Chapter 11

The chemistry of the process has been studied by Martin Kiliani (Berg- und Hüttenmännische Zeitung, 1885, p. 249), who found that, using the (low) current-density of 1.8 ampere per sq. ft. of cathode, and an electrolyte containing 1½ ℔ of copper sulphate and ½ ℔ of sulphuric acid per gallon, all the gold, platinum and silver present in the crude copper anode remain as metals, undissolved, in the anode slime or mud, and all the lead remains there as sulphate, formed by the action of the sulphuric acid (or SO4ions); he found also that arsenic forms arsenious oxide, which dissolves until the solution is saturated, and then remains in the slime, from which on long standing it gradually dissolves, after conversion by secondary reactions into arsenic oxide; antimony forms a basic sulphate which in part dissolves; bismuth partly dissolves and partly remains, but the dissolved portion tends slowly to separate out as a basic salt which becomes added to the slime; cuprous oxide, sulphide and selenides remain in the slime, and very slowly pass into solution by simple chemical action; tin partly dissolves (but in part separates again as basic salt) and partly remains as basic sulphate and stannic oxide; zinc, iron, nickel and cobalt pass into solution—more readily indeed than does the copper. Of the metals which dissolve, none (except bismuth, which is rarely present in any quantity) deposits at the anode so long as the solution retains its proper proportion of copper and acid, and the current-density is not too great. Neutral solutions are to be avoided because in them silver dissolves from the anode and, being more electro-negative than copper, is deposited at the cathode, while antimony and arsenic are also deposited, imparting a dark colour to the copper. Electrolytic copper should contain at least 99.92% of metallic copper, the balance consisting mainly of oxygen with not more than 0.01% in all of lead, arsenic, antimony, bismuth and silver. Such a degree of purity is, however, unattainable unless the conditions of electrolysis are rigidly adhered to. It should be observed that the free acid is gradually neutralized, partly by chemical action on certain constituents of the slime, partly by local action between different metals of the anode, both of which effect solution independently of the current, and partly by the peroxidation (or aëration) of ferrous sulphate formed from the iron in the anode. At the same time there is a gradual substitution of other metals for copper in the solution, because although copperplusother (more electro-positive) metals are constantly dissolving at the anode, only copper is deposited at the cathode. Hence the composition and acidity of the solution, on which so much depends, must be constantly watched.The dependence of the mechanical qualities of the copper upon the current-density employed is well known. A very weak current gives a pale and brittle deposit, but as the current-density is increased up to a certain point, the properties of the metal improve; beyond this point they deteriorate, the colour becoming darker and the deposit less coherent, until at last it is dark brown and spongy or pulverulent. The presence of even a small proportion of hydrochloric acid imparts a brown tint to the deposit. Baron H. v. Hübl (Mittheil. des k. k. militär-geograph. Inst., 1886, vol. vi. p. 51) has found that with neutral solutions a 5% solution of copper sulphate gave no good result, while with a 20% solution the best deposit was obtained with a current-density of 28 amperes per sq. ft.; with solutions containing 2% of sulphuric acid, the 5% solution gave good deposits with current-densities of 4 to 7.5 amperes, and the 20% solution with 11.5 to 37 amperes, per sq. ft. The maximum current-densities for apureacid solution at rest were: for 15% pure copper sulphate solutions 14 to 21 amperes, and for 20% solutions 18.5 to 28 amperes, per sq. ft.; but when the solutions were kept in gentle motion these maxima could be increased to 21-28 and 28-37 amperes per sq. ft. respectively. The necessity for adjusting the current-density to the composition and treatment of the electrolyte is thus apparent. The advantage of keeping the solution in motion is due partly to the renewal of solution thus effected in the neighbourhood of the electrodes, and partly to the neutralization of the tendency of liquids undergoing electrolysis to separate into layers, due to the different specific gravities of the solutions flowing from the opposing electrodes. Such an irregular distribution of the bath, with strong copper sulphate solution from the anode at the bottom and acid solution from the cathode at the top, not only alters the conductivity in different strata and so causes irregular current-distribution, but may lead to the current-density in the upper layers being too great for the proportion of copper there present. Irregular and defective deposits are therefore obtained. Provision for circulation of solution is made in the systems of copper-refining now in use. Henry Wilde, in 1875, in depositing copper on iron printing-rollers, recognized this principle and rotated the rollers during electrolysis, thereby renewing the surfaces of metal and liquid in mutual contact, and imparting sufficient motion to the solution to prevent stratification; as an alternative he imparted motion to the electrolyte by means of propeller blades. Other workers have followed more or less on the same lines; reference may be made to the patents of F. E. and A. S. Elmore, who sought to improve the character of the deposit by burnishing during electrolysis, of E. Dumoulin, and Sherard Cowper-Coles (Engineering Review, 1905, vol. xiii. p. 392), who prefers to rotate the cathode at a speed that maintains a peripheral velocity of at least 1000 ft. per minute. Certain other inventors have applied the same principle in a different way. H. Thofehrn in America and J. C. Graham inEngland have patented processes by which jets of the electrolyte are caused to impinge with considerable force upon the surface of the cathode, so that the renewal of the liquid at this point takes place very rapidly, and current-densities per sq. ft. of 50 to 100 amperes are recommended by the former, and of 300 amperes by the latter. Graham has described experiments in this direction, using a jet of electrolyte forced (beneath the surface of the bath) through a hole in the anode upon the surface of the cathode. Whilst the jet was playing, a good deposit was formed with so high a current-density as 280 amperes per sq. ft., but if the jet was checked, the deposit (now in a still liquid) was instantaneously ruined. When two or more jets were used side by side the deposit was good opposite the centre of each, but bad at the point where two currents met, because the rate of flow was reduced. By introducing perforated shields of ebonite between the electrodes, so that the full current-density was only attained at the centres of the jets, these ill effects could be prevented. One of the chief troubles met with was the formation of arborescent growths around the edges of the cathode, due to the greater current-density in this region; this, however, was also obviated by the use of screens. By means of a very brisk rotation of cathode, combined with a rapid current of electrolyte, J. W. Swan has succeeded in depositing excellent copper at current-densities exceeding 1000 amperes per sq. ft. The methods by which such results are to be obtained cannot, however, as yet be practised economically on a working scale; one great difficulty in applying them to the refining of metals is that the jets of liquid would be liable to carry with them articles of anode mud, and Swan has shown that the presence of solid particles in the electrolyte is one of the most fruitful causes of the well-known nodular growths on electro-deposited copper. Experiments on a working scale with one of the jet processes in America have, it is reported, been given up after a full trial.In copper-refining practice, the current-density commonly ranges from 7.5 to 12 or 15, and occasionally to 18, amperes per sq. ft. The electrical pressure required to force a current of this intensity through the solution, and to overcome a certain opposing electromotive force arising from the more electro-negative impurities of the anode, depends upon the composition of the bath and of the anodes, the distance between the electrodes, and the temperature, but under the usual working conditions averages 0.3 volt for every pair of electrodes in series. In nearly all the processes now used, the solution contains about 1½ to 2 ℔ of copper sulphate and from 5 to 10 oz. of sulphuric acid per gallon of water, and the space between the electrodes is from 1½ to 2 in., whilst the total area of cathode surface in each tank may be 200 sq. ft., more or less. The anodes are usually cast copper plates about (say) 3 ft. by 2 ft. by ¾ or 1 in. The cathodes are frequently of electro-deposited copper, deposited to a thickness of about1⁄32in. on black-leaded copper plates, from which they are stripped before use. The tanks are commonly constructed of wood lined with lead, or tarred inside, and are placed in terrace fashion each a little higher than the next in series, to facilitate the flow of solution through them all from a cistern at one end to a well at the other. Gangways are left between adjoining rows of tanks, and an overhead travelling-crane facilitates the removal of the electrodes. The arrangement of the tanks depends largely upon the voltage available from the electric generator selected; commonly they are divided into groups, all the baths in each group being in series. In the huge Anaconda plant, for example, in which 150 tons of refined copper can be produced daily by the Thofehrn multiple system (not the jet system alluded to above), there are 600 tanks about 8¼ ft. by 4½ ft. by 3¼ ft. deep, arranged in three groups of 200 tanks in series. The connexions are made by copper rods, each of which, in length, is twice the width of the tank, with a bayonet-bend in the middle, and serves to support the cathodes in the one and the anodes in the next tank. Self-registering voltmeters indicate at any moment the potential difference in every tank, and therefore give notice of short circuits occurring at any part of the installation. The chief differences between the commercial systems of refining lie in the arrangement of the baths, in the disposition and manner of supporting the electrodes in each, in the method of circulating the solution, and in the current-density employed. The various systems are often classed in two groups, known respectively as theMultipleandSeriessystems, depending upon the arrangement of the electrodes in each tank. Under the multiple system anodes and cathodes are placed alternately, all the anodes in one tank being connected to one rod, and all the cathodes to another, and the potential difference between the terminals of each tank is that between a single pair of plates. Under the series system only the first anode and the last cathode are connected to the conductors; between these are suspended, isolated from one another, a number of intermediate bi-polar electrode plates of raw copper, each of these plates acting on one side as a cathode, receiving a deposit of copper, and on the other as an anode, passing into solution; the voltage between the terminals of the tank will be as many times as great as that between a single pair of plates as there are spaces between electrodes in the tank. In time the original impure copper of the plates becomes replaced by refined copper, but if the plates are initially very impure and dissolve irregularly, it may happen that much residual scrap may have to be remelted, or that some of the metal may be twice refined, thus involving a waste of energy. Moreover, the high potential difference between the terminals of the series tank introduces a greater danger of short-circuiting through scraps of metal at the bottom of the bath; for this reason, also, lead-lined vats are inadmissible, and tarred slate tanks are often used instead. A valuable comparison of the multiple and series systems has been published by E. Keller (seeThe Mineral Industry, New York, 1899, vol. vii. p. 229). G. Kroupa has calculated that the cost of refining is 8s. per ton of copper higher under the series than it is under the multiple system; but against this, it must be remembered that the new works of the Baltimore Copper Smelting and Rolling Company, which are as large as those of the Anaconda Copper Mining Company, are using the Hayden process, which is the chief representative of the several series systems. In this system rolled copper anodes are used; these, being purer than many cast anodes, having flat surfaces, and being held in place by guides, dissolve with great regularity and require a space of only5⁄8in. between the electrodes, so that the potential difference between each pair of plates may be reduced to 0.15-0.2 volt.J. A. W. Borchers, in Germany, and A. E. Schneider and O. Szontagh, in America, have introduced a method of circulating the solution in each vat by forcing air into a vertical pipe communicating between the bottom and top of a tank, with the result that the bubbling of the air upward aspirates solution through the vertical pipe from below, at the same time aërating it, and causing it to overflow into the top of the tank. Obviously this slow circulation has but little effect on the rate at which the copper may be deposited. The electrolyte, when too impure for further use, is commonly recrystallized, or electrolysed with insoluble anodes to recover the copper.The yield of copper per ampere (in round numbers, 1 oz. of copper per ampere per diem) by Faraday’s law is never attained in practice; and although 98% may with care be obtained, from 94 to 96% represents the more usual current-efficiency. With 100% current-efficiency and a potential difference of 0.3 volt between the electrodes, 1 ℔ of copper should require about 0.154 electrical horse-power hours as the amount of energy to be expended in the tank for its production. In practice the expenditure is somewhat greater than this; in large works the gross horse-power required for the refining itself and for power and lighting in the factory may not exceed 0.19 to 0.2 (or in smaller works 0.25) horse-power hours per pound of copper refined.Many attempts have been made to use crude sulphide of copper or matte as an anode, and recover the copper at the cathode, the sulphur and other insoluble constituents being left at the anode. The best known of these is the Marchese process, which was tested on a working scale at Genoa and Stolberg in Rhenish Prussia. As the operation proceeded, it was found that the voltage had to be raised until it became prohibitive, while the anodes rapidly became honeycombed through and, crumbling away, filled up the space at the bottom of the vat. The process was abandoned, but in a modified form appears to be now in use in Nijni-Novgorod in Russia. Siemens and Halske introduced a combined process in which the ore, after being part-roasted, is leached by solutions from a previous electrolytic operation, and the resulting copper solution electrolysed. In this process the anode solution had to be kept separate from the cathode solution, and the membrane which had in consequence to be used, was liable to become torn, and so to cause trouble by permitting the two solutions to mix. Modifications of the process have therefore been tried.

The chemistry of the process has been studied by Martin Kiliani (Berg- und Hüttenmännische Zeitung, 1885, p. 249), who found that, using the (low) current-density of 1.8 ampere per sq. ft. of cathode, and an electrolyte containing 1½ ℔ of copper sulphate and ½ ℔ of sulphuric acid per gallon, all the gold, platinum and silver present in the crude copper anode remain as metals, undissolved, in the anode slime or mud, and all the lead remains there as sulphate, formed by the action of the sulphuric acid (or SO4ions); he found also that arsenic forms arsenious oxide, which dissolves until the solution is saturated, and then remains in the slime, from which on long standing it gradually dissolves, after conversion by secondary reactions into arsenic oxide; antimony forms a basic sulphate which in part dissolves; bismuth partly dissolves and partly remains, but the dissolved portion tends slowly to separate out as a basic salt which becomes added to the slime; cuprous oxide, sulphide and selenides remain in the slime, and very slowly pass into solution by simple chemical action; tin partly dissolves (but in part separates again as basic salt) and partly remains as basic sulphate and stannic oxide; zinc, iron, nickel and cobalt pass into solution—more readily indeed than does the copper. Of the metals which dissolve, none (except bismuth, which is rarely present in any quantity) deposits at the anode so long as the solution retains its proper proportion of copper and acid, and the current-density is not too great. Neutral solutions are to be avoided because in them silver dissolves from the anode and, being more electro-negative than copper, is deposited at the cathode, while antimony and arsenic are also deposited, imparting a dark colour to the copper. Electrolytic copper should contain at least 99.92% of metallic copper, the balance consisting mainly of oxygen with not more than 0.01% in all of lead, arsenic, antimony, bismuth and silver. Such a degree of purity is, however, unattainable unless the conditions of electrolysis are rigidly adhered to. It should be observed that the free acid is gradually neutralized, partly by chemical action on certain constituents of the slime, partly by local action between different metals of the anode, both of which effect solution independently of the current, and partly by the peroxidation (or aëration) of ferrous sulphate formed from the iron in the anode. At the same time there is a gradual substitution of other metals for copper in the solution, because although copperplusother (more electro-positive) metals are constantly dissolving at the anode, only copper is deposited at the cathode. Hence the composition and acidity of the solution, on which so much depends, must be constantly watched.

The dependence of the mechanical qualities of the copper upon the current-density employed is well known. A very weak current gives a pale and brittle deposit, but as the current-density is increased up to a certain point, the properties of the metal improve; beyond this point they deteriorate, the colour becoming darker and the deposit less coherent, until at last it is dark brown and spongy or pulverulent. The presence of even a small proportion of hydrochloric acid imparts a brown tint to the deposit. Baron H. v. Hübl (Mittheil. des k. k. militär-geograph. Inst., 1886, vol. vi. p. 51) has found that with neutral solutions a 5% solution of copper sulphate gave no good result, while with a 20% solution the best deposit was obtained with a current-density of 28 amperes per sq. ft.; with solutions containing 2% of sulphuric acid, the 5% solution gave good deposits with current-densities of 4 to 7.5 amperes, and the 20% solution with 11.5 to 37 amperes, per sq. ft. The maximum current-densities for apureacid solution at rest were: for 15% pure copper sulphate solutions 14 to 21 amperes, and for 20% solutions 18.5 to 28 amperes, per sq. ft.; but when the solutions were kept in gentle motion these maxima could be increased to 21-28 and 28-37 amperes per sq. ft. respectively. The necessity for adjusting the current-density to the composition and treatment of the electrolyte is thus apparent. The advantage of keeping the solution in motion is due partly to the renewal of solution thus effected in the neighbourhood of the electrodes, and partly to the neutralization of the tendency of liquids undergoing electrolysis to separate into layers, due to the different specific gravities of the solutions flowing from the opposing electrodes. Such an irregular distribution of the bath, with strong copper sulphate solution from the anode at the bottom and acid solution from the cathode at the top, not only alters the conductivity in different strata and so causes irregular current-distribution, but may lead to the current-density in the upper layers being too great for the proportion of copper there present. Irregular and defective deposits are therefore obtained. Provision for circulation of solution is made in the systems of copper-refining now in use. Henry Wilde, in 1875, in depositing copper on iron printing-rollers, recognized this principle and rotated the rollers during electrolysis, thereby renewing the surfaces of metal and liquid in mutual contact, and imparting sufficient motion to the solution to prevent stratification; as an alternative he imparted motion to the electrolyte by means of propeller blades. Other workers have followed more or less on the same lines; reference may be made to the patents of F. E. and A. S. Elmore, who sought to improve the character of the deposit by burnishing during electrolysis, of E. Dumoulin, and Sherard Cowper-Coles (Engineering Review, 1905, vol. xiii. p. 392), who prefers to rotate the cathode at a speed that maintains a peripheral velocity of at least 1000 ft. per minute. Certain other inventors have applied the same principle in a different way. H. Thofehrn in America and J. C. Graham inEngland have patented processes by which jets of the electrolyte are caused to impinge with considerable force upon the surface of the cathode, so that the renewal of the liquid at this point takes place very rapidly, and current-densities per sq. ft. of 50 to 100 amperes are recommended by the former, and of 300 amperes by the latter. Graham has described experiments in this direction, using a jet of electrolyte forced (beneath the surface of the bath) through a hole in the anode upon the surface of the cathode. Whilst the jet was playing, a good deposit was formed with so high a current-density as 280 amperes per sq. ft., but if the jet was checked, the deposit (now in a still liquid) was instantaneously ruined. When two or more jets were used side by side the deposit was good opposite the centre of each, but bad at the point where two currents met, because the rate of flow was reduced. By introducing perforated shields of ebonite between the electrodes, so that the full current-density was only attained at the centres of the jets, these ill effects could be prevented. One of the chief troubles met with was the formation of arborescent growths around the edges of the cathode, due to the greater current-density in this region; this, however, was also obviated by the use of screens. By means of a very brisk rotation of cathode, combined with a rapid current of electrolyte, J. W. Swan has succeeded in depositing excellent copper at current-densities exceeding 1000 amperes per sq. ft. The methods by which such results are to be obtained cannot, however, as yet be practised economically on a working scale; one great difficulty in applying them to the refining of metals is that the jets of liquid would be liable to carry with them articles of anode mud, and Swan has shown that the presence of solid particles in the electrolyte is one of the most fruitful causes of the well-known nodular growths on electro-deposited copper. Experiments on a working scale with one of the jet processes in America have, it is reported, been given up after a full trial.

In copper-refining practice, the current-density commonly ranges from 7.5 to 12 or 15, and occasionally to 18, amperes per sq. ft. The electrical pressure required to force a current of this intensity through the solution, and to overcome a certain opposing electromotive force arising from the more electro-negative impurities of the anode, depends upon the composition of the bath and of the anodes, the distance between the electrodes, and the temperature, but under the usual working conditions averages 0.3 volt for every pair of electrodes in series. In nearly all the processes now used, the solution contains about 1½ to 2 ℔ of copper sulphate and from 5 to 10 oz. of sulphuric acid per gallon of water, and the space between the electrodes is from 1½ to 2 in., whilst the total area of cathode surface in each tank may be 200 sq. ft., more or less. The anodes are usually cast copper plates about (say) 3 ft. by 2 ft. by ¾ or 1 in. The cathodes are frequently of electro-deposited copper, deposited to a thickness of about1⁄32in. on black-leaded copper plates, from which they are stripped before use. The tanks are commonly constructed of wood lined with lead, or tarred inside, and are placed in terrace fashion each a little higher than the next in series, to facilitate the flow of solution through them all from a cistern at one end to a well at the other. Gangways are left between adjoining rows of tanks, and an overhead travelling-crane facilitates the removal of the electrodes. The arrangement of the tanks depends largely upon the voltage available from the electric generator selected; commonly they are divided into groups, all the baths in each group being in series. In the huge Anaconda plant, for example, in which 150 tons of refined copper can be produced daily by the Thofehrn multiple system (not the jet system alluded to above), there are 600 tanks about 8¼ ft. by 4½ ft. by 3¼ ft. deep, arranged in three groups of 200 tanks in series. The connexions are made by copper rods, each of which, in length, is twice the width of the tank, with a bayonet-bend in the middle, and serves to support the cathodes in the one and the anodes in the next tank. Self-registering voltmeters indicate at any moment the potential difference in every tank, and therefore give notice of short circuits occurring at any part of the installation. The chief differences between the commercial systems of refining lie in the arrangement of the baths, in the disposition and manner of supporting the electrodes in each, in the method of circulating the solution, and in the current-density employed. The various systems are often classed in two groups, known respectively as theMultipleandSeriessystems, depending upon the arrangement of the electrodes in each tank. Under the multiple system anodes and cathodes are placed alternately, all the anodes in one tank being connected to one rod, and all the cathodes to another, and the potential difference between the terminals of each tank is that between a single pair of plates. Under the series system only the first anode and the last cathode are connected to the conductors; between these are suspended, isolated from one another, a number of intermediate bi-polar electrode plates of raw copper, each of these plates acting on one side as a cathode, receiving a deposit of copper, and on the other as an anode, passing into solution; the voltage between the terminals of the tank will be as many times as great as that between a single pair of plates as there are spaces between electrodes in the tank. In time the original impure copper of the plates becomes replaced by refined copper, but if the plates are initially very impure and dissolve irregularly, it may happen that much residual scrap may have to be remelted, or that some of the metal may be twice refined, thus involving a waste of energy. Moreover, the high potential difference between the terminals of the series tank introduces a greater danger of short-circuiting through scraps of metal at the bottom of the bath; for this reason, also, lead-lined vats are inadmissible, and tarred slate tanks are often used instead. A valuable comparison of the multiple and series systems has been published by E. Keller (seeThe Mineral Industry, New York, 1899, vol. vii. p. 229). G. Kroupa has calculated that the cost of refining is 8s. per ton of copper higher under the series than it is under the multiple system; but against this, it must be remembered that the new works of the Baltimore Copper Smelting and Rolling Company, which are as large as those of the Anaconda Copper Mining Company, are using the Hayden process, which is the chief representative of the several series systems. In this system rolled copper anodes are used; these, being purer than many cast anodes, having flat surfaces, and being held in place by guides, dissolve with great regularity and require a space of only5⁄8in. between the electrodes, so that the potential difference between each pair of plates may be reduced to 0.15-0.2 volt.

J. A. W. Borchers, in Germany, and A. E. Schneider and O. Szontagh, in America, have introduced a method of circulating the solution in each vat by forcing air into a vertical pipe communicating between the bottom and top of a tank, with the result that the bubbling of the air upward aspirates solution through the vertical pipe from below, at the same time aërating it, and causing it to overflow into the top of the tank. Obviously this slow circulation has but little effect on the rate at which the copper may be deposited. The electrolyte, when too impure for further use, is commonly recrystallized, or electrolysed with insoluble anodes to recover the copper.

The yield of copper per ampere (in round numbers, 1 oz. of copper per ampere per diem) by Faraday’s law is never attained in practice; and although 98% may with care be obtained, from 94 to 96% represents the more usual current-efficiency. With 100% current-efficiency and a potential difference of 0.3 volt between the electrodes, 1 ℔ of copper should require about 0.154 electrical horse-power hours as the amount of energy to be expended in the tank for its production. In practice the expenditure is somewhat greater than this; in large works the gross horse-power required for the refining itself and for power and lighting in the factory may not exceed 0.19 to 0.2 (or in smaller works 0.25) horse-power hours per pound of copper refined.

Many attempts have been made to use crude sulphide of copper or matte as an anode, and recover the copper at the cathode, the sulphur and other insoluble constituents being left at the anode. The best known of these is the Marchese process, which was tested on a working scale at Genoa and Stolberg in Rhenish Prussia. As the operation proceeded, it was found that the voltage had to be raised until it became prohibitive, while the anodes rapidly became honeycombed through and, crumbling away, filled up the space at the bottom of the vat. The process was abandoned, but in a modified form appears to be now in use in Nijni-Novgorod in Russia. Siemens and Halske introduced a combined process in which the ore, after being part-roasted, is leached by solutions from a previous electrolytic operation, and the resulting copper solution electrolysed. In this process the anode solution had to be kept separate from the cathode solution, and the membrane which had in consequence to be used, was liable to become torn, and so to cause trouble by permitting the two solutions to mix. Modifications of the process have therefore been tried.

Modern methods in copper smelting and refining have effected enormous economy in time, space, and labour, and have consequently increased the world’s output. With pyritic smelting a sulphuretted copper ore, fed into a cupola in the morning, can be passed directly to the converter, blown up to metal, and shipped as 99% bars by evening—an operation which formerly, with heap roasting of the ore and repeated roasting of the mattes in stalls, would have occupied not less than four months. A large furnace and a Bessemer converter, the pair capable of making a million pounds of copper a month from a low-grade sulphuretted ore, will not occupy a space of more than 25ft. by 100ft.; and whereas, in making metallic copper out of a low-grade sulphuretted ore, one day’s labour used to be expended on every ton of ore treated, to-day one day’s labour will carry at least four tons of ore through the different mechanical and metallurgical processes necessary to reduce them to metal. About 70% of the world’s annual copper output is refined electrolytically, and from the 461,583 tons refined in the United States in 1907, there were recovered 13,995,436 oz. of silver and 272,150 oz. of gold. The recovery of these valuable metals has contributed in no small degree to the expansion of electrolytic refining.

Production.—The sources of copper, its applications and its metallurgy, have undergone great changes. Chile was the largest producer in 1869 with 54,867 tons; but in 1899 herproduction had fallen off to 25,000 tons. Great Britain, though she had made half the world’s copper in 1830, held second place in 1860, making from native ores 15,968 tons; in 1900 her production was 777 tons, and in 1907, 711 tons. The United States made only 572 tons in 1850, and 12,600 tons in 1870; but she to-day makes more than 60% of the world’s total. In 1879, Spain was the largest producer, but now ranks third.

The estimated total production for each decade of the 19th century in metric tons is here shown:—

The following table gives the output of various countries and the world’s production for the years 1895, 1900, 1905, 1907:—

As the stock on hand rarely exceeds three months’ demand, and is often little more than a month’s supply, it is evident that consumption has kept close pace with production.

The large demand for copper to be used in sheathing ships ceased on the introduction of iron in shipbuilding because of the difficulty of coating iron with an impervious layer of copper; but the consumption in the manufacture of electric apparatus and for electric conductors has far more than compensated.

Alloys of Copper.—Copper unites with almost all other metals, and a large number of its alloys are of importance in the arts. The principal alloys in which it forms a leading ingredient are brass, bronze, and German or nickel silver; under these several heads their respective applications and qualities will be found.Compounds of Copper.—Copper probably forms six oxides, viz. Cu4O, Cu3O, Cu2O, CuO, Cu2O3and CuO2. The most important are cuprous oxide, Cu2O, and cupric oxide, CuO, both ofOxides and hydroxides.which give rise to well-defined series of salts. The other oxides do not possess this property, as is also the case of the hydrated oxides Cu3O22H2O and Cu4O35H2O, described by M. Siewert.Cuprous oxide, Cu2O, occurs in nature as the mineral cuprite (q.v.). It may be prepared artificially by heating copper wire to a white heat, and afterwards at a red heat, by the atmospheric oxidation of copper reduced in hydrogen, or by the slow oxidation of the metal under water. It is obtained as a fine red crystalline precipitate by reducing an alkaline copper solution with sugar. When finely divided it is of a fine red colour. It fuses at red heat, and colours glass a ruby-red. The property was known to the ancients and during the middle ages; it was then lost for several centuries, to be rediscovered in about 1827. Cuprous oxide is reduced by hydrogen, carbon monoxide, charcoal, or iron, to the metal; it dissolves in hydrochloric acid forming cuprous chloride, and in other mineral acids to form cupric salts, with the separation of copper. It dissolves in ammonia, forming a colourless solution which rapidly oxidizes and turns blue. A hydrated cuprous oxide, (4Cu2O, H2O), is obtained as a bright yellow powder, when cuprous chloride is treated with potash or soda. It rapidly absorbs oxygen, assuming a blue colour. Cuprous oxide corresponds to the series of cuprous salts, which are mostly white in colour, insoluble in water, and readily oxidized to cupric salts.Cupric oxide, CuO, occurs in nature as the mineral melaconite (q.v.), and can be obtained as a hygroscopic black powder by the gentle ignition of copper nitrate, carbonate or hydroxide; also by heating the hydroxide. It oxidizes carbon compounds to carbon dioxide and water, and therefore finds extensive application in analytical organic chemistry. It is also employed to colour glass, to which it imparts a light green colour. Cupric hydroxide, Cu(OH)2, is obtained as a greenish-blue flocculent precipitate by mixing cold solutions of potash and a cupric salt. This precipitate always contains more or less potash, which cannot be entirely removed by washing. A purer product is obtained by adding ammonium chloride, filtering, and washing with hot water. Several hydrated oxides,e.g.Cu(OH)2·3CuO, Cu(OH)2·6H2O, 6CuO·H2O, have been described. Both the oxide and hydroxide dissolve in ammonia to form a beautiful azure-blue solution (Schweizer’s reagent), which dissolves cellulose, or perhaps, holds it in suspension as water does starch; accordingly, the solution rapidly perforates paper or calico. The salts derived from cupric oxide are generally white when anhydrous, but blue or green when hydrated.Copper quadrantoxide, Cu4O, is an olive-green powder formed by mixing well-cooled solutions of copper sulphate and alkaline stannous chloride. The trientoxide, Cu3O, is obtained when cupric oxide is heated to 1500°-2000° C. It forms yellowish-red crystals, which scratch glass, and are unaffected by all acids except hydrofluoric; it also dissolves in molten potash. Copper dioxide, CuO2H2O, is obtained as a yellowish-brown powder, by treating cupric hydrate with hydrogen peroxide. When moist, it decomposes at about 6° C., but the dry substance must be heated to about 180°, before decomposition sets in (see L. Moser,Abst. J.C.S., 1907, ii. p. 549).Cuprous hydride, (CuH)n, was first obtained by Wurtz in 1844, who treated a solution of copper sulphate with hypophosphorous acid, at a temperature not exceeding 70° C. According to E. J. Bartlett and W. H. Merrill, it decomposes when heated, and gives cupric hydride, CuH2, as a reddish-brown spongy mass, which turns to a chocolate colour on exposure. It is a strong reducing agent.Cuprous fluoride, CuF, is a ruby-red crystalline mass, formed by heating cuprous chloride in an atmosphere of hydrofluoric acid at 1100°-1200° C. It is soluble in boiling hydrochloric acid, but it is not reprecipitated by water, as is the case with cuprous chloride. Cupric fluoride, CuF2, is obtained by dissolving cupric oxide in hydrofluoric acid. The hydrated form, (CuF2, 2H2O, 5HF), is obtained as blue crystals, sparingly soluble in cold water; when heated to 100° C. it gives the compound CuF(OH), which, when heated with ammonium fluoride in a current of carbon dioxide, gives anhydrous copper fluoride as a white powder.Cuprous chloride, CuCl or Cu2Cl2, was obtained by Robert Boyle by heating copper with mercuric chloride. It is also obtained by burning the metal in chlorine, by heating copper and cupric oxide with hydrochloric acid, or copper and cupric chloride with hydrochloric acid. It dissolves in the excess of acid, and is precipitated as a white crystalline powder on the addition of water. It melts at below red heat to a brown mass, and its vapour density at both red and white heat corresponds to the formula Cu2Cl2. It turns dirty violet on exposure to air and light; in moist air it absorbs oxygen and forms an oxychloride. Its solution in hydrochloric acid readily absorbs carbon monoxide and acetylene; hence it finds application in gas analysis. Its solution in ammonia is at first colourless, but rapidly turns blue, owing to oxidation. This solution absorbs acetylene with the precipitation of red cuprous acetylide, Cu2C2, a very explosive compound. Cupric chloride, CuCl2, is obtained by burning copper in an excess of chlorine, or by heating the hydrated chloride, obtained by dissolving the metal or cupric oxide in an excess of hydrochloric acid. It is a brown deliquescent powder, which rapidly forms the green hydrated salt CuCl2, 2H2O on exposure. The oxychloride Cu3O2Cl2·4H2O is obtained as a pale blue precipitate when potash is added to an excess of cupric chloride. The oxychloride Cu4O3Cl2, 4H2O occurs in nature as the mineral atacamite. It may be artificially prepared by heating salt with ammonium copper sulphate to 100°. Other naturally occurring oxychlorides are botallackite and tallingite. “Brunswick green,” a light green pigment, is obtained from copper sulphate and bleaching powder.The bromides closely resemble the chlorides and fluorides.Cuprous iodide, Cu2I2, is obtained as a white powder, which suffers little alteration on exposure, by the direct union of its components or by mixing solutions of cuprous chloride in hydrochloric acid and potassium iodide; or, with liberation of iodine, by adding potassium iodide to a cupric salt. It absorbs ammonia, forming the compound Cu2I2, 4NH3. Cupric iodide is only known in combination, as in CuI2, 4NH3, H2O, which is obtained by exposing Cu2I2, 4NH3to moist air.Cuprous sulphide, Cu2S, occurs in nature as the mineral chalcocite or copper-glance (q.v.), and may be obtained as a black brittle mass by the direct combination of its constituents. (See above,Metallurgy.) Cupric sulphide, CuS, occurs in nature as the mineral covellite. It may be prepared by heating cuprous sulphide with sulphur, or triturating cuprous sulphide with cold strong nitric acid, or as a dark brown precipitate by treating a copper solution with sulphuretted hydrogen. Several polysulphides,e.g.Cu2S5, Cu2S6, Cu4S6, Cu2S3, have been described; they are all unstable, decomposing into cupric sulphide and sulphur. Cuprous sulphite, CuSO3·H2O, is obtained as a brownish-red crystalline powder by treating cuprous hydrate with sulphurous acid. A cuproso-cupric sulphite, Cu2SO3, CuSO3,2H2O, is obtained by mixing solutions of cupric sulphate and acid sodium sulphite.Cupric sulphate or “Blue Vitriol,” CuSO4, is one of the most important salts of copper. It occurs in cupriferous mine waters and as the minerals chalcanthite or cyanosite, CuSO4·5H2O, and boothite, CuSO4·7H2O. Cupric sulphate is obtained commercially by theoxidation of sulphuretted copper ores (see above,Metallurgy; wet methods), or by dissolving cupric oxide in sulphuric acid. It was obtained in 1644 by Van Helmont, who heated copper with sulphur and moistened the residue, and in 1648 by Glauber, who dissolved copper in strong sulphuric acid. (For the mechanism of this reaction see C. H. Sluiter,Chem. Weekblad, 1906, 3, p. 63, and C. M. van Deventer, ibid., 1906, 3, p. 515.) It crystallizes with five molecules of water as large blue triclinic prisms. When heated to 100°, it loses four molecules of water and forms the bluish-white monohydrate, which, on further heating to 25O°-260°, is converted into the white CuSO4. The anhydrous salt is very hygroscopic, and hence finds application as a desiccating agent. It also absorbs gaseous hydrochloric acid. Copper sulphate is readily soluble in water, but insoluble in alcohol; it dissolves in hydrochloric acid with a considerable fall in temperature, cupric chloride being formed. The copper is readily replaced by iron, a knife-blade placed in an aqueous solution being covered immediately with a bright red deposit of copper. At one time this was regarded as a transmutation of iron into copper. Several basic salts are known, some of which occur as minerals; of these, we may mention brochantite (q.v.), CuSO4, 3Cu(OH2), langite, CuSO4, 3Cu(OH)2, H2O, lyellite (or devilline), warringtonite; woodwardite and enysite are hydrated copper-aluminium sulphates, connellite is a basic copper chlorosulphate, and spangolite is a basic copper aluminium chlorosulphate. Copper sulphate finds application in calico printing and in the preparation of the pigment Scheele’s green.A copper nitride, Cu3N, is obtained by heating precipitated cuprous oxide in ammonia gas (A. Guntz and H. Bassett,Bull. Soc. Chim., 1906, 35, p. 201). A maroon-coloured powder, of composition CuNO2, is formed when pure dry nitrogen dioxide is passed over finely-divided copper at 25°-30°. It decomposes when heated to 90°; with water it gives nitric oxide and cupric nitrate and nitrite. Cupric nitrate, Cu(NO3)2, is obtained by dissolving the metal or oxide in nitric acid. It forms dark blue prismatic crystals containing 3, 4, or 6 molecules of water according to the temperature of crystallization. The trihydrate melts at 114.5°, and boils at 170°, giving off nitric acid, and leaving the basic salt Cu(NO3)2·3Cu(OH)2. The mineral gerhardtite is the basic nitrate Cu2(OH)3NO3.Copper combines directly with phosphorus to form several compounds. The phosphide obtained by heating cupric phosphate, Cu2H2P2O8, in hydrogen, when mixed with potassium and cuprous sulphides or levigated coke, constitutes “Abel’s fuse,” which is used as a primer. A phosphide, Cu3P2, is formed by passing phosphoretted hydrogen over heated cuprous chloride. (For other phosphides see E. Heyn and O. Bauer,Rep. Chem. Soc., 1906, 3, p. 39.) Cupric phosphate, Cu3(PO4)2, may be obtained by precipitating a copper solution with sodium phosphate. Basic copper phosphates are of frequent occurrence in the mineral kingdom. Of these we may notice libethenite, Cu2(OH)PO4; chalcosiderite, a basic copper iron phosphate; torbernite, a copper uranyl phosphate; andrewsite, a hydrated copper iron phosphate; and henwoodite, a hydrated copper aluminium phosphate.Copper combines directly with arsenic to form several arsenides, some of which occur in the mineral kingdom. Of these we may mention whitneyite, Cu9As, algodonite, Cu6As, and domeykite, Cu3As. Copper arsenate is similar to cupric phosphate, and the resemblance is to be observed in the naturally occurring copper arsenates, which are generally isomorphous with the corresponding phosphates. Olivenite corresponds to libethenite; clinoclase, euchroite, cornwallite and tyrolite are basic arsenates; zeunerite corresponds to torbernite; chalcophyllite (tamarite or “copper-mica”) is a basic copper aluminium sulphato-arsenate, and bayldonite is a similar compound containing lead instead of aluminium. Copper arsenite forms the basis of a number of once valuable, but very poisonous, pigments. Scheele’s green is a basic copper arsenite; Schweinfurt green, an aceto-arsenite; and Casselmann’s green a compound of cupric sulphate with potassium or sodium acetate.Normal cupric carbonate, CuCO3, has not been definitely obtained, basic hydrated forms being formed when an alkaline carbonate is added to a cupric salt. Copper carbonates are of wide occurrence in the mineral kingdom, and constitute the valuable ores malachite and azurite. Copper rust has the same composition as malachite; it results from the action of carbon dioxide and water on the metal. Copper carbonate is also the basis of the valuable blue to green pigments verditer, Bremen blue and Bremen green. Mountain or mineral green is a naturally occurring carbonate.By the direct union of copper and silicon, cuprosilicon, consisting mainly of Cu4Si, is obtained (Lebeau, C.R., 1906; Vigouroux, ibid.).Copper silicates occur in the mineral kingdom, many minerals owing their colour to the presence of a cupriferous element. Dioptase (q.v.) and chrysocolla (q.v.) are the most important forms.Detection.—Compounds of copper impart a bright green coloration to the flame of a Bunsen burner. Ammonia gives a characteristic blue coloration when added to a solution of a copper salt; potassium ferrocyanide gives a brown precipitate, and, if the solution be very dilute, a brown colour is produced. This latter reaction will detect one part of copper in 500,000 of water. For the borax beads and the qualitative separation of copper from other metals, seeChemistry:Analytical. For the quantitative estimation, seeAssaying:Copper.Medicine.—In medicine copper sulphate was employed as an emetic, but its employment for this purpose is now very rare, as it is exceedingly depressant, and if it fails to act, may seriously damage the gastric mucous membrane. It is, however, a useful superficial caustic and antiseptic. All copper compounds are poisonous, but not so harmful as the copper arsenical pigments.References.—See generally H. J. Steven’sCopper Handbook(annual), W. H. Weld,The Copper Mines of the World(1907),The Mineral Industry(annual), andMineral Resources of the United States(annual). For the dry metallurgy, see E. D. Peters,Principles of Copper Smelting(New York, 1907); for pyritic smelting, see T. A. Rickard,Pyrite Smelting(1905); for wet methods, see Eissler,Hydrometallurgy of Copper(London, 1902); and for electrolytic methods, see T. Ulke,Die electrolytische Raffination des Kupfers(Halle, 1904). Reference should also be made to the articlesMetallurgyandElectro-Metallurgy. For the chemistry of copper and its compounds see the references in the articleChemistry: Inorganic. Toxicologic and hygienic aspects are treated in Tschirsch’sDas Kupfer vom Standpunkt der gerichtlichen Chemie, Toxikologie und Hygiene(Stuttgart, 1893).

Alloys of Copper.—Copper unites with almost all other metals, and a large number of its alloys are of importance in the arts. The principal alloys in which it forms a leading ingredient are brass, bronze, and German or nickel silver; under these several heads their respective applications and qualities will be found.

Compounds of Copper.—Copper probably forms six oxides, viz. Cu4O, Cu3O, Cu2O, CuO, Cu2O3and CuO2. The most important are cuprous oxide, Cu2O, and cupric oxide, CuO, both ofOxides and hydroxides.which give rise to well-defined series of salts. The other oxides do not possess this property, as is also the case of the hydrated oxides Cu3O22H2O and Cu4O35H2O, described by M. Siewert.

Cuprous oxide, Cu2O, occurs in nature as the mineral cuprite (q.v.). It may be prepared artificially by heating copper wire to a white heat, and afterwards at a red heat, by the atmospheric oxidation of copper reduced in hydrogen, or by the slow oxidation of the metal under water. It is obtained as a fine red crystalline precipitate by reducing an alkaline copper solution with sugar. When finely divided it is of a fine red colour. It fuses at red heat, and colours glass a ruby-red. The property was known to the ancients and during the middle ages; it was then lost for several centuries, to be rediscovered in about 1827. Cuprous oxide is reduced by hydrogen, carbon monoxide, charcoal, or iron, to the metal; it dissolves in hydrochloric acid forming cuprous chloride, and in other mineral acids to form cupric salts, with the separation of copper. It dissolves in ammonia, forming a colourless solution which rapidly oxidizes and turns blue. A hydrated cuprous oxide, (4Cu2O, H2O), is obtained as a bright yellow powder, when cuprous chloride is treated with potash or soda. It rapidly absorbs oxygen, assuming a blue colour. Cuprous oxide corresponds to the series of cuprous salts, which are mostly white in colour, insoluble in water, and readily oxidized to cupric salts.

Cupric oxide, CuO, occurs in nature as the mineral melaconite (q.v.), and can be obtained as a hygroscopic black powder by the gentle ignition of copper nitrate, carbonate or hydroxide; also by heating the hydroxide. It oxidizes carbon compounds to carbon dioxide and water, and therefore finds extensive application in analytical organic chemistry. It is also employed to colour glass, to which it imparts a light green colour. Cupric hydroxide, Cu(OH)2, is obtained as a greenish-blue flocculent precipitate by mixing cold solutions of potash and a cupric salt. This precipitate always contains more or less potash, which cannot be entirely removed by washing. A purer product is obtained by adding ammonium chloride, filtering, and washing with hot water. Several hydrated oxides,e.g.Cu(OH)2·3CuO, Cu(OH)2·6H2O, 6CuO·H2O, have been described. Both the oxide and hydroxide dissolve in ammonia to form a beautiful azure-blue solution (Schweizer’s reagent), which dissolves cellulose, or perhaps, holds it in suspension as water does starch; accordingly, the solution rapidly perforates paper or calico. The salts derived from cupric oxide are generally white when anhydrous, but blue or green when hydrated.

Copper quadrantoxide, Cu4O, is an olive-green powder formed by mixing well-cooled solutions of copper sulphate and alkaline stannous chloride. The trientoxide, Cu3O, is obtained when cupric oxide is heated to 1500°-2000° C. It forms yellowish-red crystals, which scratch glass, and are unaffected by all acids except hydrofluoric; it also dissolves in molten potash. Copper dioxide, CuO2H2O, is obtained as a yellowish-brown powder, by treating cupric hydrate with hydrogen peroxide. When moist, it decomposes at about 6° C., but the dry substance must be heated to about 180°, before decomposition sets in (see L. Moser,Abst. J.C.S., 1907, ii. p. 549).

Cuprous hydride, (CuH)n, was first obtained by Wurtz in 1844, who treated a solution of copper sulphate with hypophosphorous acid, at a temperature not exceeding 70° C. According to E. J. Bartlett and W. H. Merrill, it decomposes when heated, and gives cupric hydride, CuH2, as a reddish-brown spongy mass, which turns to a chocolate colour on exposure. It is a strong reducing agent.

Cuprous fluoride, CuF, is a ruby-red crystalline mass, formed by heating cuprous chloride in an atmosphere of hydrofluoric acid at 1100°-1200° C. It is soluble in boiling hydrochloric acid, but it is not reprecipitated by water, as is the case with cuprous chloride. Cupric fluoride, CuF2, is obtained by dissolving cupric oxide in hydrofluoric acid. The hydrated form, (CuF2, 2H2O, 5HF), is obtained as blue crystals, sparingly soluble in cold water; when heated to 100° C. it gives the compound CuF(OH), which, when heated with ammonium fluoride in a current of carbon dioxide, gives anhydrous copper fluoride as a white powder.

Cuprous chloride, CuCl or Cu2Cl2, was obtained by Robert Boyle by heating copper with mercuric chloride. It is also obtained by burning the metal in chlorine, by heating copper and cupric oxide with hydrochloric acid, or copper and cupric chloride with hydrochloric acid. It dissolves in the excess of acid, and is precipitated as a white crystalline powder on the addition of water. It melts at below red heat to a brown mass, and its vapour density at both red and white heat corresponds to the formula Cu2Cl2. It turns dirty violet on exposure to air and light; in moist air it absorbs oxygen and forms an oxychloride. Its solution in hydrochloric acid readily absorbs carbon monoxide and acetylene; hence it finds application in gas analysis. Its solution in ammonia is at first colourless, but rapidly turns blue, owing to oxidation. This solution absorbs acetylene with the precipitation of red cuprous acetylide, Cu2C2, a very explosive compound. Cupric chloride, CuCl2, is obtained by burning copper in an excess of chlorine, or by heating the hydrated chloride, obtained by dissolving the metal or cupric oxide in an excess of hydrochloric acid. It is a brown deliquescent powder, which rapidly forms the green hydrated salt CuCl2, 2H2O on exposure. The oxychloride Cu3O2Cl2·4H2O is obtained as a pale blue precipitate when potash is added to an excess of cupric chloride. The oxychloride Cu4O3Cl2, 4H2O occurs in nature as the mineral atacamite. It may be artificially prepared by heating salt with ammonium copper sulphate to 100°. Other naturally occurring oxychlorides are botallackite and tallingite. “Brunswick green,” a light green pigment, is obtained from copper sulphate and bleaching powder.

The bromides closely resemble the chlorides and fluorides.

Cuprous iodide, Cu2I2, is obtained as a white powder, which suffers little alteration on exposure, by the direct union of its components or by mixing solutions of cuprous chloride in hydrochloric acid and potassium iodide; or, with liberation of iodine, by adding potassium iodide to a cupric salt. It absorbs ammonia, forming the compound Cu2I2, 4NH3. Cupric iodide is only known in combination, as in CuI2, 4NH3, H2O, which is obtained by exposing Cu2I2, 4NH3to moist air.

Cuprous sulphide, Cu2S, occurs in nature as the mineral chalcocite or copper-glance (q.v.), and may be obtained as a black brittle mass by the direct combination of its constituents. (See above,Metallurgy.) Cupric sulphide, CuS, occurs in nature as the mineral covellite. It may be prepared by heating cuprous sulphide with sulphur, or triturating cuprous sulphide with cold strong nitric acid, or as a dark brown precipitate by treating a copper solution with sulphuretted hydrogen. Several polysulphides,e.g.Cu2S5, Cu2S6, Cu4S6, Cu2S3, have been described; they are all unstable, decomposing into cupric sulphide and sulphur. Cuprous sulphite, CuSO3·H2O, is obtained as a brownish-red crystalline powder by treating cuprous hydrate with sulphurous acid. A cuproso-cupric sulphite, Cu2SO3, CuSO3,2H2O, is obtained by mixing solutions of cupric sulphate and acid sodium sulphite.

Cupric sulphate or “Blue Vitriol,” CuSO4, is one of the most important salts of copper. It occurs in cupriferous mine waters and as the minerals chalcanthite or cyanosite, CuSO4·5H2O, and boothite, CuSO4·7H2O. Cupric sulphate is obtained commercially by theoxidation of sulphuretted copper ores (see above,Metallurgy; wet methods), or by dissolving cupric oxide in sulphuric acid. It was obtained in 1644 by Van Helmont, who heated copper with sulphur and moistened the residue, and in 1648 by Glauber, who dissolved copper in strong sulphuric acid. (For the mechanism of this reaction see C. H. Sluiter,Chem. Weekblad, 1906, 3, p. 63, and C. M. van Deventer, ibid., 1906, 3, p. 515.) It crystallizes with five molecules of water as large blue triclinic prisms. When heated to 100°, it loses four molecules of water and forms the bluish-white monohydrate, which, on further heating to 25O°-260°, is converted into the white CuSO4. The anhydrous salt is very hygroscopic, and hence finds application as a desiccating agent. It also absorbs gaseous hydrochloric acid. Copper sulphate is readily soluble in water, but insoluble in alcohol; it dissolves in hydrochloric acid with a considerable fall in temperature, cupric chloride being formed. The copper is readily replaced by iron, a knife-blade placed in an aqueous solution being covered immediately with a bright red deposit of copper. At one time this was regarded as a transmutation of iron into copper. Several basic salts are known, some of which occur as minerals; of these, we may mention brochantite (q.v.), CuSO4, 3Cu(OH2), langite, CuSO4, 3Cu(OH)2, H2O, lyellite (or devilline), warringtonite; woodwardite and enysite are hydrated copper-aluminium sulphates, connellite is a basic copper chlorosulphate, and spangolite is a basic copper aluminium chlorosulphate. Copper sulphate finds application in calico printing and in the preparation of the pigment Scheele’s green.

A copper nitride, Cu3N, is obtained by heating precipitated cuprous oxide in ammonia gas (A. Guntz and H. Bassett,Bull. Soc. Chim., 1906, 35, p. 201). A maroon-coloured powder, of composition CuNO2, is formed when pure dry nitrogen dioxide is passed over finely-divided copper at 25°-30°. It decomposes when heated to 90°; with water it gives nitric oxide and cupric nitrate and nitrite. Cupric nitrate, Cu(NO3)2, is obtained by dissolving the metal or oxide in nitric acid. It forms dark blue prismatic crystals containing 3, 4, or 6 molecules of water according to the temperature of crystallization. The trihydrate melts at 114.5°, and boils at 170°, giving off nitric acid, and leaving the basic salt Cu(NO3)2·3Cu(OH)2. The mineral gerhardtite is the basic nitrate Cu2(OH)3NO3.

Copper combines directly with phosphorus to form several compounds. The phosphide obtained by heating cupric phosphate, Cu2H2P2O8, in hydrogen, when mixed with potassium and cuprous sulphides or levigated coke, constitutes “Abel’s fuse,” which is used as a primer. A phosphide, Cu3P2, is formed by passing phosphoretted hydrogen over heated cuprous chloride. (For other phosphides see E. Heyn and O. Bauer,Rep. Chem. Soc., 1906, 3, p. 39.) Cupric phosphate, Cu3(PO4)2, may be obtained by precipitating a copper solution with sodium phosphate. Basic copper phosphates are of frequent occurrence in the mineral kingdom. Of these we may notice libethenite, Cu2(OH)PO4; chalcosiderite, a basic copper iron phosphate; torbernite, a copper uranyl phosphate; andrewsite, a hydrated copper iron phosphate; and henwoodite, a hydrated copper aluminium phosphate.

Copper combines directly with arsenic to form several arsenides, some of which occur in the mineral kingdom. Of these we may mention whitneyite, Cu9As, algodonite, Cu6As, and domeykite, Cu3As. Copper arsenate is similar to cupric phosphate, and the resemblance is to be observed in the naturally occurring copper arsenates, which are generally isomorphous with the corresponding phosphates. Olivenite corresponds to libethenite; clinoclase, euchroite, cornwallite and tyrolite are basic arsenates; zeunerite corresponds to torbernite; chalcophyllite (tamarite or “copper-mica”) is a basic copper aluminium sulphato-arsenate, and bayldonite is a similar compound containing lead instead of aluminium. Copper arsenite forms the basis of a number of once valuable, but very poisonous, pigments. Scheele’s green is a basic copper arsenite; Schweinfurt green, an aceto-arsenite; and Casselmann’s green a compound of cupric sulphate with potassium or sodium acetate.

Normal cupric carbonate, CuCO3, has not been definitely obtained, basic hydrated forms being formed when an alkaline carbonate is added to a cupric salt. Copper carbonates are of wide occurrence in the mineral kingdom, and constitute the valuable ores malachite and azurite. Copper rust has the same composition as malachite; it results from the action of carbon dioxide and water on the metal. Copper carbonate is also the basis of the valuable blue to green pigments verditer, Bremen blue and Bremen green. Mountain or mineral green is a naturally occurring carbonate.

By the direct union of copper and silicon, cuprosilicon, consisting mainly of Cu4Si, is obtained (Lebeau, C.R., 1906; Vigouroux, ibid.).

Copper silicates occur in the mineral kingdom, many minerals owing their colour to the presence of a cupriferous element. Dioptase (q.v.) and chrysocolla (q.v.) are the most important forms.

Detection.—Compounds of copper impart a bright green coloration to the flame of a Bunsen burner. Ammonia gives a characteristic blue coloration when added to a solution of a copper salt; potassium ferrocyanide gives a brown precipitate, and, if the solution be very dilute, a brown colour is produced. This latter reaction will detect one part of copper in 500,000 of water. For the borax beads and the qualitative separation of copper from other metals, seeChemistry:Analytical. For the quantitative estimation, seeAssaying:Copper.

Medicine.—In medicine copper sulphate was employed as an emetic, but its employment for this purpose is now very rare, as it is exceedingly depressant, and if it fails to act, may seriously damage the gastric mucous membrane. It is, however, a useful superficial caustic and antiseptic. All copper compounds are poisonous, but not so harmful as the copper arsenical pigments.

References.—See generally H. J. Steven’sCopper Handbook(annual), W. H. Weld,The Copper Mines of the World(1907),The Mineral Industry(annual), andMineral Resources of the United States(annual). For the dry metallurgy, see E. D. Peters,Principles of Copper Smelting(New York, 1907); for pyritic smelting, see T. A. Rickard,Pyrite Smelting(1905); for wet methods, see Eissler,Hydrometallurgy of Copper(London, 1902); and for electrolytic methods, see T. Ulke,Die electrolytische Raffination des Kupfers(Halle, 1904). Reference should also be made to the articlesMetallurgyandElectro-Metallurgy. For the chemistry of copper and its compounds see the references in the articleChemistry: Inorganic. Toxicologic and hygienic aspects are treated in Tschirsch’sDas Kupfer vom Standpunkt der gerichtlichen Chemie, Toxikologie und Hygiene(Stuttgart, 1893).

COPPERAS(Fr.couperose; Lat.cupri rosa. the flower of copper), green vitriol, or ferrous sulphate, FeSO4·7H2O, having a bluish-green colour and an astringent, inky and somewhat sweetish taste. It is used in dyeing and tanning, and in the manufacture of ink and of Nordhausen sulphuric acid or fuming oil of vitriol (seeIron).

COPPER-GLANCE,a mineral consisting of cuprous sulphide, Cu2S, and crystallizing in the orthorhombic system. It is known also as chalcocite, redruthite and vitreous copper (German,Kupferglaserzof G. Agricola, 1546). The crystals have the form of six-sided tables or prisms; the angle between the prism faces (lettered o in the figure) being 60° 25′. When twinned on the prism planes o, as is frequently the case, the crystals simulate hexagonal symmetry still more closely, as in the minerals aragonite and chrysoberyl. Twinning also takes place according to two other laws, giving rise to interpenetrating crystals with the basal planes (s) of the two individuals inclined at angles of 69° or 87° 56′ respectively. The mineral also occurs as compact masses of considerable extent. The colour is dark lead-grey with a metallic lustre, but this is never very bright, since the material is readily altered, becoming black and dull on exposure to light. The mineral is soft (H.=2½) and sectile, and can be readily cut with a knife, like argentite; sp. gr. 5.7. Analyses agree closely with the formula Cu2S, which corresponds to 79.8% of copper; small quantities of iron and silver are sometimes present.

Next to chalcopyrite, copper-glance is the most important ore of copper. It usually occurs in the upper part of the copper-bearing lodes, and is a secondary sulphide derived from the chalcopyrite met with at greater depths; sometimes, however, the two minerals are found together in the same part of the lodes. The best crystals are from St Just, St Ives, and Redruth in Cornwall, and from Bristol in Connecticut. Small crystals of recent formation are found on Roman bronze coins in the thermal springs at Bourbonne-les-Bains.

Copper-glance readily alters to other minerals, such as malachite, covellite, melaconite and chalcopyrite. On the other hand, it is found as pseudomorphs after chalcopyrite, galena, and organic structures such as wood; copper-glance pseudomorphous after galena preserves the cleavage of the original mineral and is known as harrisite.

Isomorphous with copper-glance is the orthorhombic mineral stromeyerite, a double copper and silver sulphide, CuAgS, which occurs in abundance in the Altai Mountains.

(L. J. S.)

COPPERHEADS,an American political epithet, applied by Union men during the Civil War to those men in the North who, deeming it impossible to conquer the Confederacy, were earnestly in favour of peace and therefore opposed to the war policy of the president and of Congress. Such men were not necessarily friends of the Confederate cause. The term originated in the autumn of 1862, and its use quickly spread throughout the North. In the Western states early in 1863 the terms “Copperhead”and “Democrat” had become practically synonymous. The name was adopted because of the fancied resemblance of the peace party to the venomous copperhead snake, and, though applied as a term of opprobrium, it was willingly assumed by those upon whom it was bestowed.

COPPERMINE,a river of Mackenzie district, Canada, about 475 m. long, rising in a small lake in approximately 110° 20′ W. and 65° 50′ N., and flowing south to Lake Gras and then north-westward to Coronation Gulf in the Arctic Ocean. Like Back’s river, the only other large river of this part of Canada, it is unnavigable, being a succession of lakes and violent rapids. The country through which it flows is a mass of low hills and morasses. The river was discovered by Samuel Hearne in 1771, and was explored from Point Lake to the sea by Captain (afterwards Sir John) Franklin in 1821.

COPPER-PYRITES,orChalcopyrite, a copper iron sulphide (CUFeS2), an important ore of copper. The name copper-pyrites is from the Ger.Kupferkies, which was used as far back as 1546 by G. Agricola; chalcopyrite (fromχαλκός, “copper,” and pyrites) was proposed by J. F. Henckel in hisPyritologia, oder Kiess-Historie(1725). By the ancients copper-pyrites was included with other minerals under the term pyrites, though the copper-ore from Cyprus referred to by Aristotle as chalcites may possibly have been identical with this mineral.

Chalcopyrite crystallizes in the tetragonal system with inclined hemihedrism, but the form is so nearly cubic that it was not recognized as tetragonal until accurate measurements were made in 1822. Crystals are usually tetrahedral in aspect, owing to the large development of the sphenoid P {111}. The faces of this form are dull and striated, whilst the smaller faces of the complementary sphenoid P’ {111} (fig. 1) are bright and smooth. The combination of these two forms produces a figure resembling an octahedron, the angle between P and P’ being 70° 7½′, corresponding to the angle 70° 32′ of the regular octahedron. The other faces shown in fig. 1 are the basal pinacoid, a {001}, and two square pyramids, b {101} and c {201}. Crystals are usually twinned, and are often complex and difficult to decipher. There are three twin-laws, the twin-planes being (111), (101) and (110) respectively. Twinning according to the first law is effected by rotation about an axis normal to the sphenoidal face (111), the resulting form resembling the twins of blende and spinel. Twinning according to the second law can only be explained by reflection across the plane (101), not by rotation about an axis; chalcopyrite affords an excellent example of this comparatively rare type of symmetric twinning. Interpenetration twins (fig. 2) with (110) as twin-plane are of very rare occurrence.

Crystals have imperfect cleavages parallel to the eight faces of the pyramid c {201}. The fracture is conchoidal, and the material is brittle. Hardness 4; specific gravity 4.2. The colour is brass-yellow, and the lustre metallic; the streak, or colour of the powder, is greenish-black. The mineral is especially liable to surface alteration, tarnishing with beautiful iridescent colours; a blue colour usually predominates, owing probably to the alteration of the chalcopyrite to covellite (CuS). The massive and compact mineral frequently exhibits this iridescent tarnish, and is consequently known to miners as “peacock ore” or “peacock copper.” The massive mineral sometimes occurs in mammillary and botryoidal forms with a smooth brassy surface, and is then known to Cornish miners as “blister-copper-ore.”

Chalcopyrite or copper-pyrites may be readily distinguished from iron-pyrites (or pyrites), which it somewhat resembles in appearance, by its deeper colour and lower degree of hardness: the former is easily scratched by a knife, whilst the latter can only be scratched with difficulty or not at all. Chalcopyrite is decomposed by nitric acid with separation of sulphur and formation of a green solution; ammonia added in excess to this solution changes the green colour to deep blue and precipitates red ferric hydroxide.

The chemical formula CuFeS2corresponds with the percentage composition Cu=34.5, Fe=30.5, S=35.0. Analyses usually, however, show the presence of more iron, owing to the intimate admixture of iron-pyrites. Traces of gold, silver, selenium or thallium are sometimes present, and the mineral is sometimes worked as an ore of gold or silver.

Chalcopyrite is of wide distribution and is the commonest of the ores of copper. It occurs in metalliferous veins, often in association with iron-pyrites, chalybite, blende, &c., and in Cornwall and Devon, where it is abundant, with cassiterite. The large deposits at Falun in Sweden occur with serpentine in gneiss, and those at Montecatini, near Volterra in the province of Pisa, serpentine and gabbro. At Rammelsberg in the Harz it forms a bed in argillaceous schist, and at Mansfield in Thuringia it occurs in the Kupferschiefer with ores of nickel and cobalt. Extensive deposits are mined in the United States, particularly at Butte in Montana, and in Namaqualand, South Africa. Well-crystallized specimens are met with at many localities; for example, formerly at Wheal Towan (hence the name towanite, which has been applied to the species) in the St Agnes district of Cornwall, at Freiberg in Saxony, and Joplin, Missouri.


Back to IndexNext