Chapter 13

(A. R. C; F. R. H.)

1Eratosthenes Batavus, seu de terrae ambitus vera quantitate suscitatus, a Willebrordo Snellio, Lugduni-Batavorum(1617).2O.Callandreau, “Mémoire sur la théorie de la figure des planètes,”Ann. obs. de Paris(1889); G.H. Darwin, “The Theory of the Figure of the Earth carried to the Second Order of Small Quantities,”Mon. Not. R.A.S., 1899; E. Wiechert, “Über die Massenverteilung im Innern der Erde,”Nach. d. kön. G. d. W. zu Gött., 1897.3See I. Todhunter,Proc. Roy. Soc., 1870.4J.H. Jeans, “On the Vibrations and Stability of a Gravitating Planet,”Proc. Roy. Soc.vol. 71; G.H. Darwin, “On the Figure and Stability of a liquid Satellite,”Phil. Trans.206, p. 161; A.E.H. Love, “The Gravitational Stability of the Earth,”Phil. Trans.207, p. 237;Proc. Roy. Soc.vol. 80.5Survey of India, “The Attraction of the Himalaya Mountains upon the Plumb Line in India” (1901), p. 98.6Account of Experiments to Determine the Figure of the Earth by means of a Pendulum vibrating Seconds in Different Latitudes(1825).7Helmert,Theorien d. höheren Geod.ii., Leipzig, 1884.8Helmert,Sitzber. d. kgl. preuss. Ak. d. Wiss. zu Berlin(1901), p. 336.9“Bestimmung der absoluten Grösse der Schwerkraft zu Potsdam mit Reversionspendeln” (Veröffentlichung des kgl. preuss. Geod. Inst., N.F., No. 27).10Die Königl. Observatorien für Astrophysik, Meteorologie und Geodäsie bei Potsdam(Berlin, 1890);Verhandlungen der I. Allgemeinen Conferenz der Bevollmächtigten zur mitteleurop. Gradmessung, October, 1864, in Berlin (Berlin, 1865); A. Hirsch,Verhandlungen der VIII. Allg. Conf. der Internationalen Erdmessung, October, 1886, in Berlin (Berlin, 1887); andVerhandlungen der XI. Allg. Conf. d. I. E., October, 1895, in Berlin (1896).11Ibañez and Perrier,Jonction géod. et astr. de l’Algérie avec l’Espagne(Paris, 1886);Mémorial du dépôt général de la guerre, t. xii.:Nouvelle méridienne de France(Paris, 1885, 1902, 1904);Comptes rendus des séances de la 12e-19econférence générale de l’Assoc. Géod. Internat., 1898 at Stuttgart, 1900 at Paris, 1903 at Copenhagen, 1906 at Budapest (Berlin, 1899, 1901, 1904, 1908); A. Ferrero,Rapport sur les triangulations, prés. à la 12econf. gén. 1898.12R. Schumann,C. r. de Budapest, p. 244.13O. and A. Börsch, “Verbindung d. russ.-skandinav. mit der franz.-engl. Breitengradmessung” (Verhandlungen der 9. Allgem. Conf. d. I. E. in Paris, 1889, Ann. xi.).14U.S. Coast and Geodetic Survey; H.S. Pritchett, superintendent.The Transcontinental Triangulation and the American Arc of the Parallel, by C.A. Schott (Washington, 1900).15U.S. Coast and Geodetic Survey; O.H. Tittmann, superintendent.The Eastern Oblique Arc of the United States, by C.A. Schott (1902).16Missions scientifiques pour la mesure d’un arc de méridien au Spitzberg entreprises en 1899-1902 sous les auspices des gouvernements russe et suédois.Mission russe(St Pétersbourg, 1904);Mission suédoise(Stockholm, 1904).17Sir David Gill,Report on the Geodetic Survey of South Africa, 1833-1892(Cape Town, 1896), vol. ii. 1901, vol. iii. 1905.18O. Hecker,Bestimmung der Schwerkraft a. d. Atlantischen Ozean(Veröffentl. d. Kgl. Preuss. Geod. Inst. No. 11), Berlin, 1903.19F.R. Helmert. “Neuere Fortschritte in der Erkenntnis der math. Erdgestalt” (Verhandl. des VII. Internationalen Geographen-Kongresses, Berlin, 1899), London, 1901.20C. Lallemand, “Rapport sur les travaux du service du nivellement général de la France, de 1900 à 1906″ (Comp. rend. de la 14econf. gén. de l’Assoc. Géod-Intern., 1903, p. 178).21T. Albrecht,Resultate des internat. Breitendienstes, i. and ii. (Berlin, 1903 and 1906); F. Klein and A. Sommerfeld,Über die Theorie des Kreisels, iii. p. 672; R. Spitaler, “Die periodischen Luftmassenverschiebungen und ihr Einfluss auf die Lagenänderung der Erdaxe” (Petermanns Mitteilungen, Ergänzungsheft, 137); S. Newcomb, “Statement of the Theoretical Laws of the Polar Motion” (Astronomical Journal, 1898, xix. 158); F.R. Helmert, “Zur Erklärung der beobachteten Breitenänderungen” (Astr. Nachr.No. 3014); J. Weeder, “The 14-monthly period of the motion of the Pole from determinations of the azimuth of the meridian marks of the Leiden observatory” (Kon. Ak. van Wetenschappen to Amsterdam, 1900); A. Sokolof, “Détermination du mouvement du pôle terr. au moyen des mires méridiennes de Poulkovo” (Mél. math. et astr.vii., 1894); J. Bonsdorff, “Beobachtungen von δ Cassiopejae mit dem grossen Zenitteleskop” (Mitteilungen der Nikolai-Hauptsternwarte zu Pulkowo, 1907); J. Larmor and E.H. Hills, “The irregular movement of the Earth’s axis of rotation: a contribution towards the analysis of its causes” (Monthly Notices R.A.S., 1906, lxvii. 22); A.S. Cristie, “The latitude variation Tide” (Phil. Soc. of Wash., 1895,Bull.xiii. 103); H.G. van de Sande Bakhuysen, “Über die Änderung der Polhöhe” (Astr. Nachr.No. 3261); A.V. Bäcklund, “Zur Frage nach der Bewegung des Erdpoles” (Astr. Nachr.No. 3787); R. Schumann, “Über die Polhöhenschwankung” (Astr. Nachr.No. 3873); “Numerische Untersuchung” (Ergänzungshefte zu den Astr. Nachr.No. 11);Weitere Untersuchungen(No. 4142);Bull. astr., 1900, June, report of different theoretical memoirs.

1Eratosthenes Batavus, seu de terrae ambitus vera quantitate suscitatus, a Willebrordo Snellio, Lugduni-Batavorum(1617).

2O.Callandreau, “Mémoire sur la théorie de la figure des planètes,”Ann. obs. de Paris(1889); G.H. Darwin, “The Theory of the Figure of the Earth carried to the Second Order of Small Quantities,”Mon. Not. R.A.S., 1899; E. Wiechert, “Über die Massenverteilung im Innern der Erde,”Nach. d. kön. G. d. W. zu Gött., 1897.

3See I. Todhunter,Proc. Roy. Soc., 1870.

4J.H. Jeans, “On the Vibrations and Stability of a Gravitating Planet,”Proc. Roy. Soc.vol. 71; G.H. Darwin, “On the Figure and Stability of a liquid Satellite,”Phil. Trans.206, p. 161; A.E.H. Love, “The Gravitational Stability of the Earth,”Phil. Trans.207, p. 237;Proc. Roy. Soc.vol. 80.

5Survey of India, “The Attraction of the Himalaya Mountains upon the Plumb Line in India” (1901), p. 98.

6Account of Experiments to Determine the Figure of the Earth by means of a Pendulum vibrating Seconds in Different Latitudes(1825).

7Helmert,Theorien d. höheren Geod.ii., Leipzig, 1884.

8Helmert,Sitzber. d. kgl. preuss. Ak. d. Wiss. zu Berlin(1901), p. 336.

9“Bestimmung der absoluten Grösse der Schwerkraft zu Potsdam mit Reversionspendeln” (Veröffentlichung des kgl. preuss. Geod. Inst., N.F., No. 27).

10Die Königl. Observatorien für Astrophysik, Meteorologie und Geodäsie bei Potsdam(Berlin, 1890);Verhandlungen der I. Allgemeinen Conferenz der Bevollmächtigten zur mitteleurop. Gradmessung, October, 1864, in Berlin (Berlin, 1865); A. Hirsch,Verhandlungen der VIII. Allg. Conf. der Internationalen Erdmessung, October, 1886, in Berlin (Berlin, 1887); andVerhandlungen der XI. Allg. Conf. d. I. E., October, 1895, in Berlin (1896).

11Ibañez and Perrier,Jonction géod. et astr. de l’Algérie avec l’Espagne(Paris, 1886);Mémorial du dépôt général de la guerre, t. xii.:Nouvelle méridienne de France(Paris, 1885, 1902, 1904);Comptes rendus des séances de la 12e-19econférence générale de l’Assoc. Géod. Internat., 1898 at Stuttgart, 1900 at Paris, 1903 at Copenhagen, 1906 at Budapest (Berlin, 1899, 1901, 1904, 1908); A. Ferrero,Rapport sur les triangulations, prés. à la 12econf. gén. 1898.

12R. Schumann,C. r. de Budapest, p. 244.

13O. and A. Börsch, “Verbindung d. russ.-skandinav. mit der franz.-engl. Breitengradmessung” (Verhandlungen der 9. Allgem. Conf. d. I. E. in Paris, 1889, Ann. xi.).

14U.S. Coast and Geodetic Survey; H.S. Pritchett, superintendent.The Transcontinental Triangulation and the American Arc of the Parallel, by C.A. Schott (Washington, 1900).

15U.S. Coast and Geodetic Survey; O.H. Tittmann, superintendent.The Eastern Oblique Arc of the United States, by C.A. Schott (1902).

16Missions scientifiques pour la mesure d’un arc de méridien au Spitzberg entreprises en 1899-1902 sous les auspices des gouvernements russe et suédois.Mission russe(St Pétersbourg, 1904);Mission suédoise(Stockholm, 1904).

17Sir David Gill,Report on the Geodetic Survey of South Africa, 1833-1892(Cape Town, 1896), vol. ii. 1901, vol. iii. 1905.

18O. Hecker,Bestimmung der Schwerkraft a. d. Atlantischen Ozean(Veröffentl. d. Kgl. Preuss. Geod. Inst. No. 11), Berlin, 1903.

19F.R. Helmert. “Neuere Fortschritte in der Erkenntnis der math. Erdgestalt” (Verhandl. des VII. Internationalen Geographen-Kongresses, Berlin, 1899), London, 1901.

20C. Lallemand, “Rapport sur les travaux du service du nivellement général de la France, de 1900 à 1906″ (Comp. rend. de la 14econf. gén. de l’Assoc. Géod-Intern., 1903, p. 178).

21T. Albrecht,Resultate des internat. Breitendienstes, i. and ii. (Berlin, 1903 and 1906); F. Klein and A. Sommerfeld,Über die Theorie des Kreisels, iii. p. 672; R. Spitaler, “Die periodischen Luftmassenverschiebungen und ihr Einfluss auf die Lagenänderung der Erdaxe” (Petermanns Mitteilungen, Ergänzungsheft, 137); S. Newcomb, “Statement of the Theoretical Laws of the Polar Motion” (Astronomical Journal, 1898, xix. 158); F.R. Helmert, “Zur Erklärung der beobachteten Breitenänderungen” (Astr. Nachr.No. 3014); J. Weeder, “The 14-monthly period of the motion of the Pole from determinations of the azimuth of the meridian marks of the Leiden observatory” (Kon. Ak. van Wetenschappen to Amsterdam, 1900); A. Sokolof, “Détermination du mouvement du pôle terr. au moyen des mires méridiennes de Poulkovo” (Mél. math. et astr.vii., 1894); J. Bonsdorff, “Beobachtungen von δ Cassiopejae mit dem grossen Zenitteleskop” (Mitteilungen der Nikolai-Hauptsternwarte zu Pulkowo, 1907); J. Larmor and E.H. Hills, “The irregular movement of the Earth’s axis of rotation: a contribution towards the analysis of its causes” (Monthly Notices R.A.S., 1906, lxvii. 22); A.S. Cristie, “The latitude variation Tide” (Phil. Soc. of Wash., 1895,Bull.xiii. 103); H.G. van de Sande Bakhuysen, “Über die Änderung der Polhöhe” (Astr. Nachr.No. 3261); A.V. Bäcklund, “Zur Frage nach der Bewegung des Erdpoles” (Astr. Nachr.No. 3787); R. Schumann, “Über die Polhöhenschwankung” (Astr. Nachr.No. 3873); “Numerische Untersuchung” (Ergänzungshefte zu den Astr. Nachr.No. 11);Weitere Untersuchungen(No. 4142);Bull. astr., 1900, June, report of different theoretical memoirs.

EARTH CURRENTS.After the invention of telegraphy it was soon found that telegraph lines in which the circuit is completed by the earth are traversed by natural electric currents which occasionally interfere seriously with their use, and which are known as “earth currents.”

1. Amongst the pioneers in investigating the subject were several English telegraphists,e.g.W.H. Barlow (1) and C.V. Walker (2), who were in charge respectively of the Midland and South-Eastern telegraph systems. Barlow noticed the existence of a more or less regular diurnal variation, and the result—confirmed by all subsequent investigators—that earth currents proper occur in a line only when both ends are earthed. Walker, as the result of general instructions issued to telegraph clerks, collected numerous statistics as to the phenomena during times of large earth currents. His results and those given by Barlow both indicate that the lines to suffer most from earth currents in England have the general direction N.E. to S.W. As Walker points out, it is the direction of the terminal plates relative to one another that is the essential thing. At the same time he noticed that whilst at any given instant the currents in parallel lines have with rare exceptions the same direction, some lines show normally stronger currents than others, and he suggested that differences in the geological structure of the intervening ground might be of importance. This is a point which seems still somewhat obscure.

Our present knowledge of the subject owes much to practical men, but even in the early days of telegraphy the fact that telegraph systems are commercial undertakings, and cannot allowthe public to wait the convenience of science, was a serious obstacle to their employment for research. Thus Walker feelingly says, when regretting his paucity of data during a notable earth current disturbance: “Our clerks were at their wits’ end to clear off the telegrams.... At a time when observations would have been very highly acceptable they were too much occupied with their ordinary duties.” Some valuable observations have, however, been made on long telegraph lines where special facilities have been given.

Amongst these may be mentioned the observations on French lines in 1883 described by E.E. Blavier (3), and those on two German lines Berlin-Thorn and Berlin-Dresden during 1884 to 1888 discussed by B. Weinstein (4).

2. Of the experimental lines specially constructed perhaps the best known are the Greenwich lines instituted by Sir G.B. Airy (5), the lines at Pawlowsk due to H. Wild (6), and those at Parc Saint Maur, near Paris (7).

Experimental Lines.—At Greenwich observations were commenced in 1865, but there have been serious disturbances due to artificial currents from electric railways for many years. There are two lines, one to Dartford distant about 10 m., in a direction somewhat south of east, the other to Croydon distant about 8 m., in a direction west of south.

Information from a single line is incomplete, and unless this is clearly understood erroneous ideas may be derived. The times at which the current is largest and least, or when it vanishes, in an east-west line, tell nothing directly as to the amplitude at the time of the resultant current. The lines laid down at Pawlowsk in 1883 lay nearly in and perpendicular to the geographical meridian, a distinct desideratum, but were only about 1 km. long. The installation at Parc Saint Maur, discussed by T. Moureaux, calls for fuller description. There are three lines, one having terminal earth plates 14.8 km. apart in the geographical meridian, a second having its earth plates due east and west of one another, also 14.8 km. apart, and the third forming a closed circuit wholly insulated from the ground. In each of the three lines is a Deprez d’Arsonval galvanometer. Light reflected from the galvanometer mirrors falls on photographic paper wound round a drum turned by clockwork, and a continuous record is thus obtained.

3. Each galvanometer has a resistance of about 200 ohms, but is shunted by a resistance of only 2 ohms. The total effective resistances in the N.-S. and E.-W. lines are 225 and 348 ohms respectively. If i is the current recorded, L, g and s the resistances of the line, galvanometer and shunt respectively, then E, the difference of potential between the two earth plates, is given by

E = i (1 + g/s) {L + gs / (g + s)}.

To calibrate the record, a Daniell cell is put in a circuit including 1000 ohms and the three galvanometers as shunted. If i′ be the current recorded, e the E.M.F. of the cell, then e = i′ (1 + g/s) {1000 + 3gs / (g + s)}. Under the conditions at Parc Saint Maur we may write 2 for gs / (g + s), and 1.072 for e, and thence we have approximately E = 0.240 (i / i′) for the N.-S. line, and E = −0.371(i / i′) for the E.-W. line.

The method of standardization assumes a potential difference between earth plates which varies slowly enough to produce a practically steady current. There are several causes producing currents in a telegraph wire which do not satisfy this limitation. During thunderstorms surgings may arise, at least in overhead wires, without these being actually struck. Again, if the circuit includes a variable magnetic field, electric currents will be produced independently of any direct source of potential difference. In the third circuit at Parc Saint Maur, where no earth plates exist, the current must be mainly due to changes in the earth’s vertical magnetic field, with superposed disturbances due to atmospheric electricity or aerial waves. Even in the other circuits, magnetic and atmospheric influences play some part, and when their contribution is important, the galvanometer deflection has an uncertain value. What a galvanometer records when traversed by a suddenly varying current depends on other things than its mere resistance.

Even when the current is fairly steady, its exact significance is not easily stated. In the first place there is usually an appreciable E.M.F. between a plate and the earth in contact with it, and this E.M.F. may vary with the temperature and the dryness of the soil. Naturally one employs similar plates buried to the same depth at the two ends, but absolute identity and invariability of conditions can hardly be secured. In some cases, in short lines (8), there is reason to fear that plate E.M.F.’s have been responsible for a good deal that has been ascribed to true earth currents. With deep earth plates, in dry ground, this source of uncertainty can, however, enter but little into the diurnal inequality.

4. Another difficulty is the question of the resistance in the earth itself. A given E.M.F. between plates 10 m. apart may mean very different currents travelling through the earth, according to the chemical constitution and condition of the surface strata.

According to Professor A. Schuster (9), if ρ and ρ’ be the specific resistances of the material of the wire and of the soil, the current i which would pass along an underground cable formed of actual soil, equal in diameter to the wire connecting the plates, is given by i = i′ρ / ρ′, where i′ is the observed current in the wire. As ρ’ will vary with the depth, and be different at different places along the route, while discontinuities may arise from geological faults, water channels and so on, it is clear that even the most careful observations convey but a general idea as to the absolute intensity of the currents in the earth itself. In Schuster’s formula, as in the formulae deduced for Parc Saint Maur, it is regarded as immaterial whether the wire connecting the plates is above or below ground. This view is in accordance with records obtained by Blavier (3) from two lines between Paris and Nancy, the one an air line, the other underground.

5. The earliest quantitative results for the regular diurnal changes in earth currents are probably those deduced by Airy (5) from the records at Greenwich between 1865 and 1867. Airy resolved the observed currents from the two Greenwich lines in and perpendicular to themagneticmeridian (then about 21° to the west of astronomical north). The information given by Airy as to the precise meaning of the quantities he terms “magnetic tendency” to north and to west is somewhat scanty, but we are unlikely to be much wrong in accepting his figures as proportional to the earth currents from magnetic east to west and from magnetic north to south respectively. Airy gives mean hourly values for each month of the year. The corresponding mean diurnal inequality for the whole year appears in Table 1., the unit being arbitrary. In every month the algebraic mean of the 24 hourly values represented a current from north to south in the magnetic meridian, and from east to west in the perpendicular direction; in the same arbitrary units used in Table I. the mean values of these two “constant” currents were respectively 777 and 559.

6.Diurnal Variation.—Probably the most complete records of diurnal variation are those discussed by Weinstein (4), which depend on several years’ records on lines from Berlin to Dresden and to Thorn. Relative to Berlin the geographical co-ordinates of the other two places are:

Thus the Berlin-Dresden line was directed about 8½° east of south, and the Berlin-Thorn line somewhat more to the north of east. The latter line had a length about 2.18 times that of the former. The resistances in the two lines were made the same, so if we suppose the difference of potential between earth plates along a given direction to vary as their distance apart, the current observed in the Thorn-Berlin line has to be divided by 2.18 to be comparable with the other. In this way, resolving along and perpendicular to the geographical meridian, Weinstein gives as proportional to the earth currents from east to west and from south to north respectively

J = 0.147i′ + 0.435i, and J′ = 0.989i′ − 0.100i,

where i and i’ are the observed currents in the Thorn-Berlin and Dresden-Berlin lines respectively, both being counted positive when flowing towards Berlin.

It is tacitly assumed that the average earth conductivity is the same between Berlin and Thorn as between Berlin and Dresden. It should also be noticed that local time at Berlin and Thorn differs by fully 20 minutes, while the crests of the diurnal variations inshortlines at the two places would probably occur about the same local time. The result is probably a less sharp occurrence of maxima and minima, and a relatively smaller range, than in a short line having the same orientation.

Table I.

It was found that the average current derived from a number of undisturbed days on either line might be regarded as made up of a “constant part” plus a regular diurnal inequality, the constant part representing the algebraic mean value of the 24 hourly readings. In both lines the constant part showed a decided alteration during the third year—changing sign in one line—in consequence, it is believed, of alterations made in the earth plates. The constant part was regarded as a plate effect, and was omitted from further consideration. Table I. shows in terms of an arbitrary unit—whose relation to that employed for Greenwich data is unknown—the diurnal inequality in the currents along the two lines, and the inequalities thence calculated for ideal lines in and perpendicular to thegeographicalmeridian. Currents are regarded as positive when directed from Berlin to Dresden and from north to south, the opposite point of view to that adopted by Weinstein. The table also shows the meannumericalvalue of the resultant current (the “constant” part being omitted) for each hour of the day, for the year as a whole, and for winter (November to February), equinox (March, April, September, October) and summer (May to August). There is a marked double period in both the N.-S. and E.-W. currents. In both cases the numerically largest currents occur from 10A.M.to noon, the directions then being from north to south and from west to east. The currents tend to die out and change sign about 2P.M., the numerical magnitude then rising again rapidly to 4 or 5P.M.The current in the meridian is notably the larger. The numerical values assigned to the resultant current are arithmetic means from the several months composing the season in question.

7. The mean of the 24 hourly numerical values of the resultant current for each month of the year a deducible from Weinstein’s data—the unit being the same as before—are given in Table II.

Table II.—Mean Numerical Value of Resultant Current.

There is thus a conspicuous minimum at mid-winter, and but little difference between the monthly means from April to August. This is closely analogous to what is seen in the daily range of the magnetic elements in similar latitudes (seeMagnetism, Terrestrial). There is also considerable resemblance between the curve whose ordinates represent the diurnal inequality in the current passing from north to south, and the curve showing the hourly change in the westerly component of the horizontal magnetic force in similar European latitudes.

8.Relations with Sun-spots, Auroras and Magnetic Storms.—Weinstein gives curves representing the mean diurnal inequality for separate years. In both lines the diurnal amplitudes were notably smaller in the later years which were near sun-spot minimum. This raises a presumption that the regular diurnal earth currents, like the ranges of the magnetic elements, follow the 11-year sun-spot period. When we pass to the large and irregular earth currents, which are of practical interest in telegraphy, there is every reason to suppose that the sun-spot period applies. These currents are always accompanied by magnetic disturbances, and when specially striking by brilliant aurora. One most conspicuous example of this occurred in the end of August and beginning of September 1859. The magnetic disturbances recorded were of almost unexampled size and rapidity, the accompanying aurora was extraordinarily brilliant, and E.M.F.’s of 700 and 800 volts are said to have been reached on telegraph lines 500 to 600 km. long. It is doubtful whether the disturbances of 1859 have been equalled since, but earth current voltages of the order of 0.5 volts per mile have been recorded by various authorities,e.g.Sir W.H. Preece (10).

It was the practice for several years to publish in theAnn. du bureau central météorologiquesynchronous magnetic and earth current curves from Parc Saint Maur corresponding to the chief disturbances of the year. In most cases there is a marked similarity between the curve of magnetic declination and that of the north-south earth current. At times there is also a distinct resemblance between the horizontal force magnetic curve and that of the east-west earth current, but exceptions to this are not infrequent. Similar phenomena appear in synchronous Greenwich records published by Airy in 1868; these show a close accordance between the horizontal force curves and those of the currents from magnetic east to west. Originally it was supposed by Airy that whilst rapid movements in the declination and north-south current curves sometimesoccurred simultaneously, there was a distinct tendency for the latter to precede the former. More recent examinations of the Greenwich records by W. Ellis (11), and of the Parc St Maur curves by Moureaux, have not confirmed this result, and it is now believed that the two phenomena are practically simultaneous.

There has also been a conflict of views as to the connexion between magnetic and earth current disturbances. Airy’s observations tended to suggest that the earth current was the primary cause, and the magnetic disturbance in considerable part at least its effect. Others, on the contrary, have supposed earth currents to be a direct effect of changes in the earth’s magnetic field. The prevailing view now is that both the magnetic and the earth current disturbances are due to electric currents in the upper atmosphere, these upper currents becoming visible at times as aurora.

9. There seems some evidence that earth currents can be called into existence by purely local causes, notably difference of level. Thus K.A. Brander (12) has observed a current flowing constantly for a good many days from Airolo (height 1160 metres) to the Hospice St Gotthard (height 2094 metres). In an 8-km. line from Resina to the top of Vesuvius L. Palmieri (13)—observing in 1889 at three-hour intervals from 9A.M.to 9P.M.—always found a current running uphill so long as the mountain was quiet. On a long line from Vienna to Graz A. Baumgartner (14) found that the current generally flowed from both ends towards intervening higher ground during the day, but in the opposite directions at night. During a fortnight in September and October 1885 hourly readings were taken of the current in the telegraph cable from Fort-William to Ben Nevis Observatory, and the results were discussed by H.N. Dickson (15), who found a marked preponderance of currents up the line to the summit. The recorded mean data, otherwise regarded, represent a “constant” current, equal to 29 in the arbitrary units employed by Dickson, flowing up the line, together with the following diurnal inequality, + denoting current towards Fort-William (i.e.down the hill, and nearly east to west).

There is thus a diurnal inequality, which is by no means very irregular considering the limited number of days, and it bears at least a general resemblance to that shown by Weinstein’s figures for an east-west line in Germany. This will serve to illustrate the uncertainties affecting these and analogous observations. A constant current in one direction may arise in whole or part from plate E.M.F.’s; a current showing a diurnal inequality will naturally arise betweenanytwo places some distance apart whether they be at different levels or not. Finally, when records are taken only for a short time, doubts must arise as to the generality of the results. During the Ben Nevis observations, for instance, we are told that the summit was almost constantly enveloped in fog or mist. By having three earth plates in the same vertical plane, one at the top of a mountain, the others at opposite sides of it, and then observing the currents between the summit and each of the base stations, as well as directly between the base stations—during an adequate number of days representative of different seasons of the year and different climatic conditions—many uncertainties would soon be removed.

10.Artificial Currents.—The great extension in the applications of electricity to lighting, traction and power transmission, characteristic of the end of the 19th century, has led to the existence of large artificial earth currents, which exert a disturbing influence on galvanometers and magnetic instruments, and also tend to destroy metal pipes. In the former case, whilst the disturbance is generally loosely assigned to stray or “vagabond” earth currents, this is only partly correct. The currents used for traction are large, and even if there were a perfectly insulated return there would be a considerable resultant magnetic field at distances from the track which were not largely in excess of the distance apart of the direct and return currents (16). At a distance of half a mile or more from an electric tram line the disturbance is usually largest in magnetographs recording the vertical component of the earth’s field. The magnets are slightly displaced from the position they would occupy if undisturbed, and are kept in continuous oscillation whilst the trams are running (17). The extent of the oscillation depends on the damping of the magnets.

The distance from an electric tram line where the disturbance ceases to be felt varies with the system adopted. It also depends on the length of the line and its subdivision into sections, on the strength of the currents supplied, the amount of leakage, the absence or presence of “boosters,” and finally on the sensitiveness of the magnetic instruments. At the U.S. Coast and Geodetic Survey’s observatory at Cheltenham the effect of the Washington electric trams has been detected by highly sensitive magnetographs, though the nearest point of the line is 12 m. away (18). Amongst the magnetic observatories which have suffered severely from this cause are those at Toronto, Washington (Naval Observatory), Kew, Paris (Parc St Maur), Perpignan, Nice, Lisbon, Vienna, Rome, Bombay (Colaba) and Batavia. In some cases magnetic observations have been wholly suspended, in others new observatories have been built on more remote sites.

As regards damage to underground pipes, mainly gas and water pipes, numerous observations have been made, especially in Germany and the United States. When electric tramways have uninsulated returns, and the potential of the rails is allowed to differ considerably from that of the earth, very considerable currents are found in neighbouring pipes. Under these conditions, if the joints between contiguous pipes forming a main present appreciable resistance, whilst the surrounding earth through moisture or any other cause is a fair conductor, current passes locally from the pipes to the earth causing electrolytic corrosion of the pipes. Owing to the diversity of interests concerned, the extent of the damage thus caused has been very variously estimated. In some instances it has been so considerable as to be the alleged cause of the ultimate failure of water pipes to stand the pressure they are exposed to.

Bibliography.—See Svante August Arrhenius,Lehrbuch der kosmischen Physik(Leipzig, 1903), pp. 984-990. For lists of references see J.E. Burbank,Terrestrial Magnetism, vol. 10 (1905), p. 23, and P. Bachmetjew (8). For papers descriptive of corrosion of pipes, &c., by artificial currents seeScience Abstracts(in recent years in the volumes devoted to engineering) under the heading “Traction, Electric; Electrolysis.” The following are the references in the text:—(1)Phil. Trans. R.S.for 1849, pt. i. p. 61; (2)Phil. Trans. R.S.vol. 151 (1861), p. 89, and vol. 152 (1862), p. 203; (3)Étude des courants telluriques(Paris, 1884); (4)Die Erdströme im deutschen Reichstelegraphengebiet(Braunschweig, 1900); (5)Phil. Trans. R.S.vol. 158 (1868), p. 465, and vol. 160 (1870), p. 215; (6)Mém. de l’Académie St-Pétersbourg, t. 31, No. 12 (1883); (7) T. Moureaux,Ann. du Bureau Central Mét.(Année 1893), 1 Mem. p. B 23; (8) P. Bachmetjew,Mém. de l’Académie St-Pétersbourg, vol. 12, No. 3 (1901); (9)Terrestrial Magnetism, vol. 3 (1898), p. 130; (10)Journal Tel. Engineers(1881); (11)Proc. R.S.vol. 52 (1892), p. 191; (12)Akad. Abhandlung(Helsingfors, 1888); (13)Acad. Napoli Rend.(1890), andAtti(1894, 1895); (14)Pogg. Ann.vol. 76, p. 135; (15)Proc. R.S.E.vol. 13, p. 530; (16) A. Rücker,Phil. Mag.1 (1901), p. 423, and R.T. Glazebrook,ibid.p. 432; (17) J. Edler,Elektrotech. Zeit.vol. 20 (1899); (18) L.A. Bauer,Terrestrial Magnetism, vol. 11 (1906), p. 53.

Bibliography.—See Svante August Arrhenius,Lehrbuch der kosmischen Physik(Leipzig, 1903), pp. 984-990. For lists of references see J.E. Burbank,Terrestrial Magnetism, vol. 10 (1905), p. 23, and P. Bachmetjew (8). For papers descriptive of corrosion of pipes, &c., by artificial currents seeScience Abstracts(in recent years in the volumes devoted to engineering) under the heading “Traction, Electric; Electrolysis.” The following are the references in the text:—(1)Phil. Trans. R.S.for 1849, pt. i. p. 61; (2)Phil. Trans. R.S.vol. 151 (1861), p. 89, and vol. 152 (1862), p. 203; (3)Étude des courants telluriques(Paris, 1884); (4)Die Erdströme im deutschen Reichstelegraphengebiet(Braunschweig, 1900); (5)Phil. Trans. R.S.vol. 158 (1868), p. 465, and vol. 160 (1870), p. 215; (6)Mém. de l’Académie St-Pétersbourg, t. 31, No. 12 (1883); (7) T. Moureaux,Ann. du Bureau Central Mét.(Année 1893), 1 Mem. p. B 23; (8) P. Bachmetjew,Mém. de l’Académie St-Pétersbourg, vol. 12, No. 3 (1901); (9)Terrestrial Magnetism, vol. 3 (1898), p. 130; (10)Journal Tel. Engineers(1881); (11)Proc. R.S.vol. 52 (1892), p. 191; (12)Akad. Abhandlung(Helsingfors, 1888); (13)Acad. Napoli Rend.(1890), andAtti(1894, 1895); (14)Pogg. Ann.vol. 76, p. 135; (15)Proc. R.S.E.vol. 13, p. 530; (16) A. Rücker,Phil. Mag.1 (1901), p. 423, and R.T. Glazebrook,ibid.p. 432; (17) J. Edler,Elektrotech. Zeit.vol. 20 (1899); (18) L.A. Bauer,Terrestrial Magnetism, vol. 11 (1906), p. 53.

(C. Ch.)

EARTH-NUT,the English name for a plant known botanically asConopodium denudatum(orBunium flexuosum), a member of the natural order Umbelliferae, which has a brown tuber-like root-stock the size of a chestnut. It grows in woods and fields, has a slender flexuous smooth stem 2 to 3 ft. high, much-divided leaves, and small white flowers in many-rayed terminal compound umbels. Boswell Syme, inEnglish Botany, iv. 114, says: “The common names of this plant in England are various. It is known as earth-nut, pig-nut, ar-nut, kipper-nut, hawk-nut, jar-nut, earth-chestnut and ground-nut. Though really excellent in taste and unobjectionable as food, it is disregarded in England by all but pigs and children, both of whom appreciate it and seek eagerly for it.” Dr Withering describes the roots as little inferior to chestnuts. In Hollandand elsewhere on the continent of Europe they are more generally eaten.

EARTH PILLAR,a pillar of soft rock, or earth, capped by some harder material that has protected it from denudation. The “bad lands” of western North America furnish numerous examples. Here “the formations are often beds of sandstone or shale alternating with unindurated beds of clay. A semi-arid climate where the precipitation is much concentrated seems to be most favourable to the development of this type of formation.” The country round the Dead Sea, where loose friable sandy clay is capped by harder rock, produces “bad-land” topography. The cap of hard rock gives way at the joints, and the water making its way downwards washes away the softer material directly under the cracks, which become wider, leaving isolated columns of clay capped with hard sandstone or limestone. These become smaller and fewer as denudation proceeds, the pillars standing a great height at times, until finally they all disappear.

EARTHQUAKE.Although the terrible effects which often accompany earthquakes have in all ages forced themselves upon the attention of man, the exact investigation of seismic phenomena dates only from the middle of the 19th century. A new science has been thus established under the name ofseismology(Gr.σεισμός, an earthquake).

History.—Accounts of earthquakes are to be found scattered through the writings of many ancient authors, but they are, for the most part, of little value to the seismologist. There is a natural tendency to exaggeration in describing such phenomena, sometimes indeed to the extent of importing a supernatural element into the description. It is true that attempts were made by some ancient writers on natural philosophy to offer a rational explanation of earthquake phenomena, but the hypotheses which their explanations involved are, as a rule, too fanciful to be worth reproducing at the present day. It is therefore unnecessary to dwell upon the references to seismic phenomena which have come down to us in the writings of such historians and philosophers as Thucydides, Aristotle and Strabo, Seneca, Livy and Pliny. Nor is much to be gleaned from the pages of medieval and later writers on earthquakes, of whom the most notable are Fromondi (1527), Maggio (1571) and Travagini (1679). In England, the earliest work worthy of mention is Robert Hooke’sDiscourse on Earthquakes, written in 1668, and read at a later date before the Royal Society. This discourse, though containing many passages of considerable merit, tended but little to a correct interpretation of the phenomena in question. Equally unsatisfactory were the attempts of Joseph Priestley and some other scientific writers of the 18th century to connect the cause of earthquakes with electrical phenomena. The great earthquake of Lisbon in 1755 led the Rev. John Michell, professor of mineralogy at Cambridge, to turn his attention to the subject; and in 1760 he published in thePhilosophical Transactionsa remarkable essay on the Cause and Phenomena of Earthquakes. A suggestion of much scientific interest was made by Thomas Young, when in hisLectures on Natural Philosophy, published in 1807, he remarked that an earthquake “is probably propagated through the earth nearly in the same manner as a noise is conveyed through the air.” The recognition of the fact that the seismologist has to deal with the investigation of wave-motion in solids lies at the very base of his science. In 1846 Robert Mallet communicated to the Royal Irish Academy his first paper “On the Dynamics of Earthquakes”; and in the following year W. Hopkins, of Cambridge, presented to the British Association a valuable report in which earthquake phenomena were discussed in some detail. Mallet’s labours were continued for many years chiefly in the form of Reports to the British Association, and culminated in his great work on the Neapolitan earthquake of 1857. An entirely new impetus, however, was given to the study of earthquakes by an energetic body of observers in Japan, who commenced their investigations about the year 1880, mainly through the influence of Prof. John Milne, then of Tokyo. Their work, carried on by means of new instruments of precision, and since taken up by observers in many parts of the world, has so extended our knowledge of earthquake-motion that seismology has now become practically a new department of physical science.

It is hardly too much to say, however, that the earliest systematic application of scientific principles to the study of the effects of an earthquake was made by Mallet in his investigation of the Neapolitan earthquake mentioned above. It is true, the great Calabrian earthquake of 1783 had been the subject of careful inquiry by the Royal Academy of Naples, as also by Deodat Dolomieu and some other scientific authorities; but in consequence of the misconception which at that time prevailed with regard to the nature of seismic activity, the results of the inquiry, though in many ways interesting, were of very limited scientific value. It was reserved for Mallet to undertake for the first time an extensive series of systematic observations in an area of great seismic disturbance, with the view of explaining the phenomena by the application of the laws of wave-motion.

The “Great Neapolitan Earthquake,” by which more than 12,300 lives were lost, was felt in greater or less degree over all Italy south of the parallel of 42°, and has been regarded as ranking third in order of severity among theNeapolitan earthquake, 1857.recorded earthquakes of Europe. The principal shock occurred at about 10P.M.on the 16th of December 1857; but, as is usually the case, it had been preceded by minor disturbances and was followed by numerous after-shocks which continued for many months. Early in 1858, aided by a grant from the Royal Society, Mallet visited the devastated districts, and spent more than two months in studying the effects of the catastrophe, especially examining, with the eye of an engineer, the cracks and ruins of the buildings. His voluminous report was published in 1862, and though his methods of research and his deductions have in many cases been superseded by the advance of knowledge, the report still remains a memorable work in the history of seismology.

Much of Mallet’s labour was directed to the determination of the position and magnitude of the subterranean source from which the vibratory impulses originated. This is known variously as theseismic centre,centrum,hypocentre,originorfocus. It is often convenient to regard this centre theoretically as a point, but practically it must be a locus or space of three dimensions, which in different cases varies much in size and shape, and may be of great magnitude. That part of the surface of the earth which is vertically above the centre is called theepicentre; or, if of considerable area, the epicentral or epifocal tract. A vertical line joining the epicentre and the focus was termed by Mallet theseismic vertical. He calculated that in the case of the Neapolitan earthquake the focal cavity was a curved lamelliform fissure, having a length of about 10 m. and a height of about 3½ m., whilst its width was inconsiderable. The central point of this fissure, the theoretical seismic centre, he estimated to have been at a depth of about 6½ m. from the surface. Dr C. Davison, in discussing Mallet’s data, was led to the conclusion that there were two distinct foci, possibly situated on a fault, or plane of dislocation, running in a north-west and south-east direction. Mallet located his epicentre near the village of Caggiano, not far from Polla, while the other seems to have been in the neighbourhood of Montemurro, about 25 m. to the south-east.

The intensity, or violence, of an earthquake is greatest in or near the epicentre, whence it decreases in all directions. A line drawn through points of equal intensity forms a curve round the epicentre known as anisoseist, anisoseismalor anisoseismic line. If the intensity declined equally in all directions the isoseismals would be circles, but as this is rarely if ever the case in nature they usually become ellipses and other closed curves. The tract which is most violently shaken was termed by Mallet themeizoseismic area, whilst the line of maximum destruction is known as themeizoseismic line. That isoseismal along which the decline of energy is most rapid was called by K. von Seebach apleistoseist.

In order to determine the position of the seismic centre, Mallet made much use of the cracks in damaged buildings, especiallyin walls of masonry, holding that the direction of such fractures must generally be at right angles to that in which the normal earthquake-wave reached them. In this way he obtained the “angle of emergence” of the wave. He also assumed that free-falling bodies would be overthrown and projected in the direction of propagation of the wave, so that the epicentre might immediately be found from the intersection of such directions. These data are, however, subject to much error, especially through want of homogeneity in the rocks, but Mallet’s work was still of great value.

A different method of ascertaining the depth of the focus was adopted by Major C.E. Dutton in his investigation of the Charleston earthquake of the 31st of August 1886 for the U.S. Geological Survey. This catastropheCharleston earthquake, 1886.was heralded by shocks of greater or less severity a few days previously at Summerville, a village 22 m. north-west of Charleston. The great earthquake occurred at 9.51P.M., standard time of the 75th meridian, and in about 70 seconds almost every building in Charleston was more or less seriously damaged, while many lives were lost. The epicentral tract was mainly a forest region with but few buildings, and the principal records of seismological value were afforded by the lines of railway which traversed the disturbed area. In many places these rails were flexured and dislocated. Numerous fissures opened in the ground, and many of these discharged water, mixed sometimes with sand and silt, which was thrown up in jets rising in some cases to a height of 20 ft. Two epicentres were recognized—one near Woodstock station on the South Carolina railway, and the other, being the centre of a much smaller tract, about 14 m. south-west of the first and near the station of Rantowles on the Charleston and Savannah line. Around these centres and far away isoseismal lines were drawn, the relative intensity at different places being roughly estimated by the effects of the catastrophe on various structures and natural objects, or, where visible records were wanting, by personal evidence, which is often vague and variable. The Rossi-Forel scale was adopted. This is an arbitrary scale formulated by Professor M.S. de Rossi, of Rome, and Dr F.A. Forel, of Geneva, based mostly on the ordinary phenomena observed during an earthquake, and consisting of ten degrees, of which the lowest is the feeblest, viz. I. Microseismic shock; II. Extremely feeble shock; III. Very feeble shock; IV. Feeble; V. Shock of moderate intensity; VI. Fairly strong shock; VII. Strong shock; VIII. Very strong shock; IX. Extremely strong shock; X. Shock of extreme intensity. Other conventional scales, some being less detailed, have been drawn up by observers in such earthquake-shaken countries as Italy and Japan. A curve, or theoretical isoseismal, drawn through certain points where the decline of intensity on receding from the epicentre seems to be greatest was called by Dutton an “index-circle”; and it can be shown that the radius of such a circle multiplied by the square root of 3 gives the focal depth theoretically. In this way it was computed that in the Charleston earthquake the origin under Woodstock must have had a depth of about 12 m. and that near Rantowles a depth of nearly 8 m. The determination of the index-circle presents much difficulty, and the conclusions must be regarded as only approximate.

It is probable, according to R.D. Oldham, that local earthquakes may originate in the “outer skin” of the earth, whilst a large world-shaking earthquake takes its origin in the deeper part of the “crust,” whence such a disturbance is termed abathyseism. Large earthquakes may have very extended origins, with no definite centre, or with several foci.

The gigantic disaster known as the “Great Indian Earthquake,” which occurred on the 12th of June 1897, was the subject of careful investigation by the Geological Survey of India and was described in detail by the superintendent,Great Indian earthquake, 1897.R.D. Oldham. It is sometimes termed the Assam earthquake, since it was in that province that the effects were most severe, but the shocks were felt over a large part of India, and indeed far beyond its boundaries. Much of the area which suffered most disturbance was a wild country, sparsely populated, with but few buildings of brick or stone from which the violence of the shocks could be estimated. The epicentral tract was of great size, having an estimated area of about 6000 sq. m., but the mischief was most severe in the neighbourhood of Shillong, where the stonework of bridges, churches and other buildings was absolutely levelled to the ground. After the main disturbance, shocks of greater or less severity continued at intervals for many weeks. It is supposed that this earthquake was connected with movement of subterranean rock-masses of enormous magnitude along a great thrust-plane, or series of such planes, having a length of about 200 m. and a maximum breadth of not less than 50 m. It is pointed out by Oldham that this may be compared for size with the great Faille du Midi in Belgium, which is known to extend for a distance of 120 m. The depth of the principal focus, though not actually capable of determination, was probably less than 5 m. from the surface. From the focus many secondary faults and fractures proceeded, some reaching the surface of the ground. Enormous landslips accompanied the earthquake, and as an indirect effect of these slides the form of the water-courses became in certain cases modified. Permanent changes of level were also observed.

Eight years after the great Assam earthquake India was visited by another earthquake, which, though less intense, resulted in the loss of about 20,000 lives. This catastrophe is known as the Kangra earthquake, since itsKangra earthquake, 1905.centre seems to have been located in the Kangra valley, in the north-west Himalaya. It occurred on the 4th of April 1905, and the first great shocks were felt in the chief epifocal district at about 6.9 a.m., Madras time. Although the tract chiefly affected was around Kangra and Dharmsala, there was a subordinate epifocal tract in Dehra Dun and the neighbourhood of Mussoorie, whilst the effects of the earthquake extended in slight measure to Lahore and other cities of the plain. It is estimated that the earthquake was felt over an area of about 1,625,000 m. Immediately after the calamity a scientific examination of its effects was made by the Geological Survey of India, and a report was drawn up by the superintendent, C.S. Middlemiss.

The great earthquake, which, with the subsequent fire, wrought such terrible destruction in and around San Francisco on the 18th of April 1906, was the most disastrous ever recorded in California. It occurred between 10 and 15 minutesCalifornia earthquake, 1906.after 5A.M., standard time of the 120th meridian. The moment at which the disaster began and the duration of the shock varied at different localities in the great area over which the earthquake was felt. At San Francisco the main shock lasted rather more than one minute.

According to the official Report, the earthquake was due to rupture and movement along the plane of the San Andreas fault, one of a series which runs for several hundred miles approximately in a N.W. and S.E. direction near the coast line. Evidence of fresh movement along this plane of dislocation was traced for a distance of 190 m. from San Juan on the south to Point Arena on the north. There the trace of the fault is lost beneath the sea, but either the same fault or another appears 75 m. to the north at Point Delgada. The belt of disturbed country is notoriously unstable, and part of the fault had been known as the “earthquake crack.” The direction is marked by lines of straight cliffs, long ponds and narrow depressions, forming a Rift, or old line of seismic disturbance. According to Dr G.K. Gilbert the earthquake zone has a length of 300 or 400 m. The principal displacement of rock, in 1906, was horizontal, amounting generally to about 10 ft. (maximum 21 ft.), but there was also locally a slight vertical movement, which towards the north end of the fault reached 3 ft. Movement was traced for a distance of about 270 m., and it is estimated that at least 175,000 sq. m. of country must have been disturbed. In estimating the intensity of the earthquake in San Francisco a new scale was introduced by H.O. Wood. The greatest structural damage occurred on soft alluvial soil and “made ground.” Most of the loss of property in San Francisco wasdue to the terrible fire which followed the earthquake and was beyond control owing to the destruction of the system of water-supply.

Immediately after the catastrophe a California Earthquake Investigation Committee was appointed by the governor of the state; and the American Association for the Advancement of Science afterwards instituted a Seismological Committee. The elaborate Report of the State Investigation Committee, by the chairman, Professor A.C. Lawson, was published in 1908.

On the 17th of August 1906 a disastrous earthquake occurred at Valparaiso, and the year 1906 was marked generally by exceptional seismic activity.

The Jamaica earthquake of the 14th of January 1907 appears to have accompanied movement of rock along an east and west fracture or series of fractures under the sea a few miles from the city of Kingston. The statue of Queen Victoria at Kingston was turned upon its pedestal the eighth of a revolution.

A terrible earthquake occurred in Calabria and Sicily on December 28, 1908, practically destroying Messina and Reggio. According to the official returns the total loss of life was 77,283. Whilst the principal centre seems toMessina earthquake, 1908.have been in the Strait of Messina, whence the disturbance is generally known as the Messina earthquake, there were independent centres in the Calabrian peninsula, a country which had been visited by severe earthquakes not long previously, namely on September 8, 1905, and October 23, 1907. The principal shock of the great Messina earthquake of 1908 occurred at 5.21A.M.(4.21 Greenwich time), and had a duration of from 30 to 40 seconds. Neither during nor immediately before the catastrophe was there any special volcanic disturbance at Etna or at Stromboli, but it is believed that there must have been movement along a great plane of weakness in the neighbourhood of the Strait of Messina, which has been studied by E. Cortese. The sea-floor in the strait probably suffered great disturbance, resulting in the remarkable movement of water observed on the coast. At first the sea retired, and then a great wave rolled in, followed by others generally of decreasing amplitude, though at Catania the second was said to have been greater than the first. At Messina the height of the great wave was 2.70 metres, whilst at Ali and Giardini it reached 8.40 metres and at San Alessio as much as 11.7 metres. At Malta the tide-gauge recorded a wave of 0.91 metre. The depth of the chief earthquake-centre was estimated by Dr E. Oddone at about 9 kilometres. The earthquake and accompanying phenomena were studied also by Professor A. Riccò, Dr M. Baratta and Professor G. Platania and by Dr F. Omori of Tokyo. After the great disturbance, shocks continued to affect the region intermittently for several months. In certain respects the earthquake of 1908 presented much resemblance to the great Calabrian catastrophe of 1783.

It has been proposed by R.D. Oldham that the disturbance which causes the fracture and permanent displacement of the rocks during an earthquake should be called an “earthshake,” leaving the term earthquake especially for the vibratory motion. The movement of the earthquake is molecular, whilst that of the earthshake is molar. Subsequently he suggested the termsmochleusisandorchesis(μοχλέυω, I heave;ὀρχέομαι, I dance), to denote respectively the molar and the molecular movement, retaining the word earthquake for use in its ordinary sense.

In most earthquakes the proximate cause is generally regarded as the fracture and sudden movement of underground rock-masses. Disturbances of this type are known as “tectonic” earthquakes, since they are connected with the folding and faulting of the rocks of the earth’s crust. They indicate a relief of the strain to which the rock-masses are subjected by mountain-making and other crustal movements, and they are consequently apt to occur along the steep face of a table-land or the margin of a continent with a great slope from land to sea. In many cases the immediate seat of the originating impulse is located beneath the sea, giving rise to submarine disturbances which have been called “seaquakes.” Much attention has been given to these suboceanic disturbances by Professor E. Rudolph.

Professor J.H. Jeans has pointed out that the regions of the earth’s crust most affected by earthquakes lie on a great circle corresponding with the equator of the slightly pear-shaped figure that he assigns to the earth. This would represent a belt of weakness, subject to crushing, from the tendency of the pear to pass into a spherical or spheroidal form under the action of internal stresses. According to the comte de Montessus de Ballore, the regions of maximum seismic instability appear to be arranged on two great circles, inclined to each other at about 67°. These are the Circumpacific and Mediterranean zones.

Maps of the world, showing the origins of large earthquakes each year, accompany the Annual Reports of the Seismological Committee of the British Association, drawn up by Professor Milne. It is important to note that Professor Milne has shown a relationship between earthquake-frequency and the wandering of the earth’s pole from its mean position. Earthquakes seem to have been most frequent when the displacement of the pole has been comparatively great, or when the change in the direction of movement has been marked. Valuable earthquake catalogues have been compiled at various times by Alexis Perrey, R. and J.W. Mallet, John Milne, T. Oldham, C.W.C. Fuchs, F. de Montessus de Ballore and others.

Such earthquakes as are felt from time to time in Great Britain may generally be traced to the formation of faults, or rather to incidents in the growth of old faults. The East Anglian earthquake of the 22nd of April 1884—theBritish earthquakes.most disastrous that had occurred in the British Isles for centuries—was investigated by Prof. R. Meldola and W. White on behalf of the Essex Field Club. The shocks probably proceeded from two foci—one near the villages of Peldon and Abberton, the other near Wivenhoe and Rowhedge, in N.E. Essex. It is believed that the superficial disturbance resulted from rupture of rocks along a deep fault. An attempt has been made by H. Darwin, for the Seismological Committee of the British Association, to detect and measure any gradual movement of the strata along a fault, by observation at the Ridgeway fault, near Upway, in Dorsetshire. Dr C. Davison in studying the earthquakes which have originated in Britain since 1889 finds that several have been “twins.” A twin earthquake has two maxima of intensity proceeding from two foci, whereas a double earthquake has its successive impulses from what is practically a single focus. The Hereford earthquake of December 1896, which resulted in great structural damage, was a twin, having one epicentre near Hereford and the other near Ross. Davison refers it to a slip along a fault-plane between the anticlinal areas of Woolhope and May Hill; and according to the same authority the Inverness earthquake of the 18th of September 1901 was referable to movement along a fault between Loch Ness and Inverness. The South Wales earthquake of June 27, 1906, was probably due to movement connected with the Armorican system of folds, striking in an east and west direction.

It may be noted that when a slip occurs along a fault, the displacement underground may be but slight and may die out before reaching the surface, so that no scarp is formed. In connexion, however, with a seismic disturbance of the first magnitude the superficial features may be markedly affected. Thus, the great Japan earthquake of October 1891—known often as the Mino-Owari earthquake—was connected with the formation or development of a fault which, according to Professor B. Koto, was traced on the surface for a distance of nearly 50 m. and presented in places a scarp with a vertical throw of as much as 20 ft., while probably the maximum displacement underground was very much greater.

Although most earthquakes seem to be of tectonic type, there are some which are evidently connected, directly or indirectly, with volcanic activity (seeVolcano). Such, it is commonly believed, were the earthquakes which disturbed the Isle of Ischia in 1881 and 1883, and were studied by Professor J. Johnston-Lavis and G. Mercalli. In addition to the tectonic and volcanic types, there are occasional earthquakes of minor importance which may be referred to the collapse of the roof ofcaverns, or other falls of rock in underground cavities at no great depth. According to Prof. T.J.J. See most earthquakes are due, directly or indirectly, to the explosive action of steam, formed chiefly by the leakage of sea-water through the ocean floor.

Whatever the nature of the impulse which originates the earthquake, it gives rise to a series of waves which are propagated through the earth’s substance and also superficially. In one kind, known as normal or condensational waves,Earthquake waves.or waves of elastic compression, the particles vibrate to and from the centre of disturbance, moving in the direction in which the wave travels, and therefore in a way analogous to the movement of air in a sound-wave. Associated with this type are other waves termed transverse waves, or waves of elastic distortion, in which the particles vibrate across or around the direction in which the wave is propagated. The normal waves result from a temporary change of volume in the medium; the transverse from a change of shape. The distance through which an earth-particle moves from its mean position of rest, whether radially or transversely, is called the amplitude of the wave; whilst the double amplitude, or total distance of movement, to and fro or up and down, like the distance from crest to trough of a water wave, may be regarded as the range of the wave. The period of a wave is the time required for the vibrating particle to complete an oscillation. As the rocks of the earth’s crust are very heterogeneous, the earthquake-waves suffer refraction and reflection as they pass from one rock to another differing in density and elasticity. In this way the waves break up and become much modified in course of transmission, thus introducing great complexity into the phenomena. It is known that the normal waves travel more rapidly than the transverse.

Measurements of the surface speed at which earthquake-waves travel require very accurate time-measurers, and these are not generally available in earthquake-shaken regions. Observations during the Charleston earthquake of 1886 were at that time of exceptional value, since they were made over a large area where standard time was kept. Lines drawn through places around the epicentre at which the shock arrives at the same moment are called coseismal lines. The motion of the wave is to be distinguished from the movement of the vibrating particles. The velocity of the earth-particle is its rate of movement, but this is constantly changing during the vibration, and the rate at which the velocity changes is technically called the acceleration of the particle.

Unfelt movements of the ground are registered in the earthquake records, or seismograms, obtained by the delicate instruments used by modern seismologists. From the study of the records of a great earthquake from a distant source, sometimes termed a teleseismic disturbance, some interesting inferences have been drawn with respect to the constitution of the interior of the earth. The complete record shows two phases of “preliminary tremors” preceding the principal waves. It is believed that while the preliminary tremors pass through the body of the earth, the principal waves travel along or parallel to the surface. Probably the first phase represents condensational, and the second phase distortional, waves. Professor Milne concludes from the speed of the waves at different depths that materials having similar physical properties to those at the surface may extend to a depth of about 30 m., below which they pass into a fairly homogeneous nucleus. From the different rates of propagation of the precursors it has been inferred by R.D. Oldham that below the outer crust, which is probably not everywhere of the same thickness, the earth is of practically uniform character to a depth of about six-tenths of the radius, but the remaining four-tenths may represent a core differing physically and perhaps chemically from the outer part. Oldham also suggests, from his study of oceanic and continental wave-paths, that there is probably a difference in the constitution of the earth beneath oceans and beneath continents.

The surface waves, which are waves of great length and long period and are propagated to great distances with practically a constant velocity, have been regarded as quasi-elastic gravitational waves. Further, in a great earthquake the surface of the ground is sometimes visibly agitated in the epifocal district by undulations which may be responsible for severe superficial damage. (See also for elastic wavesElasticity, § 89.)

An old classification of earthquake-shocks, traces of which still linger in popular nomenclature, described them as “undulatory,” when the movement of the ground was mainly in a horizontal direction; “subsultory,” when the motion was vertical, like the effect of a normal wave at the epicentre; and “vorticose,” when the movement was rotatory, apparently due to successive impulses in varying directions.

The sounds which are associated with seismic phenomena, often described as subterranean rumbling and roaring, are not without scientific interest, and have been carefully studied by Davison. “Isacoustic lines” are curves drawn through places where the sound is heard by the same percentage of observers. The sound is always low and often inaudible to many.


Back to IndexNext