 2000 ft. high), with a lesser height in front called the Lion’s Rump or Signal Hill. The city, at first confined to the land at the head of the bay, has extended all round the shores of the bay and to the lower spurs of Table Mountain.

The purely Dutch aspect which Cape Town preserved until the middle of the 19th century has disappeared. Nearly all the stucco-fronted brick houses, with flat roofs and cornices and wide spreadingstoeps, of the early Dutch settlers have been replaced by shops, warehouses and offices in styles common to English towns. Of the many fine public buildings which adorn the city scarcely any date before 1860. The mixture of races among the inhabitants, especially the presence of numerous Malays, who on all festive occasions appear in gorgeous raiment, gives additional animation and colour to the street scenes. The mosques with their cupolas and minarets, and houses built in Eastern fashion contrast curiously with the Renaissance style of most of the modern buildings, the medieval aspect of the castle and the quaint appearance of the Dutch houses still standing.

Chief Public Buildings.—The castle stands near the shore at the head of the bay. Begun in 1666 its usefulness as a fortress has long ceased, but it serves to link the city to its past. West of the castle is a large oblong space, the Parade Ground. A little farther west, at the foot of the central jetty is a statue of Van Riebeek, the first governor of the Cape. In a line with the jetty is Adderley Street, and its continuation Government Avenue. Adderley Street and the avenue make one straight road a mile long, and at its end are “the Gardens,” as the suburbs built on the rising ground leading to Table Mountain are called. The avenue itself is fully half a mile long and is lined on either side with fine oak trees. In Adderley Street are the customs house and railway station, the Standard bank, the general post and telegraph offices, with a tower 120 ft. high, and the Dutch Reformed church. The church dates from 1699 and is the oldest church in South Africa. Of the original building only the clock tower (sent from Holland in 1727) remains. Government Avenue contains, on the east side, the Houses of Parliament, government house, a modernized Dutch building, and the Jewish synagogue; on the west side are the Anglican cathedral and grammar schools, the public library, botanic gardens, the museum and South African college. Many of these buildings are of considerable architectural merit, the material chiefly used in their construction being granite from the Paarl and red brick. The botanic gardens cover 14 acres, contain over 8000 varieties of trees and plants, and afford a magnificent view of Table Mountain and its companion heights. In the gardens, in front of the library is a statue of Sir George Grey, governor of the Cape from 1854 to 1861. The most valuable portion of the library is the 5000 volumes presented by Sir George Grey. In Queen Victoria Street, which runs along the west side of the gardens, are the Cape University buildings (begun in 1906), the law courts, City club and Huguenot memorial hall. The Anglican cathedral, begun in 1901 to replace an unpretentious building on the same site, is dedicated to St George. It lies between the library and St George’s Street, in which are the chief newspaper offices, and premises of the wholesale merchants. West of St George’s Street is Greenmarket Square, the centre of the town during the Dutch period. From the balcony of the town house, which overlooks the square, proclamations were read to the burghers, summoned to the spot by the ringing of the bell in the small-domed tower. Still farther west, in Riebeek Square, is the old slave market, now used as a church and school for coloured people.

Facing the north side of the Parade Ground are the handsome municipal buildings, completed in 1906. The most conspicuous feature is the clock tower and belfry, 200 ft. high. The hall is 130 ft. by 62, and 55 ft. high. Opposite the main entrance is a statue of Edward VII. by William Goscombe John, unveiled in 1905. The opera house occupies the north-west corner of the Parade Ground. Plein Street, which leads south from the Parade Ground, is noted for its cheap shops, largely patronized on Saturday nights by the coloured inhabitants. In Sir Lowry Road, the chief eastern thoroughfare, is the large vegetable and fruit market. Immediately west of the harbour are the convict station and Somerset hospital. They are built at the town end of Greenpoint Common, the open space at the foot of Signal Hill. Cape Town is provided with an excellent water supply and an efficient drainage system.

The Suburbs.—The suburbs of Cape Town, for natural beauty of position, are among the finest in the world. On the west they extend about 3 m., by Green Point to Sea Point, between the sea and the foot of the Lion’s Rump; on the east they run round the foot of the Devil’s Peak, by Woodstock, Mowbray, Rondebosch, Newlands, Claremont, &c., to Wynberg, a distance of 7 m. Though these are managed by various municipalities, there is practically no break in the buildings for the whole distance. All the parts are connected by the suburban railway service, and by an electric tramway system. A tramway also runs from the town over the Kloof, or pass between Table Mountain and the Lion’s Head, to Camp’s Bay, on the west coast south of Sea Point, to which place it is continued, the tramway thus completely circling the Lion’s Head and Signal Hill. Of the suburbs mentioned, Green Point and Sea Point are seaside resorts, Woodstock being both a business and residential quarter. Woodstock covers the ground on which the British, in 1806, defeated the Dutch, and contains the house in which the articles of capitulation were signed. Another seaside suburb is Milnerton on the north-east shores of Table Bay at the mouth of the Diep river. Near Maitland, and 3 m. from the city, is the Cape Town observatory, built in1820 and maintained by the British government. Rondebosch, 5 m. from the city, contains some of the finest of the Dutch mansions in South Africa. Less than a mile from the station is Groote Schuur, a typical specimen of the country houses built by the Dutch settlers in the 17th century. The house was the property of Cecil Rhodes, and was bequeathed by him for the use of the prime minister of Federated South Africa. The grounds of the estate extend up the slopes of Table Mountain. At Newlands is Bishop’s Court, the home of the archbishop of Cape Town. More distant suburbs to the south-east are Constantia, with a famous Dutch farm-house and wine farm, and Muizenberg and Kalk Bay, the two last villages on the shore of False Bay. At Muizenberg Cecil Rhodes died, 1902. Facing the Atlantic is Hout’s Bay, 10 m. south-south-west of Wynberg.

Most of the suburbs and the city itself are exposed to the south-east winds which, passing over the flats which join the Cape Peninsula to the mainland, reach the city sand-laden. From its bracing qualities this wind, which blows in the summer, is known as the “Cape Doctor.” During its prevalence Table Mountain is covered by a dense whitish-grey cloud, overlapping its side like a tablecloth.

The Harbour.—Table Bay, 20 m. wide at its entrance, is fully exposed to north and north-west gales. The harbour works, begun in 1860, afford sheltered accommodation for a large number of vessels. From the west end of the bay a breakwater extends north-east for some 4000 ft. East of the breakwater and parallel to it for 2700 ft. is the South pier. From breakwater and pier arms project laterally. In the area enclosed are the Victoria basin, covering 64 acres, the Alfred basin of 8½ acres, a graving dock 529 ft. long and a patent slip for vessels up to 1500 tons. There is good anchorage outside the Victoria basin under the lee of the breakwater, and since 1904 the foreshore east of the south pier has been reclaimed and additional wharfage provided. Altogether there are 2½ m. of quay walls, the wharfs being provided with electrical cranage. Cargo can be transferred direct from the ship into railway trucks. Vessels of the deepest draught can enter into the Victoria basin, the depth of water at low tide ranging from 24 to 36 ft.

Trade and Communication.—The port has a practical monopoly of the passenger traffic between the Cape and England. Several lines of steamers—chiefly British and German—maintain regular communication with Europe, the British mail boats taking sixteen days on the journey. By its railway connexions Cape Town affords the quickest means of reaching, from western Europe, every other town in South Africa. In the import trade Cape Town is closely rivalled by Port Elizabeth, but its export trade, which includes diamonds and bar gold, is fully 70% of that of the entire colony. In 1898, the year before the beginning of the Anglo-Boer war, the volume of trade was:—Imports £5,128,292, exports £15,881,952. In 1904, two years after the conclusion of the war the figures were:—imports £9,070,757; exports £17,471,760. In 1907 during a period of severe and prolonged trade depression the imports had fallen to £5,263,930, but the exports owing entirely to the increased output of gold from the Rand mines had increased to £37,994,658; gold and diamonds represented over £37,000,000 of this total. The tonnage of ships entering the harbour in 1887 was 801,033. In 1904 it had risen to 4,846,012 and in 1907 was 4,671,146. The trade of the port in tons was 1,276,350 in 1899 and 1,413,471 in 1904. In 1907 it had fallen to 658,721.

Defence.—Cape Town, being in the event of the closing of the Suez Canal on the main route of ships from Europe to the East, is of considerable strategic importance. It is defended by several batteries armed with modern heavy guns. It is garrisoned by Imperial and local troops, and is connected by railway with the naval station at Simon’s Town on the east of the Cape Peninsula.

Population.—The Cape electoral division, which includes Cape Town, had in 1865 a population of 50,064, in 1875 57,319, in 1891 97,238, and in 1904 213,167, of whom 120,475 were whites. Cape Town itself had a population in 1875 of 33,000, in 1891 of 51,251 and in 1904 of 77,668. Inclusive of the nearer suburbs the population was 78,866 in 1891 and 170,083 in 1904. Of the inhabitants of the city proper 44,203 were white (1904). Of the coloured inhabitants 6561 were Malays; the remainder being chiefly of mixed blood. The most populous suburbs in 1904 were Woodstock with 28,990 inhabitants, and Wynberg with 18,477.

History and Local Government.—Cape Town was founded in 1652 by settlers sent from Holland by the Netherlands East India Co., under Jan van Riebeek. It came definitely into the possession of Great Britain in 1806. Its political history is indistinguishable from that of Cape Colony (q.v.). The town was granted municipal institutions in 1836. (Among the councillors returned at the election of 1904 was Dr Abdurrahman, a Mahommedan and a graduate of Edinburgh, this being, it is believed, the first instance of the election of a man of colour to any European representative body in South Africa.) The municipality owns the water and lighting services. The municipal rating value was, in 1880 £2,054,204, in 1901 £9,475,260, in 1908 (when the rate levied was 3d. in the £) £14,129,439. The total rateable value of the suburbs, not included in the above figures, is over £8,000,000. Rates are based on capital, not annual, value. The control of the port is vested in the Harbour and Railway Board of the Union.

Cape Town is the seat of the legislature of the Union of South Africa, of the provincial government, of the provincial division of the Supreme Court of South Africa, and of the Cape University; also of an archbishop of the Anglican and a bishop of the Roman Catholic churches.

CAPE VERDE ISLANDS(Ilhas do Caba Verde), an archipelago belonging to Portugal; off the West African coast, between 17° 13′ and 14° 47′ N. and 22° 40′ and 25° 22′ W. Pop. (1905) about 138,620; area, 1475 sq. m. The archipelago consists of ten islands:—Santo Antão (commonly miswritten St Antonio), São Vicente, Santa Luzia, São Nicolao, Sal, Boa Vista, Maio, São Thiago (the St Jago of the English), Fogo, and Brava, besides four uninhabited islets. It forms a sort of broken crescent, with the concavity towards the west. The last four islands constitute the leeward (Sotavento) group and the other six the windward (Barlavento). The distance between the coast of Africa and the nearest island (Boa Vista) is about 300 m. The islands derive their name, frequently but erroneously written “Cape Verd,” or “Cape de Verd” Islands, from the African promontory off which they lie, known as Cape Verde, or the Green Cape. The entire archipelago is of volcanic origin, and on the island of Fogo there is an active volcano. No serious eruption has taken place since 1680, and the craters from which the streams of basalt issued have lost their outline.

Climate.—The atmosphere of the islands is generally hazy, especially in the direction of Africa. With occasional exceptions during summer and autumn, the north-east trade is the prevailing wind, blowing most strongly from November to May. The rainy season is during August, September and October, when there is thunder and a light variable wind from south-east or south-west. The Harmattan, a very dry east wind from the African continent, occasionally makes itself felt. The heat of summer is high, the thermometer ranging from 80° to 90° Fahr. near the sea. The unhealthy season is the period during and following the rains, when vegetation springs up with surprising rapidity, and there is much stagnant water, poisoning the air on the lower grounds. Remittent fevers are then common. The people of all the islands are also subject in May to an endemic of a bilious nature called locallylevadias, but the cases rarely assume a dangerous form, and recovery is usually attained in three or four days without medical aid. On some of the islands rain has occasionally not fallen for three years. The immediate consequence is a failure of the crops, and this is followed by the death of great numbers from starvation, or the epidemics which usually break out afterwards.

Flora.—Owing largely to the widespread destruction of timber for fuel, and to the frequency of drought, the flora of the islands is poor when compared with that of the Canaries, the Azores or Madeira. It is markedly tropical in character; and although some seventy wild-flowers, grasses, ferns, &c., are peculiar to the archipelago, the majority of plants are those found on the neighbouring African littoral. Systematic afforestation has not been attempted, but the Portuguese have introduced a few trees, such as the baobab, eucalyptus and dragon-tree, besides many plants of economic value. Coffee-growing, an industry dating from 1790, is the chief resource of the people of Santo Antão, Fogo and São Thiago; maize, millet, sugar-cane, manioc, excellent oranges, pumpkins, sweet potatoes, and, to a less extent, tobacco and cotton are produced. On most of the islands coco-nut and date palms, tamarinds and bananas may be seen; orchil is gathered; and indigo and castor-oil are produced. Of considerable importance is the physic-nut (Jatropha curcas), which is exported.

Fauna.—Quails are found in all the islands; rabbits in Boa Vista, São Thiago and Fogo; wild boars in São Thiago. Both black and grey rats are common. Goats, horses and asses are reared, and goatskins are exported. The neighbouring sea abounds with fish, and coral fisheries are carried on by a colony of Neapolitans in São Thiago. Turtles come from the African coast to lay their eggs on the sandy shores. The Ilheu Branco, or White Islet, between São Nicolao and Santa Luzia, is remarkable as containing a variety of puffin unknown elsewhere, and a species of large lizard (Macroscinctus coctei) which feeds on plants.

Inhabitants.—The first settlers on the islands imported negro slaves from the African coast. Slavery continued in full force until 1854, when the Portuguese government freed the public slaves, and ameliorated the conditions of private ownership. In 1857 arrangements were made for the gradual abolition of slavery, and by 1876 the last slave had been liberated. The transportation of convicts from Portugal, a much-dreaded punishment, was continued until the closing years of the 19th century. It was the coexistence of these two forms of servitude, even more than the climate, which prevented any large influx of Portuguese colonists. Hence the blacks and mulattoes far outnumber the white inhabitants. They are, as a rule, taller than the Portuguese, and are of fine physique, with regular features but woolly hair. Slavery and the enervating climate have left their mark on the habits of the people, whose indolence and fatalism are perhaps their most obvious qualities. Their language is a bastard Portuguese, known as thelingua creoula. Their religion is Roman Catholicism, combined with a number of pagan beliefs and rites, which are fostered by thecurandeirosor medicine men. These superstitions tend to disappear gradually before the advance of education, which has progressed considerably since 1867, when the first school, a lyceum, was opened in Ribeira Brava, the capital of São Nicolao. On all the inhabited islands, except Santa Luzia, there are churches and primary schools, conducted by the government or the priests. The children of the wealthier classes are sent to Lisbon for their education.

Government.—The archipelago forms one of the foreign provinces of Portugal, and is under the command of a governor-in-chief appointed by the crown. There are two principal judges, one for the windward and another for the leeward group, the former with his residence at São Nicolao, and the latter at Praia; and each island has a military commandant, a few soldiers, and a number of salaried officials, such as police, magistrates and custom-house directors. There is also an ecclesiastical establishment, with a bishop, dean and canons.

Industries.—The principal industries, apart from agriculture, are the manufacture of sugar, spirits, salt, cottons and straw hats and fish-curing. The average yearly value of the exports is about £60,000; that of the imports (including £200,000 for coal), about £350,000. The most important of the exports are coffee, physic-nuts, millet, sugar, spirits, salt, live animals, skins and fish. This trade is principally carried on with Lisbon and the Portuguese possessions on the west coast of Africa, and with passing vessels. The imports consist principally of coal, textiles, food-stuffs, wine, metals, tobacco, machinery, pottery and vegetables. Over 3000 vessels, with a total tonnage exceeding 3,500,000, annually enter the ports of the archipelago; the majority call at Mindello, on São Vicente, for coal, and do not receive or discharge any large quantities of cargo.

Santo Antão(pop. 25,000), at the extreme north-west of the archipelago, has an area of 265 sq. m. Its surface is very rugged and mountainous, abounding in volcanic craters, of which the chief is the Topoda Coroa (7300 ft.), also known as the Sugar-loaf. Mineral springs exist in many places. The island is the most picturesque, the healthiest, and, on its north-western slope, the best watered and most fertile of the archipelago. The south-eastern slope, shut out by lofty mountains from the fertilizing moisture of the trade-winds, has an entirely different appearance, black rocks, white pumice and red clay being its most characteristic features. Santo Antão produces large quantities of excellent coffee, besides sugar and fruit. It has several small ports, of which the chief are the sheltered and spacious Tarrafal Bay, on the south-west coast, and the more frequented Ponta do Sol, on the north-east, 8 m. from the capital, Ribeira Grande, a town of 4500 inhabitants. Cinchona is cultivated in the neighbourhood. In 1780 the slaves on Santo Antão were declared free, but this decree was not carried out. About the same time many white settlers, chiefly from the Canaries, entered the island, and introduced the cultivation of wheat.São Vicente, orSt Vincent(8000), lies near Santo Antão, on the south-east, and has an area of 75 sq. m. Its highest point is Monte Verde (2400 ft.). The whole island is as arid and sterile as the south-eastern half of Santo Antão, and for the same reason. It was practically uninhabited until 1795; in 1829 its population numbered about 100. Its harbour, an extinct crater on the north coast, with an entrance eroded by the sea, affords complete shelter from every wind. An English speculator founded a coaling station here in 1851, and the town of Mindello, also known as Porto Grande or St Vincent, grew up rapidly, and became the commercial centre of the archipelago. Most of the business is in English hands, and nine-tenths of the inhabitants understand English. Foodstuffs, wood and water are imported from Santo Antão, and the water is stored in a large reservoir at Mindello. São Vicente has a station for the submarine cable from Lisbon to Pernambuco in Brazil.Santa Luzia, about 5 m. south-east, has an area of 18 sq. m., and forms a single estate, occupied only by the servants or the family of the proprietor. Its highest point is 885 ft. above sea-level. On the south-west it has a good harbour, visited by whaling and fishing boats. Much orchil was formerly gathered, and there is good pasturage for the numerous herds of cattle. A little to the south are the uninhabited islets of Branco and Razo.São Nicolao, orNicolau(12,000), a long, narrow, crescent-shaped island with an area of 126 sq. m., lies farther east, near the middle of the archipelago. Its climate is not very healthy. Maize, kidney-beans, manioc, sugar-cane and vines are cultivated; and in ordinary years grain is exported to the other islands. The interior is mountainous, and culminates in two peaks which can be seen for many leagues; one has the shape of a sugar-loaf, and is near the middle of the island; the other, Monte Gordo, is near the west end, and has a height of 4280 ft. All the other islands of the group can be seen from São Nicolao in clear weather. Vessels frequently enter Preguiça, or Freshwater Bay, near the south-east extremity of the island, for water and fresh provisions; and the custom-house is here. The island was one of the first colonized; in 1774 its inhabitants numbered 13,500, but famine subsequently caused a great decrease. The first capital, Lapa, at the end of a promontory on the south,was abandoned during the period of Spanish ascendancy over Portugal (1580-1640) in favour of Ribeira Brava (4000), on the north coast, a town which now has a considerable trade.Sal(750), in the north-east of the archipelago, has an area of 75 sq. m. It was originally namedLana, orLhana(“plain”), from the flatness of the greater part of its surface. It derives its modern name from a natural salt-spring, but most of the salt produced here is now obtained from artificial salt-pans. Towards the close of the 17th century it was inhabited only by a few shepherds, and by slaves employed in the salt-works. In 1705 it was entirely abandoned, owing to drought and consequent famine; and only in 1808 was the manufacture of salt resumed. A railway, the first built in Portuguese territory, was opened in 1835. The hostile Brazilian tariffs of 1889 for a time nearly destroyed the salt trade. Whales, turtles and fish are abundant, and dairy-farming is a prosperous industry. There are many small harbours, which render every part of the island easily accessible.Boa Vista(2600), the most easterly island of the archipelago, has an area of 235 sq. m. It was named São Christovão by its discoverers in the 15th century. Its modern name, meaning “fair view,” is singularly inappropriate, for with the exception of a few coco-nut trees there is no wood, and in the dry season the island seems nothing but an arid waste. The little vegetation that then exists is in the bottom of ravines, where corn, beans and cotton are cultivated. The springs of good water are few. The coast is indented by numerous shallow bays, the largest of which is the harbour of the capital, Porto Sal-Rei, on the western side (pop. about 1000). A chain of heights, flanked by inferior ranges, traverses the middle of Boa Vista, culminating in Monte Gallego (1250 ft.), towards the east. In the north-western angle of the island there is a low tract of loose sand, which is inundated with water during the rainy season; and here are some extensive salt-pans, where the sea-water is evaporated by the heat of the sun. Salt and orchil are exported. A good deal of fish is taken on the coast and supplies the impoverished islanders with much of their food.Maio(1000) has an area of 70 sq. m., and resembles Sal and Boa Vista in climate and configuration, although it belongs to the Sotavento group. Its best harbour is that of Nossa Senhora da Luz, on the south-west coast, and is commonly known as Porto Inglez or English Road, from the fact that it was occupied until the end of the 18th century by the British, who based their claim on the marriage-treaty between Charles II. and Catherine of Braganza (1662). The island is a barren, treeless waste, surrounded by rocks. Its inhabitants, who live chiefly by the manufacture of salt, by cattle-farming and by fishing, are compelled to import most of their provisions from São Thiago, with which, for purposes of local administration, Maio is included.São Thiago(63,000) is the most populous and the largest of the Cape Verde Islands, having an area of 350 sq. m. It is also one of the most unhealthy, except among the mountains over 2000 ft. high. The interior is a mass of volcanic heights, formed of basalt covered with chalk and clay, and culminating in the central Pico da Antonia (4500 ft.), a sharply pointed cone. There are numerous ravines, furrowed by perennial streams, and in these ravines are grown large quantities of coffee, oranges, sugar-cane and physic-nuts, besides a variety of tropical fruits and cereals. Spirits are distilled from sugar-cane, and coarse sugar is manufactured. The first capital of the islands was Ribeira Grande, to-day called Cidade Velha or the Old City, a picturesque town with a cathedral and ruined fort. It was built in the 15th century on the south coast, was made an episcopal see in 1532, and became capital of the archipelago in 1592. In 1712 it was sacked by a French force, but despite its poverty and unhealthy situation it continued to be the capital until 1770, when its place was taken by Praia on the south-east. Praia (often written Praya) has a fine harbour, a population of 21,000 and a considerable trade. It contains the palace of the governor-general, a small natural history museum, a meteorological observatory and an important station for the cables between South America, Europe and West Africa. It occupies a basalt plateau, overlooking the bay (Porto da Praia), and has an attractive appearance, with its numerous coco-nut trees and the peak of Antonia rising in the background above successive steps of tableland. Its unhealthiness has been mitigated by the partial drainage of a marsh lying to the east.Fogo(17,600) is a mass of volcanic rock, almost circular in shape and measuring about 190 sq. m. In the centre a still active volcano, the Pico do Cano, rises to a height of about 10,000 ft. Its crater, which stands within an older crater, measures 3 m. in circumference and is visible at sea for nearly 100 m. It emits smoke and ashes at intervals; and in 1680, 1785, 1799, 1816, 1846, 1852 and 1857 it was in eruption. After the first and most serious of these outbreaks, the island, which had previously been called São Felippe, was renamed Fogo,i.e.“Fire.” The ascent of the mountain was first made in 1819 by two British naval officers, named Vidal and Mudge. The island is divided, like Santo Antão, into a fertile and a sterile zone. Its northern half produces fine coffee, beans, maize and sugar-cane; the southern half is little better than a desert, with oases of cultivated land near its few springs. São Felippe or Nossa Senhora da Luz (3000), on the west coast, is the capital. The islanders claim to be the aristocracy of the archipelago, and trace their descent from the original Portuguese settlers. The majority, however, are negroes or mulattoes. Drought and famine, followed by severe epidemics, have been especially frequent here, notably in the years 1887-1889.Brava(9013), the most southerly of the islands, has an area of 23 sq. m. Though mountainous, and in some parts sterile, it is very closely cultivated, and, unlike the other islands, is divided into a multitude of small holdings. The desire to own land is almost universal, and as the population numbers upwards of 380 per sq. m., and the system of tenure gives rise to many disputes, the peasantry are almost incessantly engaged in litigation. The women, who are locally celebrated for their beauty, far outnumber the men, who emigrate at an early age to America. These emigrants usually return richer and better educated than the peasantry of the neighbouring islands. To the north of Brava lie a group of reefs among which two islets (Ilheus Seccos or Ilheus do Rombo) are conspicuous. These are usually known as the Ilheu de Dentro (Inner Islet) and the Ilheu de Fóra (Outer Islet). The first is used as a shelter for whaling and fishing vessels, and as pasturage for cattle; the second has supplied much guano for export.

Santo Antão(pop. 25,000), at the extreme north-west of the archipelago, has an area of 265 sq. m. Its surface is very rugged and mountainous, abounding in volcanic craters, of which the chief is the Topoda Coroa (7300 ft.), also known as the Sugar-loaf. Mineral springs exist in many places. The island is the most picturesque, the healthiest, and, on its north-western slope, the best watered and most fertile of the archipelago. The south-eastern slope, shut out by lofty mountains from the fertilizing moisture of the trade-winds, has an entirely different appearance, black rocks, white pumice and red clay being its most characteristic features. Santo Antão produces large quantities of excellent coffee, besides sugar and fruit. It has several small ports, of which the chief are the sheltered and spacious Tarrafal Bay, on the south-west coast, and the more frequented Ponta do Sol, on the north-east, 8 m. from the capital, Ribeira Grande, a town of 4500 inhabitants. Cinchona is cultivated in the neighbourhood. In 1780 the slaves on Santo Antão were declared free, but this decree was not carried out. About the same time many white settlers, chiefly from the Canaries, entered the island, and introduced the cultivation of wheat.

São Vicente, orSt Vincent(8000), lies near Santo Antão, on the south-east, and has an area of 75 sq. m. Its highest point is Monte Verde (2400 ft.). The whole island is as arid and sterile as the south-eastern half of Santo Antão, and for the same reason. It was practically uninhabited until 1795; in 1829 its population numbered about 100. Its harbour, an extinct crater on the north coast, with an entrance eroded by the sea, affords complete shelter from every wind. An English speculator founded a coaling station here in 1851, and the town of Mindello, also known as Porto Grande or St Vincent, grew up rapidly, and became the commercial centre of the archipelago. Most of the business is in English hands, and nine-tenths of the inhabitants understand English. Foodstuffs, wood and water are imported from Santo Antão, and the water is stored in a large reservoir at Mindello. São Vicente has a station for the submarine cable from Lisbon to Pernambuco in Brazil.

Santa Luzia, about 5 m. south-east, has an area of 18 sq. m., and forms a single estate, occupied only by the servants or the family of the proprietor. Its highest point is 885 ft. above sea-level. On the south-west it has a good harbour, visited by whaling and fishing boats. Much orchil was formerly gathered, and there is good pasturage for the numerous herds of cattle. A little to the south are the uninhabited islets of Branco and Razo.

São Nicolao, orNicolau(12,000), a long, narrow, crescent-shaped island with an area of 126 sq. m., lies farther east, near the middle of the archipelago. Its climate is not very healthy. Maize, kidney-beans, manioc, sugar-cane and vines are cultivated; and in ordinary years grain is exported to the other islands. The interior is mountainous, and culminates in two peaks which can be seen for many leagues; one has the shape of a sugar-loaf, and is near the middle of the island; the other, Monte Gordo, is near the west end, and has a height of 4280 ft. All the other islands of the group can be seen from São Nicolao in clear weather. Vessels frequently enter Preguiça, or Freshwater Bay, near the south-east extremity of the island, for water and fresh provisions; and the custom-house is here. The island was one of the first colonized; in 1774 its inhabitants numbered 13,500, but famine subsequently caused a great decrease. The first capital, Lapa, at the end of a promontory on the south,was abandoned during the period of Spanish ascendancy over Portugal (1580-1640) in favour of Ribeira Brava (4000), on the north coast, a town which now has a considerable trade.

Sal(750), in the north-east of the archipelago, has an area of 75 sq. m. It was originally namedLana, orLhana(“plain”), from the flatness of the greater part of its surface. It derives its modern name from a natural salt-spring, but most of the salt produced here is now obtained from artificial salt-pans. Towards the close of the 17th century it was inhabited only by a few shepherds, and by slaves employed in the salt-works. In 1705 it was entirely abandoned, owing to drought and consequent famine; and only in 1808 was the manufacture of salt resumed. A railway, the first built in Portuguese territory, was opened in 1835. The hostile Brazilian tariffs of 1889 for a time nearly destroyed the salt trade. Whales, turtles and fish are abundant, and dairy-farming is a prosperous industry. There are many small harbours, which render every part of the island easily accessible.

Boa Vista(2600), the most easterly island of the archipelago, has an area of 235 sq. m. It was named São Christovão by its discoverers in the 15th century. Its modern name, meaning “fair view,” is singularly inappropriate, for with the exception of a few coco-nut trees there is no wood, and in the dry season the island seems nothing but an arid waste. The little vegetation that then exists is in the bottom of ravines, where corn, beans and cotton are cultivated. The springs of good water are few. The coast is indented by numerous shallow bays, the largest of which is the harbour of the capital, Porto Sal-Rei, on the western side (pop. about 1000). A chain of heights, flanked by inferior ranges, traverses the middle of Boa Vista, culminating in Monte Gallego (1250 ft.), towards the east. In the north-western angle of the island there is a low tract of loose sand, which is inundated with water during the rainy season; and here are some extensive salt-pans, where the sea-water is evaporated by the heat of the sun. Salt and orchil are exported. A good deal of fish is taken on the coast and supplies the impoverished islanders with much of their food.

Maio(1000) has an area of 70 sq. m., and resembles Sal and Boa Vista in climate and configuration, although it belongs to the Sotavento group. Its best harbour is that of Nossa Senhora da Luz, on the south-west coast, and is commonly known as Porto Inglez or English Road, from the fact that it was occupied until the end of the 18th century by the British, who based their claim on the marriage-treaty between Charles II. and Catherine of Braganza (1662). The island is a barren, treeless waste, surrounded by rocks. Its inhabitants, who live chiefly by the manufacture of salt, by cattle-farming and by fishing, are compelled to import most of their provisions from São Thiago, with which, for purposes of local administration, Maio is included.

São Thiago(63,000) is the most populous and the largest of the Cape Verde Islands, having an area of 350 sq. m. It is also one of the most unhealthy, except among the mountains over 2000 ft. high. The interior is a mass of volcanic heights, formed of basalt covered with chalk and clay, and culminating in the central Pico da Antonia (4500 ft.), a sharply pointed cone. There are numerous ravines, furrowed by perennial streams, and in these ravines are grown large quantities of coffee, oranges, sugar-cane and physic-nuts, besides a variety of tropical fruits and cereals. Spirits are distilled from sugar-cane, and coarse sugar is manufactured. The first capital of the islands was Ribeira Grande, to-day called Cidade Velha or the Old City, a picturesque town with a cathedral and ruined fort. It was built in the 15th century on the south coast, was made an episcopal see in 1532, and became capital of the archipelago in 1592. In 1712 it was sacked by a French force, but despite its poverty and unhealthy situation it continued to be the capital until 1770, when its place was taken by Praia on the south-east. Praia (often written Praya) has a fine harbour, a population of 21,000 and a considerable trade. It contains the palace of the governor-general, a small natural history museum, a meteorological observatory and an important station for the cables between South America, Europe and West Africa. It occupies a basalt plateau, overlooking the bay (Porto da Praia), and has an attractive appearance, with its numerous coco-nut trees and the peak of Antonia rising in the background above successive steps of tableland. Its unhealthiness has been mitigated by the partial drainage of a marsh lying to the east.

Fogo(17,600) is a mass of volcanic rock, almost circular in shape and measuring about 190 sq. m. In the centre a still active volcano, the Pico do Cano, rises to a height of about 10,000 ft. Its crater, which stands within an older crater, measures 3 m. in circumference and is visible at sea for nearly 100 m. It emits smoke and ashes at intervals; and in 1680, 1785, 1799, 1816, 1846, 1852 and 1857 it was in eruption. After the first and most serious of these outbreaks, the island, which had previously been called São Felippe, was renamed Fogo,i.e.“Fire.” The ascent of the mountain was first made in 1819 by two British naval officers, named Vidal and Mudge. The island is divided, like Santo Antão, into a fertile and a sterile zone. Its northern half produces fine coffee, beans, maize and sugar-cane; the southern half is little better than a desert, with oases of cultivated land near its few springs. São Felippe or Nossa Senhora da Luz (3000), on the west coast, is the capital. The islanders claim to be the aristocracy of the archipelago, and trace their descent from the original Portuguese settlers. The majority, however, are negroes or mulattoes. Drought and famine, followed by severe epidemics, have been especially frequent here, notably in the years 1887-1889.

Brava(9013), the most southerly of the islands, has an area of 23 sq. m. Though mountainous, and in some parts sterile, it is very closely cultivated, and, unlike the other islands, is divided into a multitude of small holdings. The desire to own land is almost universal, and as the population numbers upwards of 380 per sq. m., and the system of tenure gives rise to many disputes, the peasantry are almost incessantly engaged in litigation. The women, who are locally celebrated for their beauty, far outnumber the men, who emigrate at an early age to America. These emigrants usually return richer and better educated than the peasantry of the neighbouring islands. To the north of Brava lie a group of reefs among which two islets (Ilheus Seccos or Ilheus do Rombo) are conspicuous. These are usually known as the Ilheu de Dentro (Inner Islet) and the Ilheu de Fóra (Outer Islet). The first is used as a shelter for whaling and fishing vessels, and as pasturage for cattle; the second has supplied much guano for export.

History.—The earliest known discovery of the islands was made in 1456 by the Venetian captain Alvise Cadamosto (q.v.), who had entered the service of Prince Henry the Navigator. The archipelago was granted by King Alphonso V. of Portugal to his brother, Prince Ferdinand, whose agents completed the work of discovery. Ferdinand was an absolute monarch, exercising a commercial monopoly. In 1461 he sent an expedition to recruit slaves on the coast of Guinea and thus to people the islands, which were almost certainly uninhabited at the time. On his death in 1470 his privileges reverted to the crown, and were bestowed by John II. on Prince Emanuel, by whose accession to the throne in 1495 the archipelago finally became part of the royal dominions. Its population and importance rapidly increased; its first bishop was consecrated in 1532, its first governor-general appointed about the end of the century. It was enriched by the frequent visits of Portuguese fleets, on their return to Europe laden with treasure from the East, and by the presence of immigrants from Madeira, who introduced better agricultural methods and several new industries, such as dyeing and distillation of spirits. The failure to maintain an equal rate of progress in the 18th and 19th centuries was due partly to drought, famine and disease—in particular, to the famines of 1730-1733 and 1831-1833—and partly to gross misgovernment by the Portuguese officials.

The best general account of the islands is given in vols. xxiii. and xxvii. of theBoletimof the Lisbon Geographical Society (1905 and 1908), and inMadeira, Cabo Verde, e Guiné, by J.A. Martins (Lisbon, 1891). Official statistics are published in Lisbon at irregular intervals. See alsoÜber die Capverden(Leipzig, 1884) andDie Vulcane der Capverden(Graz, 1882), both by C. Dölter. A useful map, entitledOcean Atlantico Norte, Archipelago do Cabo Verde, was issued in 1900 by theCommissão de Cartographia, Lisbon.

The best general account of the islands is given in vols. xxiii. and xxvii. of theBoletimof the Lisbon Geographical Society (1905 and 1908), and inMadeira, Cabo Verde, e Guiné, by J.A. Martins (Lisbon, 1891). Official statistics are published in Lisbon at irregular intervals. See alsoÜber die Capverden(Leipzig, 1884) andDie Vulcane der Capverden(Graz, 1882), both by C. Dölter. A useful map, entitledOcean Atlantico Norte, Archipelago do Cabo Verde, was issued in 1900 by theCommissão de Cartographia, Lisbon.

CAPGRAVE, JOHN(1393-1464), English chronicler and hagiologist, was born at Lynn in Norfolk on the 21st of April 1393. He became a priest, took the degree of D.D. at Oxford, where he lectured on theology, and subsequently joined the order of Augustinian hermits. Most of his life he spent in the house of the order at Lynn, of which he probably became prior; he was certainly provincial of his order in England, which involved visits to other friaries, and he made at least one journey to Rome. He died on the 12th of August 1464.

Capgrave was an indefatigable student, and was reputed one of the most learned men of his age. The bulk of his works are theological: sermons, commentaries and lives of saints. His reputation as a hagiologist rests on hisNova legenda Angliae, orCatalogusof the English saints, but this was no more than a recension of theSanctilogiumwhich the chronicler John of Tinmouth, a monk of St Albans, had completed in 1366, which in its turn was largely borrowed from theSanctilogiumof Guido, abbot of St Denis. TheNova legendawas printed by Wynkyn de Worde in 1516 and again in 1527. Capgrave’s historical works areThe Chronicle of England(from the Creation to 1417), written in English and unfinished at his death, and theLiber de illustribus Henricis, completed between 1446 and 1453. The latter is a collection of lives of German emperors (918-1198), English kings (1100-1446) and other famous Henries in various parts of the world (1031-1406). The portion devoted to Henry VI. of England is a contemporary record, but consists mainly of ejaculations in praise of the pious king. The accounts of theother English Henries are transferred from various well-known chroniclers. TheChroniclewas edited for the “Rolls” Series by Francis Charles Hingeston (London, 1858); theLiber de illustrious Henriciswas edited (London, 1858) for the same series by F.C. Hingeston, who published an English translation the same year. The editing of both the works is very uncritical and bad.

See Potthast,Bibliotheka Med. Aev.; and U. Chevalier,Répertoire des sources hist. Bio-bibliographie, s.v.

See Potthast,Bibliotheka Med. Aev.; and U. Chevalier,Répertoire des sources hist. Bio-bibliographie, s.v.

CAP HAITIEN,Cape HaïtienorHaytien, a seaport of Haiti West Indies. Pop. about 15,000. It is situated on the north coast, 90 m. N. of Port au Prince, in 19° 46′ N. and 72° 14′ W. Its original Indian name was Guarico, and it has been known, at various times, as Cabo Santo, Cap Français and Cape Henri, while throughout Haiti it is always called Le Cap. It is the most picturesque town in the republic, and the second in importance. On three sides it is hemmed in by lofty mountains, while on the fourth it overlooks a safe and commodious harbour. Under the French rule it was the capital of the colony, and its splendour, wealth and luxury earned for it the title of the “Paris of Haiti.” It was then the see of an archbishop and possessed a large and flourishing university. The last remains of its former glory were destroyed by the earthquake of 1842 and the British bombardment of 1865. Although now but a collection of squalid wooden huts, with here and there a well-built warehouse, it is the centre of a thriving district and does a large export trade. It was founded by the Spaniards about the middle of the 17th century, and in 1687 received a large French colony. In 1695 it was taken and burned by the British, and in 1791 it suffered the same fate at the hands of Toussaint L’Ouverture. It then became the capital of King Henri Christophe’s dominions, but since his fall has suffered severely in numerous revolutions.

CAPILLARY ACTION.1A tube, the bore of which is so small that it will only admit a hair (Lat.capilla), is called a capillary tube. When such a tube of glass, open at both ends, is placed vertically with its lower end immersed in water, the water is observed to rise in the tube, and to stand within the tube at a higher level than the water outside. The action between the capillary tube and the water has been called capillary action, and the name has been extended to many other phenomena which have been found to depend on properties of liquids and solids similar to those which cause water to rise in capillary tubes.

The forces which are concerned in these phenomena are those which act between neighbouring parts of the same substance, and which are called forces of cohesion, and those which act between portions of matter of different kinds, which are called forces of adhesion. These forces are quite insensible between two portions of matter separated by any distance which we can directly measure. It is only when the distance becomes exceedingly small that these forces become perceptible. G.H. Quincke (Pogg. Ann.cxxxvii. p. 402) made experiments to determine the greatest distance at which the effect of these forces is sensible, and he found for various substances distances about the twenty-thousandth part of a millimetre.

Historical.—According to J.C. Poggendorff (Pogg. Ann.ci. p. 551), Leonardo da Vinci must be considered as the discoverer of capillary phenomena, but the first accurate observations of the capillary action of tubes and glass plates were made by Francis Hawksbee (Physico-Mechanical Experiments, London, 1709, pp. 139-169; andPhil. Trans., 1711 and 1712), who ascribed the action to an attraction between the glass and the liquid. He observed that the effect was the same in thick tubes as in thin, and concluded that only those particles of the glass which are very near the surface have any influence on the phenomenon. Dr James Jurin (Phil. Trans., 1718, p. 739, and 1719, p. 1083) showed that the height at which the liquid is suspended depends on the section of the tube at the surface of the liquid, and is independent of the form of the lower part of the tube. He considered that the suspension of the liquid is due to “the attraction of the periphery or section of the surface of the tube to which the upper surface of the water is contiguous and coheres.” From this he showed that the rise of the liquid in tubes of the same substance is inversely proportional to their radii. Sir Isaac Newton devoted the 31st query in the last edition of hisOpticksto molecular forces, and instanced several examples of the cohesion of liquids, such as the suspension of mercury in a barometer tube at more than double the height at which it usually stands. This arises from its adhesion to the tube, and the upper part of the mercury sustains a considerable tension, or negative pressure, without the separation of its parts. He considered the capillary phenomena to be of the same kind, but his explanation is not sufficiently explicit with respect to the nature and the limits of the action of the attractive force.

It is to be observed that, while these early speculators ascribe the phenomena to attraction, they do not distinctly assert that this attraction is sensible only at insensible distances, and that for all distances which we can directly measure the force is altogether insensible. The idea of such forces, however, had been distinctly formed by Newton, who gave the first example of the calculation of the effect of such forces in his theorem on the alteration of the path of a light-corpuscle when it enters or leaves a dense body.

Alexis Claude Clairault (Théorie de la figure de la terre, Paris, 1808, pp. 105, 128) appears to have been the first to show the necessity of taking account of the attraction between the parts of the fluid itself in order to explain the phenomena. He did not, however, recognize the fact that the distance at which the attraction is sensible is not only small but altogether insensible. J.A. von Segner (Comment. Soc. Reg. Götting, i. (1751) p. 301) introduced the very important idea of the surface-tension of liquids, which he ascribed to attractive forces, the sphere of whose action is so small “ut nullo adhuc sensu percipi potuerit.” In attempting to calculate the effect of this surface-tension in determining the form of a drop of the liquid, Segner took account of the curvature of a meridian section of the drop, but neglected the effect of the curvature in a plane at right angles to this section.

The idea of surface-tension introduced by Segner had a most important effect on the subsequent development of the theory. We may regard it as a physical fact established by experiment in the same way as the laws of the elasticity of solid bodies. We may investigate the forces which act between finite portions of a liquid in the same way as we investigate the forces which act between finite portions of a solid. The experiments on solids lead to certain laws of elasticity expressed in terms of coefficients, the values of which can be determined only by experiments on each particular substance. Various attempts have also been made to deduce these laws from particular hypotheses as to the action between the molecules of the elastic substance. We may therefore regard the theory of elasticity as consisting of two parts. The first part establishes the laws of the elasticity of a finite portion of the solid subjected to a homogeneous strain, and deduces from these laws the equations of the equilibrium and motion of a body subjected to any forces and displacements. The second part endeavours to deduce the facts of the elasticity of a finite portion of the substance from hypotheses as to the motion of its constituent molecules and the forces acting between them. In like manner we may by experiment ascertain the general fact that the surface of a liquid is in a state of tension similar to that of a membrane stretched equally in all directions, and prove that this tension depends only on the nature and temperature of the liquid and not on its form, and from this as a secondary physical principle we may deduce all the phenomena of capillary action. This is one step of the investigation. The next step is to deduce this surface-tension from a hypothesis as to the molecular constitution of the liquid and of the bodies that surround it. The scientific importance of this step is to be measured by the degree of insight which it affords or promises into the molecular constitution of real bodies by the suggestion of experiments by which we may discriminate between rival molecular theories.

In 1756 J.G. Leidenfrost (De aquae communis nonnullis qualitatibus tractatus, Duisburg) showed that a soap-bubble tends to contract, so that if the tube with which it was blown is left open the bubble will diminish in size and will expel through the tube the air which it contains. He attributed this force, however, not to any general property of the surfaces of liquids, but to the fatty part of the soap which he supposed to separate itself from the other constituents of the solution, and to form a thin skin on the outer face of the bubble.

In 1787 Gaspard Monge (Mémoires de l’Acad. des Sciences, 1787, p. 506) asserted that “by supposing the adherence of the particles of a fluid to have a sensible effect only at the surface itself and in the direction of the surface it would be easy to determine the curvature of the surfaces of fluids in the neighbourhood of the solid boundaries which contain them; that these surfaces would belinteariaeof which the tension, constant in all directions, would be everywhere equal to the adherence of two particles, and the phenomena of capillary tubes would then present nothing which could not be determined by analysis.” He applied this principle of surface-tension to the explanation of the apparent attractions and repulsions between bodies floating on a liquid.

In 1802 John Leslie (Phil. Mag., 1802, vol. xiv. p. 193) gave the first correct explanation of the rise of a liquid in a tube by considering the effect of the attraction of the solid on the very thin stratum of the liquid in contact with it. He did not, like the earlier speculators, suppose this attraction to act in an upward direction so as to support the fluid directly. He showed that the attraction is everywhere normal to the surface of the solid. The direct effect of the attraction is to increase the pressure of the stratum of the fluid in contact with the solid, so as to make it greater than the pressure in the interior of the fluid. The result of this pressure if unopposed is to cause this stratum to spread itself over the surface of the solid as a drop of water is observed to do when placed on a clean horizontal glass plate, and this even when gravity opposes the action, as when the drop is placed on the under surface of the plate. Hence a glass tube plunged into water would become wet all over were it not that the ascending liquid film carries up a quantity of other liquid which coheres to it, so that when it has ascended to a certain height the weight of the column balances the force by which the film spreads itself over the glass. This explanation of the action of the solid is equivalent to that by which Gauss afterwards supplied the defect of the theory of Laplace, except that, not being expressed in terms of mathematical symbols, it does not indicate the mathematical relation between the attraction of individual particles and the final result. Leslie’s theory was afterwards treated according to Laplace’s mathematical methods by James Ivory in the article on capillary action, under “Fluids, Elevation of,” in the supplement to the fourth edition of theEncyclopaedia Britannica, published in 1819.

In 1804 Thomas Young (Essay on the “Cohesion of Fluids,”Phil. Trans., 1805, p. 65) founded the theory of capillary phenomena on the principle of surface-tension. He also observed the constancy of the angle of contact of a liquid surface with a solid, and showed how from these two principles to deduce the phenomena of capillary action. His essay contains the solution of a great number of cases, including most of those afterwards solved by Laplace, but his methods of demonstration, though always correct, and often extremely elegant, are sometimes rendered obscure by his scrupulous avoidance of mathematical symbols. Having applied the secondary principle of surface-tension to the various particular cases of capillary action, Young proceeded to deduce this surface-tension from ulterior principles. He supposed the particles to act on one another with two different kinds of forces, one of which, the attractive force of cohesion, extends to particles at a greater distance than those to which the repulsive force is confined. He further supposed that the attractive force is constant throughout the minute distance to which it extends, but that the repulsive force increases rapidly as the distance diminishes. He thus showed that at a curved part of the surface, a superficial particle would be urged towards the centre of curvature of the surface, and he gave reasons for concluding that this force is proportional to the sum of the curvatures of the surface in two normal planes at right angles to each other.

The subject was next taken up by Pierre Simon Laplace (Mécanique céleste, supplement to the tenth book, pub. in 1806). His results are in many respects identical with those of Young, but his methods of arriving at them are very different, being conducted entirely by mathematical calculations. The form into which he threw his investigation seems to have deterred many able physicists from the inquiry into the ulterior cause of capillary phenomena, and induced them to rest content with deriving them from the fact of surface-tension. But for those who wish to study the molecular constitution of bodies it is necessary to study the effect of forces which are sensible only at insensible distances; and Laplace has furnished us with an example of the method of this study which has never been surpassed. Laplace investigated the force acting on the fluid contained in an infinitely slender canal normal to the surface of the fluid arising from the attraction of the parts of the fluid outside the canal. He thus found for the pressure at a point in the interior of the fluid an expression of the form

p = K + ½H(1/R + 1/R′),

where K is a constant pressure, probably very large, which, however, does not influence capillary phenomena, and therefore cannot be determined from observation of such phenomena; H is another constant on which all capillary phenomena depend; and R and R’ are the radii of curvature of any two normal sections of the surface at right angles to each other.

In the first part of our own investigation we shall adhere to the symbols used by Laplace, as we shall find that an accurate knowledge of the physical interpretation of these symbols is necessary for the further investigation of the subject. In theSupplement to the Theory of Capillary Action, Laplace deduced the equation of the surface of the fluid from the condition that the resultant force on a particle at the surface must be normal to the surface. His explanation, however, of the rise of a liquid in a tube is based on theassumptionof the constancy of the angle of contact for the same solid and fluid, and of this he has nowhere given a satisfactory proof. In this supplement Laplace gave many important applications of the theory, and compared the results with the experiments of Louis Joseph Gay Lussac.

The next great step in the treatment of the subject was made by C.F. Gauss (Principia generalia Theoriae Figurae Fluidorum in statu Aequilibrii, Göttingen, 1830, orWerke, v. 29, Göttingen, 1867). The principle which he adopted is that of virtual velocities, a principle which under his hands was gradually transforming itself into what is now known as the principle of the conservation of energy. Instead of calculating the direction and magnitude of the resultant force on each particle arising from the action of neighbouring particles, he formed a single expression which is the aggregate of all the potentials arising from the mutual action between pairs of particles. This expression has been called the force-function. With its sign reversed it is now called the potential energy of the system. It consists of three parts, the first depending on the action of gravity, the second on the mutual action between the particles of the fluid, and the third on the action between the particles of the fluid and the particles of a solid or fluid in contact with it.

The condition of equilibrium is that this expression (which we may for the sake of distinctness call the potential energy) shall be a minimum. This condition when worked out gives not only the equation of the free surface in the form already established by Laplace, but the conditions of the angle of contact of this surface with the surface of a solid.

Gauss thus supplied the principal defect in the great work of Laplace. He also pointed out more distinctly the nature of the assumptions which we must make with respect to the law of action of the particles in order to be consistent with observed phenomena. He did not, however, enter into the explanation of particular phenomena, as this had been done already by Laplace, but he pointed out to physicists the advantages of themethod of Segner and Gay Lussac, afterwards carried out by Quincke, of measuring the dimensions of large drops of mercury on a horizontal or slightly concave surface, and those of large bubbles of air in transparent liquids resting against the under side of a horizontal plate of a substance wetted by the liquid.

In 1831 Siméon Denis Poisson published hisNouvelle Théorie de l’action capillaire. He maintained that there is a rapid variation of density near the surface of a liquid, and he gave very strong reasons, which have been only strengthened by subsequent discoveries, for believing that this is the case. He proceeded to an investigation of the equilibrium of a fluid on the hypothesis of uniform density, and arrived at the conclusion that on this hypothesis none of the observed capillary phenomena would take place, and that, therefore, Laplace’s theory, in which the density is supposed uniform, is not only insufficient but erroneous. In particular he maintained that the constant pressure K, which occurs in Laplace’s theory, and which on that theory is very large, must be in point of fact very small, but the equation of equilibrium from which he concluded this is itself defective. Laplace assumed that the liquid has uniform density, and that the attraction of its molecules extends to a finite though insensible distance. On these assumptions his results are certainly right, and are confirmed by the independent method of Gauss, so that the objections raised against them by Poisson fall to the ground. But whether the assumption of uniform density be physically correct is a very different question, and Poisson rendered good service to science in showing how to carry on the investigation on the hypothesis that the density very near the surface is different from that in the interior of the fluid.

The result, however, of Poisson’s investigation is practically equivalent to that already obtained by Laplace. In both theories the equation of the liquid surface is the same, involving a constant H, which can be determined only by experiment. The only difference is in the manner in which this quantity H depends on the law of the molecular forces and the law of density near the surface of the fluid, and as these laws are unknown to us we cannot obtain any test to discriminate between the two theories.

We have now described the principal forms of the theory of capillary action during its earlier development. In more recent times the method of Gauss has been modified so as to take account of the variation of density near the surface, and its language has been translated in terms of the modern doctrine of the conservation of energy.2

J.A.F. Plateau (Statique expérimentale et théorique des liquides), who made elaborate study of the phenomena of surface-tension, adopted the following method of getting rid of the effects of gravity. He formed a mixture of alcohol and water of the same density as olive oil, and then introduced a quantity of oil into the mixture. It assumes the form of a sphere under the action of surface-tension alone. He then, by means of rings of iron-wire, disks and other contrivances, altered the form of certain parts of the surface of the oil. The free portions of the surface then assume new forms depending on the equilibrium of surface-tension. In this way he produced a great many of the forms of equilibrium of a liquid under the action of surface-tension alone, and compared them with the results of mathematical investigation. He also greatly facilitated the study of liquid films by showing how to form a liquid, the films of which will last for twelve or even for twenty-four hours. The debt which science owes to Plateau is not diminished by the fact that, while investigating these beautiful phenomena, he never himself saw them, having lost his sight in about 1840.

G.L. van der Mensbrugghe (Mém. de l’Acad. Roy. de Belgique, xxxvii., 1873) devised a great number of beautiful illustrations of the phenomena of surface-tension, and showed their connexion with the experiments of Charles Tomlinson on the figures formed by oils dropped on the clean surface of water.

Athanase Dupré in his 5th, 6th and 7th Memoirs on the Mechanical Theory of Heat (Ann. de Chimie et de Physique, 1866-1868) applied the principles of thermodynamics to capillary phenomena, and the experiments of his son Paul were exceedingly ingenious and well devised, tracing the influence of surface-tension in a great number of very different circumstances, and deducing from independent methods the numerical value of the surface-tension. The experimental evidence which Dupré obtained bearing on the molecular structure of liquids must be very valuable, even if our present opinions on this subject should turn out to be erroneous.

F.H.R. Lüdtge (Pogg. Ann.cxxxix. p. 620) experimented on liquid films, and showed how a film of a liquid of high surface-tension is replaced by a film of lower surface-tension. He also experimented on the effects of the thickness of the film, and came to the conclusion that the thinner a film is, the greater is its tension. This result, however, was tested by Van der Mensbrugghe, who found that the tension is the same for the same liquid whatever be the thickness, as long as the film does not burst. [The continued coexistence of various thicknesses, as evidenced by the colours in the same film, affords an instantaneous proof of this conclusion.] The phenomena of very thin liquid films deserve the most careful study, for it is in this way that we are most likely to obtain evidence by which we may test the theories of the molecular structure of liquids.

Sir W. Thomson (afterwards Lord Kelvin) investigated the effect of the curvature of the surface of a liquid on the thermal equilibrium between the liquid and the vapour in contact with it. He also calculated the effect of surface-tension on the propagation of waves on the surface of a liquid, and determined the minimum velocity of a wave, and the velocity of the wind when it is just sufficient to disturb the surface of still water.

Theory of Capillary Action

When two different fluids are placed in contact, they may either diffuse into each other or remain separate. In some cases diffusion takes place to a limited extent, after which the resulting mixtures do not mix with each other. The same substance may be able to exist in two different states at the same temperature and pressure, as when water and its saturated vapour are contained in the same vessel. The conditions under which the thermal and mechanical equilibrium of two fluids, two mixtures, or the same substance in two physical states in contact with each other, is possible belong to thermodynamics. All that we have to observe at present is that, in the cases in which the fluids do not mix of themselves, the potential energy of the system must be greater when the fluids are mixed than when they are separate.

It is found by experiment that it is only very close to the bounding surface of a liquid that the forces arising from the mutual action of its parts have any resultant effect on one of its particles. The experiments of Quincke and others seem to show that the extreme range of the forces which produce capillary action lies between a thousandth and a twenty-thousandth part of a millimetre.

We shall use the symbol ε to denote this extreme range, beyond which the action of these forces may be regarded as insensible. If χ denotes the potential energy of unit of mass of the substance, we may treat χ as sensibly constant except within a distance ε of the bounding surface of the fluid. In the interior of the fluid it has the uniform value χ0. In like manner the density, ρ, is sensibly equal to the constant quantity ρ0, which is its value in the interior of the liquid, except within a distance ε of the bounding surface. Hence if V is the volume of a mass M of liquid bounded by a surface whose area is S, the integral

M = ∫∫∫ ρ dxdydz,     (1)

where the integration is to be extended throughout the volumeV, may be divided into two parts by considering separately the thin shell or skin extending from the outer surface to a depth ε, within which the density and other properties of the liquid vary with the depth, and the interior portion of the liquid within which its properties are constant.

Since ε is a line of insensible magnitude compared with the dimensions of the mass of liquid and the principal radii of curvature of its surface, the volume of the shell whose surface is S and thickness ε will be Sε, and that of the interior space will be V − Sε.


Back to IndexNext