Chapter 6

The fundamental “electromotive-force equation” of the heteropolar alternator can now be given a more definite form. Let Zabe the number of C. G. S. lines or the total flux, which issuing from anyone pole flows through the armature core, to leave it by another pole of opposite sign. Since each active wire cuts these lines, first as they enter the armature core and then as they emerge from it to enter another pole, the total number of lines cut in one revolution by any one active wire is 2pZa. The time in seconds taken by one revolution is 60/N. The average E.M.F. induced in each active wire in one revolution being proportional to the number of lines cut divided by the time taken to cut them is therefore 2Za(pN / 60) × 10−8volts. The active wires which are in series and form one distinct phase may be divided into as many bands as there are poles; let each such band contain t active wires, which as before explained may either form one side of a single large coil or the adjacent sides of two coils when the large coil is divided into two halves. Since the wires are joined up into loops, two bands are best considered together, which with either arrangement yield in effect a single coil of t turns. The average E.M.F.’s of all the wires in the two bands when added together will therefore be 4Za(pN / 60)t × 10−8. But unless each band is concentrated within a single slot, there must be some differential action as they cross the neutral line between the poles, so that the last expression is virtually thegrossaverage E.M.F. of the loops on the assumption that the component E.M.F.’s always act in agreement round the coil and do not at times partially neutralize one another. Thenetaverage E.M.F. of the coil as a whole, or the arithmetical mean of all the instantaneous values of a half-wave of the actual E.M.F. curve, is therefore reduced to an extent depending upon the amount of differential action and so upon the width of the coil-side when this is not concentrated. Let k′ = the coefficient by which the gross average E.M.F. must be multiplied to give the net average E.M.F.; then k′ may be called the “width-factor,” and will have some value less than unity when the wires of each band are spread over a number of slots. The net average E.M.F. of the two bands corresponding to a pair of poles is thus eav= 4k′Za(pN / 60)t × 10−8.The shape of the curve of instantaneous E.M.F. of the coil must further be taken into account. The “effective” value of an alternating E.M.F. is equal to the square root of the mean square of its instantaneous values, since this is the value of the equivalent unidirectional and unvarying E.M.F., which when applied to a given resistance develops energy at the same rate as the alternating E.M.F., when the effect of the latter is averaged over one or any whole number of periods. Let k″ = the ratio of the square root of the mean square to the average E.M.F. of the coil,i.e.= effective E.M.F. / average E.M.F. Since it depends upon the shape of the E.M.F. curve, k″ is also known as the “form-factor”; thus if the length of gap between pole-face and armature core and the spacing of the wires were so graduated as to give a curve of E.M.F. varying after a sine law, the form-factor would have the particular value of π/2 √2 = 1.11, and to this condition practical alternators more or less conform. The effective E.M.F. of the two bands corresponding to a pair of poles is thus eeff= 4k′k″Za(pN / 60)t × 10−8.In any one phase there are p pairs of bands, and these may be divided into q parallel paths, where q is one or any whole number of which p is a multiple. The effective E.M.F. of a complete phase is therefore peeff/q. Lastly, if m = the number of phases into which the armature winding is divided, and τ = the total number of active wires on the armature counted all round its periphery, t = τ / 2pm, and the effective E.M.F. per phase is Ea= 2k′k″Za(pNτ / 60mq) × 10−8.The two factors k′ and k″ may be united into one coefficient, and the equation then takes its final formEa= 2KZa(pNτ / 60mq) × 10−8volts(1a)In the alternator q is most commonly 1, and there is only one circuit per phase; finally the value of K or the product of the width-factor and the form-factor usually falls between the limits of 1 and 1.25.

The fundamental “electromotive-force equation” of the heteropolar alternator can now be given a more definite form. Let Zabe the number of C. G. S. lines or the total flux, which issuing from anyone pole flows through the armature core, to leave it by another pole of opposite sign. Since each active wire cuts these lines, first as they enter the armature core and then as they emerge from it to enter another pole, the total number of lines cut in one revolution by any one active wire is 2pZa. The time in seconds taken by one revolution is 60/N. The average E.M.F. induced in each active wire in one revolution being proportional to the number of lines cut divided by the time taken to cut them is therefore 2Za(pN / 60) × 10−8volts. The active wires which are in series and form one distinct phase may be divided into as many bands as there are poles; let each such band contain t active wires, which as before explained may either form one side of a single large coil or the adjacent sides of two coils when the large coil is divided into two halves. Since the wires are joined up into loops, two bands are best considered together, which with either arrangement yield in effect a single coil of t turns. The average E.M.F.’s of all the wires in the two bands when added together will therefore be 4Za(pN / 60)t × 10−8. But unless each band is concentrated within a single slot, there must be some differential action as they cross the neutral line between the poles, so that the last expression is virtually thegrossaverage E.M.F. of the loops on the assumption that the component E.M.F.’s always act in agreement round the coil and do not at times partially neutralize one another. Thenetaverage E.M.F. of the coil as a whole, or the arithmetical mean of all the instantaneous values of a half-wave of the actual E.M.F. curve, is therefore reduced to an extent depending upon the amount of differential action and so upon the width of the coil-side when this is not concentrated. Let k′ = the coefficient by which the gross average E.M.F. must be multiplied to give the net average E.M.F.; then k′ may be called the “width-factor,” and will have some value less than unity when the wires of each band are spread over a number of slots. The net average E.M.F. of the two bands corresponding to a pair of poles is thus eav= 4k′Za(pN / 60)t × 10−8.

The shape of the curve of instantaneous E.M.F. of the coil must further be taken into account. The “effective” value of an alternating E.M.F. is equal to the square root of the mean square of its instantaneous values, since this is the value of the equivalent unidirectional and unvarying E.M.F., which when applied to a given resistance develops energy at the same rate as the alternating E.M.F., when the effect of the latter is averaged over one or any whole number of periods. Let k″ = the ratio of the square root of the mean square to the average E.M.F. of the coil,i.e.= effective E.M.F. / average E.M.F. Since it depends upon the shape of the E.M.F. curve, k″ is also known as the “form-factor”; thus if the length of gap between pole-face and armature core and the spacing of the wires were so graduated as to give a curve of E.M.F. varying after a sine law, the form-factor would have the particular value of π/2 √2 = 1.11, and to this condition practical alternators more or less conform. The effective E.M.F. of the two bands corresponding to a pair of poles is thus eeff= 4k′k″Za(pN / 60)t × 10−8.

In any one phase there are p pairs of bands, and these may be divided into q parallel paths, where q is one or any whole number of which p is a multiple. The effective E.M.F. of a complete phase is therefore peeff/q. Lastly, if m = the number of phases into which the armature winding is divided, and τ = the total number of active wires on the armature counted all round its periphery, t = τ / 2pm, and the effective E.M.F. per phase is Ea= 2k′k″Za(pNτ / 60mq) × 10−8.

The two factors k′ and k″ may be united into one coefficient, and the equation then takes its final form

Ea= 2KZa(pNτ / 60mq) × 10−8volts

(1a)

In the alternator q is most commonly 1, and there is only one circuit per phase; finally the value of K or the product of the width-factor and the form-factor usually falls between the limits of 1 and 1.25.

We have next to consider the effect of the addition of more armature loops in the case of dynamos which give a unidirectional E.M.F. in virtue of their split-ring collecting device,i.e.of the type shown in fig. 7 with drum armature or its equivalent ring form. As before, if the additional loops are wound in continuation of the first as one coil connected to a single split-ring, this coil must be more or less concentrated into a narrow band; since if the width becomes nearly equal to or exceeds the width of the interpolar gap, the two edges of the coil-side will just as in the alternator act differentially against one another during part of each revolution. The drum winding with a single coil thus gives an armature of the H- or “shuttle” form invented by Dr Werner von Siemens. Although the E.M.F. of such an arrangement may have a much higher maximum value than that of the curve of fig. 7 for a single loop, yet it still periodically varies during each revolution and so gives a pulsating current, which is for most practical uses unsuitable. But such pulsation might be largely reduced if, for example, a second coil were placed at right angles to the original coil and the two were connected in series; the crests of the wave of E.M.F. of the second coil will then coincide with the hollows of the first wave, and although the maximum of the resultant curve of E.M.F. may be no higher its fluctuations will be greatly decreased. A spacial displacement of the new coils along the pole-pitch, somewhat as in a polyphase machine, thus suggests itself, and the process may be carried still further by increasing the number of equally spaced coils, provided that they can be connected in series and yet can have their connexion with the external circuit reversed as they pass the neutral line between the poles.

Given two coils at right angles and with their split-rings displaced through a corresponding angle of 90°, they may be connected in series by joining one brush to the opposite brush of the second coil, the external circuit being applied to the two remaining brushes.14The same arrangement may again be repeated with another pair of coils in parallel with the first, and we thus obtain fig. 15 with four split-rings, their connexions to the loops being marked by corresponding numerals; the four coils will give the same E.M.F. as the two, but they will be jointly capable of carrying twice the current, owing to their division into two parallel circuits. Now in place of the four split-rings may be employed the greatly simplified four-segment structure shown in fig. 16, which serves precisely the same purpose as the four split-rings but only requires two instead of eight brushes. The effect of joining brush 2 in fig. 15 across to brush 3, brush 4 to brush 5, 5 to 6, &c., has virtually been to connect the end of coil A with the beginning of coil B, and the end of coil B with the beginning of coil A′, and so on, until they form a continuous closed helix. Each sector of fig. 16 will therefore replace two halves of a pair of adjacent split-rings, if the end and beginning of a pair of adjacent coils are connected to it in a regular order of sequence. The four sectors are insulated from one another and from the shaft, and the whole structure is known as the “commutator,”15its function being not simply to collect the current but also to commute its direction in any coil as it passes the interpolar gap. The principle of the “closed-coil continuous-current armature” is thus reached, in which there are at least two parallel circuits from brush to brush, and from which a practically steady current can be obtained. Each coil is successively short-circuited, as a brush bridges over the insulation between the two sectors which terminate it; and the brushes must be so set that the period of short-circuit takes place when the coil is generating little or no E.M.F.,i.e.when it is moving through the zone between the pole-tips. The effect of the four coils in reducing the percentage fluctuation of the E.M.F. is very marked, as shown at the foot of fig. 15 (where the upper curve is the resultant obtained by adding together the separate curves of coils A and B), and the levelling process may evidently be carried still further by the insertion of more coils and more corresponding sectors in the commutator, until the wholearmature is covered with winding. For example, figs. 17 and 18 show a ring and a drum armature, each with eight coils and eight commutator sectors; their resultant curve, on the assumption that a single active wire gives the flat-topped curve of fig. 4, will be the upper wavy line of E.M.F. obtained by adding together two of the resultant curves of fig. 15, with a relative displacement of 45°. The amount of fluctuation for a given number of commutator sectors depends upon the shape of the curve of E.M.F. yielded by the separate small sections of the armature winding; the greater the polar arc, the less the fluctuation. In practice, with a polar arc equal to about 0.75 of the pitch, any number of sectors over 32 per pair of poles yields an E.M.F. which is sensibly constant throughout one or any number of revolutions.

The fundamental electro-motive-force equation of the continuous-current heteropolar machine is easily obtained by analogy from that of the alternator. The gross average E.W.F. from the two sides of a drum loop without reference to its direction is as before 4Za(pN / 60) × 10−8volts. But for two reasons its net average E.M.F. may be less; the span of the loop may be less than the pole-pitch, so that even when the brushes are so set that the position of short-circuit falls on the line where the field changes its direction, the two sides of the loop for some little time act against each other; or, secondly, even if the span of the loop be equal to the pole-pitch, the brushes may be so set that the reversal of the direction of its induced E.M.F. does not coincide with reversal of the current by the passage of the coil under the brushes. The net average E.M.F. of the loop is therefore proportional to the algebraic sum of the lines which it cuts in passing from one brush to another, and this is equal to the net amount of the flux which is included within the loop when situated in the position of short-circuit under a brush. The amount of this flux may be expressed as k′Zawhere k′ is some coefficient, less than unity if the span of the coil be less than the pole-pitch, and also varying with the position of the brushes. The net average E.M.F. of the loop is therefore4k′Za(pN / 60) × 10−8.In practice the number of sections of the armature winding is so large and their distribution round the armature periphery is so uniform, that the sum total of the instantaneous E.M.F.’s of the several sections which are in series becomes at any moment equal to the net average E.M.F. of one loop multiplied by the number which are in series. If the winding is divided into q parallel circuits, the number of loops in series is τ/2q, so that the total E.M.F. is Ea= 2(k′ / q) Za(pN / 60)τ × 10−8volts. Thus as compared with the alternator not only is there no division of the winding into separate phases, but the form-factor k′ disappears, since the effective and average E.M.F.’s are the same. Further whereas in the alternator q may = 1, in the continuous-current closed-coil armature there can never be less than two circuits in parallel from brush to brush, and if more, their number must always be a multiple of two, so that q can never be less than two and must always be an even number. Lastly, the factor k′ is usually so closely equal to 1, that the simplified equation may in practice be adopted, viz.Ea= (2/q) (ZpN / 60) τ × 10−8volts.(1b)The fundamental equation of the electromotive force of the dynamo in its fully developed forms (1a) (and 1b) may be compared with its previous simple statement (I.). The three variable terms still find their equivalents, but are differently expressed, the density Bgbeing replaced by the total flux of one field Za, the length L of the single active wire by the total number of such wires τ, and the velocity of movement V by the number of revolutions per second. Even when the speed is fixed, an endless number of changes may be rung by altering the relative values of the remaining two factors; and in successful practice these may be varied between fairly wide limits without detriment to the working or economy of the machine. While it may be said that the equation of the E.M.F. was implicitly known from Faraday’s time onwards, the difficulty under which designers laboured in early days was the problem of choosing the correct relation of Zaor τ for the required output; this, again, was due chiefly to the difficulty of predetermining the total flux before the machine was constructed. The general error lay in employing too weak a field and too many turns on the armature, and credit must here be given to the American inventors, E. Weston and T.A. Edison, for their early appreciation of the superiority in practical working of the drum armature, with comparatively few active wires rotating in a strong field.

The fundamental electro-motive-force equation of the continuous-current heteropolar machine is easily obtained by analogy from that of the alternator. The gross average E.W.F. from the two sides of a drum loop without reference to its direction is as before 4Za(pN / 60) × 10−8volts. But for two reasons its net average E.M.F. may be less; the span of the loop may be less than the pole-pitch, so that even when the brushes are so set that the position of short-circuit falls on the line where the field changes its direction, the two sides of the loop for some little time act against each other; or, secondly, even if the span of the loop be equal to the pole-pitch, the brushes may be so set that the reversal of the direction of its induced E.M.F. does not coincide with reversal of the current by the passage of the coil under the brushes. The net average E.M.F. of the loop is therefore proportional to the algebraic sum of the lines which it cuts in passing from one brush to another, and this is equal to the net amount of the flux which is included within the loop when situated in the position of short-circuit under a brush. The amount of this flux may be expressed as k′Zawhere k′ is some coefficient, less than unity if the span of the coil be less than the pole-pitch, and also varying with the position of the brushes. The net average E.M.F. of the loop is therefore

4k′Za(pN / 60) × 10−8.

In practice the number of sections of the armature winding is so large and their distribution round the armature periphery is so uniform, that the sum total of the instantaneous E.M.F.’s of the several sections which are in series becomes at any moment equal to the net average E.M.F. of one loop multiplied by the number which are in series. If the winding is divided into q parallel circuits, the number of loops in series is τ/2q, so that the total E.M.F. is Ea= 2(k′ / q) Za(pN / 60)τ × 10−8volts. Thus as compared with the alternator not only is there no division of the winding into separate phases, but the form-factor k′ disappears, since the effective and average E.M.F.’s are the same. Further whereas in the alternator q may = 1, in the continuous-current closed-coil armature there can never be less than two circuits in parallel from brush to brush, and if more, their number must always be a multiple of two, so that q can never be less than two and must always be an even number. Lastly, the factor k′ is usually so closely equal to 1, that the simplified equation may in practice be adopted, viz.

Ea= (2/q) (ZpN / 60) τ × 10−8volts.

(1b)

The fundamental equation of the electromotive force of the dynamo in its fully developed forms (1a) (and 1b) may be compared with its previous simple statement (I.). The three variable terms still find their equivalents, but are differently expressed, the density Bgbeing replaced by the total flux of one field Za, the length L of the single active wire by the total number of such wires τ, and the velocity of movement V by the number of revolutions per second. Even when the speed is fixed, an endless number of changes may be rung by altering the relative values of the remaining two factors; and in successful practice these may be varied between fairly wide limits without detriment to the working or economy of the machine. While it may be said that the equation of the E.M.F. was implicitly known from Faraday’s time onwards, the difficulty under which designers laboured in early days was the problem of choosing the correct relation of Zaor τ for the required output; this, again, was due chiefly to the difficulty of predetermining the total flux before the machine was constructed. The general error lay in employing too weak a field and too many turns on the armature, and credit must here be given to the American inventors, E. Weston and T.A. Edison, for their early appreciation of the superiority in practical working of the drum armature, with comparatively few active wires rotating in a strong field.

Continuous-current Dynamos.—On passing to the separate consideration of alternators and continuous-current dynamos, the chief constructive features of the latter will first be taken in greater detail. As already stated in theThe armature core.continuous-current dynamo the armature is usually the rotating portion, and the necessity of laminating its core has been generally described. The thin iron stampings employed to build up the core take the form of circular washers or “disks,” which in small machines are strung directly on the shaft; in larger multipolar machines, in which the required radial depth of iron is small relatively to the diameter, a central cast iron hub supports the disks. Since the driving force is transmitted through the shaft to the disks, they must in the former case be securely fixed by keys sunk into the shaft; when a central hub is employed (fig. 19) it is keyed to the shaft, and its projecting arms engage in notches stamped on the inner circumference of the disks, or the latter have dovetailed projections fitting into the arms. The disks are then tightly compressed and clamped between stout end-plates so as to form a nearly solid iron cylinder of axial length slightly exceeding the corresponding dimension of the poles. If the armature is more than 4 ft. in diameter, the disks become too large to be conveniently handled in one piece, and are therefore made in segments, which are built up so as to break joint alternately. Prior to assemblage, the external circumference of each disk is notched in a stamping machine with the required number of slots to receive the armature coils, and the longitudinal grooves thereby formed in the finished core only require to have their sharp edges smoothed off so that there may be no risk of injury to the insulation of the coils.

With open slots either the armature coils may be encased with wrappings of oiled linen, varnished paper and thin flexible micanite sheeting in order to insulate them electrically from the iron slots in which they are afterwards embedded;Armature winding.or the slots may be themselves lined with moulded troughs of micanite, &c., for the reception of the armature coils, the latter method being necessary with half-closed slots. According to the nature of the coils armatures may be divided into the two classes of coil-wound and bar-wound. In the former class, round copper wire, double-cotton covered, isemployed, and the coils are either wound by hand directly on to the armature core, or are shaped on formers prior to being inserted in the armature slots. Hand-winding is now only employed in very small bipolar machines, the process being expensive and accompanied by the disadvantage that if one section requires to be repaired, the whole armature usually has to be dismantled and re-wound. Former-wound coils are, on the other hand, economical in labour, perfectly symmetrical and interchangeable, and can be thoroughly insulated before they are placed in the slots. The shapers employed in the forming process are very various, but are usually arranged to give to the finished coil a lozenge shape, the two straight active sides which fit into the straight slots being joined by V-shaped ends; at each apex of the coil the wire is given a twist, so that the two sides fall into different levels, an upper and a lower, corresponding to the two layers which the coil-sides form on the finished armature. Rectangular wire of comparatively small section may be similarly treated, and if only one loop is required per section, wide and thin strip can be bent into a complete loop, so that the only soldered joints are those at the commutator end where the loops are interconnected. But finally with massive rectangular conductors, the transition must be made to bar-winding, in which each bar is a half-loop, insulated by being taped after it has been bent to the required shape; the separate bars are arranged on the armature in two layers, and their ends are soldered together subsequently to form loops. As a general rule, whether bars or former-wound coils are employed, the armature is barrel-wound,i.e.the end-connexions project outwards from the slots with but little change of level, so that they form a cylindrical mass supported on projections from the end-plates of the core (fig. 19); but, in certain cases, the end-connexions are bent downwards at right angles to the shaft, and they may then consist of separate strips of copper bent to a so-called butterfly or evolute shape.

After the coils or loops have been assembled in the slots on the armature core, and the commutator has been fixed in place on the shaft, the soldering of the ends of the coils proceeds, by which at once the union of the end of one coil with the beginning of the next, and also their connexion to the commutator sectors, is effected, and in this lies the essential part of armature winding.

The development of the modern drum armature, with its numerous coils connected in orderly sequence into a symmetrical winding, as contrasted with the earlier Siemens armatures, was initiated by F. von Hefner Alteneck (1871), and the laws governing the interconnexion of the coils have now been elaborated into a definite system of winding formulae. Whatever the number of wires or bars in each side of a coil,i.e.whether it consist of a single loop or of many turns, the final connexions of its free ends are not thereby affected, and it may be mentally replaced by a single loop with two active inducing sides. The coil-sides in their final position are thus to be regarded as separate primary elements, even in number, and distributed uniformly round the armature periphery or divided into small, equally spaced groups by being located within the slots of a toothed armature. Attention must then be directed simply to the span of the back connexion between the elements at the end of the armature further from the commutator, and to the span of the front connexion by which the last turn of a coil is finally connected to the first turn of the next in sequence, precisely as if each coil of many turns were reduced to a single loop. In order to avoid direct differential action, the span of the back connexion which fixes the width of the coil must exceed the width of the pole-face, and should not be far different from the pole-pitch; it is usually a little less than the pole-pitch. Taking any one element as No. 1 in fig. 20, where for simplicity a smooth-core bipolar armature is shown, the number of winding-spaces, each to be occupied by an element, which must be counted off in order to find the position of the next element in series, is called the “pitch” of the end-connexion, front or back, as the case may be. Thus the back pitch of the winding as marked by the dotted line in fig. 20 is 7, the second side of the first loop being the element numbered 1 + 7 = 8. In forming the front end-connexion which completes the loop and joins it to the next in succession, two possible cases present themselves. By the first, or “lap-winding,” the front end-connexion is brought backwards, and passing on its way to a junction with a commutator sector is led to a third element lying within the two sides of the first loop,i.e.the second loop starts with the element, No. 3, lying next but one to the starting-point of the first loop. The winding therefore returns backwards on itself to form each front end, but as a whole it works continually forwards round the armature, until it finally “re-enters,” after every element has been traversed. The development of the completed winding on a flat surface shows that it takes the form of a number of partially overlapping loops, whence its name originates. The firm-line portion of fig. 21 gives the development of an armature similar to that of fig. 18 when cut through at the point marked X and opened out; two of the overlapping loops are marked thereon in heavy lines. The multipolar lap-wound armature is obtained by simply repeating the bipolar winding p times, as indicated by the dotted additions of fig. 21 which convert it from a two-pole to a four-pole machine. The characteristic feature of the lap-wound armature is that there are as many parallel paths from brush to brush, and as many points at which the current must be collected, as there are poles. As the bipolar closed-coil continuous-current armature has been shown to consist in reality of two circuits in parallel, each giving the same E.M.F. and carrying half the total current, so the multipolar lap-wound drum consists of p pairs of parallel paths, each giving the same E.M.F. and carrying 1/2p of the total current. Thus in equation 1.b we have q = 2p, and the special form which theE.M.F. equation of the lap-wound armaturetakes is Ea= Za(N / 60)τ × 10−8volts. All the brushes which are of the same sign must be connected together in order to collect the total armature current. The several brush-sets of the multipolar lap-wound machine may again be reduced to two by “cross-connexion” of sectors situated 360°/p apart, but this is seldom done, since the commutator must then be lengthened p times in order to obtain the necessary brush contact-surface for the collection of the entire current.Fig. 21.Fig. 23.Wave-loopsFig. 22.But for many purposes, especially where the voltage is high and the current small, it is advantageous to add together the inductive effect of the several poles of the multipolar machine by throwing the E.M.F’s of half the total number of elementsWave-winding.into series, the number of parallel circuits being conversely again reduced to two. This is effected by the second method of winding the closed-coil continuous current drum, which is knownas “wave-winding.” The front pitch is now in the same direction round the armature as the back pitch (fig. 22), so that the beginning of the second loop,i.e.element No. 15, lies outside the first loop. After p loops have been formed and as many elements have been traversed as there are poles, the distance covered either falls short of or exceeds a complete tour of the armature by two winding-spaces, or the width of two elements. A second and third tour are then made, and so on, until finally the winding again closes upon itself. When the completed winding is developed as in fig. 23, it is seen to work continuously forwards round the armature in zigzag waves, one of which is marked in heavy lines, and the number of complete tours is equal to the average of the back and front pitches. Since the number of parallel circuits from brush to brush is q = 2, theE.M.F. equation of the wave-wound drumis Ea= pZa(N / 60)τ × 10−8volts. Only two sets of brushes are necessary, but in order to shorten the length of the commutator, other sets may also be added at the point of highest and lowest potential up to as many in number as there are poles. Thus the advantage of the wave-wound armature is that for a given voltage and number of poles the number of active wires is only 1/p of that in the lap-wound drum, each being of larger cross-section in order to carry p times as much current; hence the ratio of the room occupied by the insulation to the copper area is less, and the available space is better utilized. A further advantage is that the two circuits from brush to brush consist of elements influenced by all the poles, so that if for any reason, such as eccentricity of the armature within the bore of the pole-pieces, or want of uniformity in the magnetic qualities of the poles, the flux of each field is not equal to that of every other, the equality of the voltage produced by the two halves of the winding is not affected thereby.In appearance the two classes of armatures, lap and wave, may be distinguished in the barrel type of winding by the slope of the upper layer of back end-connexions, and that of the front connexions at the commutator end being parallel to one another in the latter, and oppositely directed in the former.

The development of the modern drum armature, with its numerous coils connected in orderly sequence into a symmetrical winding, as contrasted with the earlier Siemens armatures, was initiated by F. von Hefner Alteneck (1871), and the laws governing the interconnexion of the coils have now been elaborated into a definite system of winding formulae. Whatever the number of wires or bars in each side of a coil,i.e.whether it consist of a single loop or of many turns, the final connexions of its free ends are not thereby affected, and it may be mentally replaced by a single loop with two active inducing sides. The coil-sides in their final position are thus to be regarded as separate primary elements, even in number, and distributed uniformly round the armature periphery or divided into small, equally spaced groups by being located within the slots of a toothed armature. Attention must then be directed simply to the span of the back connexion between the elements at the end of the armature further from the commutator, and to the span of the front connexion by which the last turn of a coil is finally connected to the first turn of the next in sequence, precisely as if each coil of many turns were reduced to a single loop. In order to avoid direct differential action, the span of the back connexion which fixes the width of the coil must exceed the width of the pole-face, and should not be far different from the pole-pitch; it is usually a little less than the pole-pitch. Taking any one element as No. 1 in fig. 20, where for simplicity a smooth-core bipolar armature is shown, the number of winding-spaces, each to be occupied by an element, which must be counted off in order to find the position of the next element in series, is called the “pitch” of the end-connexion, front or back, as the case may be. Thus the back pitch of the winding as marked by the dotted line in fig. 20 is 7, the second side of the first loop being the element numbered 1 + 7 = 8. In forming the front end-connexion which completes the loop and joins it to the next in succession, two possible cases present themselves. By the first, or “lap-winding,” the front end-connexion is brought backwards, and passing on its way to a junction with a commutator sector is led to a third element lying within the two sides of the first loop,i.e.the second loop starts with the element, No. 3, lying next but one to the starting-point of the first loop. The winding therefore returns backwards on itself to form each front end, but as a whole it works continually forwards round the armature, until it finally “re-enters,” after every element has been traversed. The development of the completed winding on a flat surface shows that it takes the form of a number of partially overlapping loops, whence its name originates. The firm-line portion of fig. 21 gives the development of an armature similar to that of fig. 18 when cut through at the point marked X and opened out; two of the overlapping loops are marked thereon in heavy lines. The multipolar lap-wound armature is obtained by simply repeating the bipolar winding p times, as indicated by the dotted additions of fig. 21 which convert it from a two-pole to a four-pole machine. The characteristic feature of the lap-wound armature is that there are as many parallel paths from brush to brush, and as many points at which the current must be collected, as there are poles. As the bipolar closed-coil continuous-current armature has been shown to consist in reality of two circuits in parallel, each giving the same E.M.F. and carrying half the total current, so the multipolar lap-wound drum consists of p pairs of parallel paths, each giving the same E.M.F. and carrying 1/2p of the total current. Thus in equation 1.b we have q = 2p, and the special form which theE.M.F. equation of the lap-wound armaturetakes is Ea= Za(N / 60)τ × 10−8volts. All the brushes which are of the same sign must be connected together in order to collect the total armature current. The several brush-sets of the multipolar lap-wound machine may again be reduced to two by “cross-connexion” of sectors situated 360°/p apart, but this is seldom done, since the commutator must then be lengthened p times in order to obtain the necessary brush contact-surface for the collection of the entire current.

But for many purposes, especially where the voltage is high and the current small, it is advantageous to add together the inductive effect of the several poles of the multipolar machine by throwing the E.M.F’s of half the total number of elementsWave-winding.into series, the number of parallel circuits being conversely again reduced to two. This is effected by the second method of winding the closed-coil continuous current drum, which is knownas “wave-winding.” The front pitch is now in the same direction round the armature as the back pitch (fig. 22), so that the beginning of the second loop,i.e.element No. 15, lies outside the first loop. After p loops have been formed and as many elements have been traversed as there are poles, the distance covered either falls short of or exceeds a complete tour of the armature by two winding-spaces, or the width of two elements. A second and third tour are then made, and so on, until finally the winding again closes upon itself. When the completed winding is developed as in fig. 23, it is seen to work continuously forwards round the armature in zigzag waves, one of which is marked in heavy lines, and the number of complete tours is equal to the average of the back and front pitches. Since the number of parallel circuits from brush to brush is q = 2, theE.M.F. equation of the wave-wound drumis Ea= pZa(N / 60)τ × 10−8volts. Only two sets of brushes are necessary, but in order to shorten the length of the commutator, other sets may also be added at the point of highest and lowest potential up to as many in number as there are poles. Thus the advantage of the wave-wound armature is that for a given voltage and number of poles the number of active wires is only 1/p of that in the lap-wound drum, each being of larger cross-section in order to carry p times as much current; hence the ratio of the room occupied by the insulation to the copper area is less, and the available space is better utilized. A further advantage is that the two circuits from brush to brush consist of elements influenced by all the poles, so that if for any reason, such as eccentricity of the armature within the bore of the pole-pieces, or want of uniformity in the magnetic qualities of the poles, the flux of each field is not equal to that of every other, the equality of the voltage produced by the two halves of the winding is not affected thereby.

In appearance the two classes of armatures, lap and wave, may be distinguished in the barrel type of winding by the slope of the upper layer of back end-connexions, and that of the front connexions at the commutator end being parallel to one another in the latter, and oppositely directed in the former.

After completion of the winding, the end-connexions are firmly bound down by bands of steel or phosphor bronze binding wire, so as to resist the stress of centrifugal force. In the case of smooth-surface armatures, such bands are also placed at intervals along the length of the armature core, but in toothed armatures, although the coils are often in small machines secured in the slots by similar bands of a non-magnetic high-resistance wire, the use of hard-wood wedges driven into notches at the sides of the slots becomes preferable, and in very large machines indispensable. The external appearance of a typical armature with lap-winding is shown in fig. 24.

A sound mechanical construction of the commutator is of vital importance to the good working of the continuous-current dynamo. The narrow, wedge-shaped sectors of hard-drawn copper, with their insulating strips of thinThe commutator.mica, are built up into a cylinder, tightly clamped together, and turned in the lathe; at each end a V-shaped groove is turned, and into these are fitted rings of micanite of corresponding section (fig. 19); the whole is then slipped over a cast iron sleeve, and at either end strong rings are forced into the V-shaped grooves under great pressure and fixed by a number of closely-pitched tightening bolts. In dynamos driven by steam-turbines in which the peripheral speed of the commutator is very high, rings of steel are frequently shrunk on the surface of the commutator at either end and at its centre. But in every case the copper must be entirely insulated from the supporting body of metal by the interposition of mica or micanite and the prevention of any movement of the sectors under frequent and long-continued heating and cooling calls for the greatest care in both the design and the manufacture.

On passing to the second fundamental part of the dynamo, namely, the field-magnet, its functions may be briefly recalled as follows:—It has to supply the magnetic flux; to provide for it an iron path as nearly closed as possibleForms of field-magnet.upon the armature, save for the air-gaps which must exist between the pole-system and the armature core, the one stationary and the other rotating; and, lastly, it has to give the lines such direction and intensity within the air-gaps that they may be cut by the armature wires to the best advantage. Roughly corresponding to the three functions above summarized are the three portions which are more or less differentiated in the complete structure. These are: (1) the magnet “cores” or “limbs,” carrying the exciting coils whereby the inert iron is converted into an electro-magnet; (2) theyoke, which joins the limbs together and conducts the flux between them; and (3) thepole-pieces, which face the armature and transmit the lines from the limbs through the air-gap to the armature core, or vice versa.

Of the countless shapes which the field-magnet may take, it may be said, without much exaggeration, that almost all have been tried; yet those which have proved economical and successful, and hence have met with general adoption, may be classed under a comparatively small number of types. For bipolar machines thesingle horse-shoe(fig. 25), which is the lineal successor of the permanent magnet employed in the first magneto-electric machines, was formerly very largely used. It takes two principal forms, according as the pole-pieces and armature are above or beneath the magnet limbs and yoke. The “over-type” form is best suited to small belt-driven dynamos, while the “under-type” is admirably adapted to be directly driven by the steam-engine, the armature shaft being immediately coupled to the crank-shaft of the engine. In the latter case the magnet must be mounted on non-magnetic supports of gun-metal or zinc, so as to hold it at some distance away from the iron bedplate which carries both engine and dynamo; otherwise a large proportion of the flux which passes through the magnet limbs would leak through the bedplate across from pole to pole without passing through the armature core, and so would not be cut by the armature wires.Fig. 26.Next may be placed the “Manchester” field (fig. 26)—the type of a divided magnetic circuit in which the flux forming one field or pole is divided between two magnets. An exciting coil is placed on each half of the double horse-shoe magnet, the pair being so wound that consequent poles are formed above and below the armature. Each magnet thus carries one-half of the total flux, the lines of the two halves uniting to form a common field where they issue forth into or leave the air-gaps. The pole-pieces may be lighter than in the single horse-shoe type, and the field is much more symmetrical, whence it is well suited to ring armatures of large diameter. Yet these advantages are greatly discounted by the excessive magnetic leakage, and by the increased weight of copper in the exciting coils. Even if the greater percentage which the leakage lines bear to the useful flux is neglected, and the cross sectional area of each magnet core is but half that of the equivalent single horse-shoe, the weight of wire in the double magnet for the same rise of temperature in the coils must be some 40% more than in the single horse-shoe, and the rate at which energy is expended in heating the coils will exceed that of the single horse-shoe in the same proportion.Thirdly comes the two-poleironcladtype, so called from the exciting coil being more or less encased by the iron yoke; this latter is divided into two halves, which pass on either side of the armature. Unless the yoke be kept well away from the polar edges and armature, the leakage across the air into the yoke becomes considerable, especially if only one exciting coil is used, as in fig. 27A; it is better, therefore, to divide the excitation between two coils, as in fig. 27B, when the field also becomes symmetrical.From this form is easily derived themultipolartype of fig. 28 or fig. 29, which is by far the most usual for any number of poles from four upwards; its leakage coefficient is but small, and it is economical in weight both of iron and copper.Fig. 27.As regards the materials of which magnets are made, generally speaking there is little difference in the permeability of “wrought iron” or “mild steel forgings” and good “cast steel”; typicalMaterials of magnets.(B, H) curves connecting the magnetizing force required with different flux-densities for these materials are given underElectromagnetism. On the other hand there is a marked inferiority in the case of “cast iron,” which for a flux-density of B = 8000 C.G.S. lines per sq. cm. requires practically the same number of ampere-turns per centimetre length as steel requires for B = 16,000. Whatever the material, if the flux-density be pressed to a high value the ampere-turns are very largely increased owing to its approaching saturation, and this implies either a large amount of copper in the field coils or an undue expenditure of electrical energy in their excitation. Hence there is a limit imposed by practical considerations to the density at which the magnet should be worked, and this limit may be placed at about B = 16,000 for wrought iron or steel, and at half this value for cast iron. For a given flux, therefore, the cast iron magnet must have twice the sectional area and be twice as heavy, although this disadvantage is partly compensated by its greater cheapness. If, however, cast iron be used for the portion of the magnetic circuit which is covered with the exciting coils, the further disadvantage must be added that the weight of copper on the field-magnet is much increased, so that it is usual to employ forgings or cast steel for the magnet cores on which the coils are wound. If weight is not a disadvantage, a cast iron yoke may be combined with the wrought iron or cast steel magnet cores. An absence of joints in the magnetic circuit is only desirable from the point of view of economy of expense in machining the component parts during manufacture; when the surfaces which abut against each other are drawn firmly together by screws, the want of homogeneity at the joint, which virtually amounts to the presence of a very thin film of air, produces little or no effect on the total reluctance by comparison with the very much longer air-gaps surrounding the armature. In order to reduce the eddy-currents in the pole-pieces, due to the use of toothed armatures with relatively wide slots, the poles themselves must be laminated, or must have fixed to them laminated pole-shoes, built up of thin strips of mild steel riveted together (as shown in fig. 29).Fig. 28.However it be built up, the mechanical strength of the magnet system must be carefully considered. Any two surfaces between which there exists a field of density Bgexperience a force tending to draw them together proportional to the square of the density, and having a value of Bg² / (1.735 × 106) ℔ per sq. in. of surface, over which the density may be regarded as having the uniform value Bg. Hence, quite apart from the torque with which the stationary part of the dynamo tends to turn with the rotating part as soon as current is taken out of the armature, there exists a force tending to make the pole-pieces close on the armature as soon as the field is excited. Since both armature and magnet must be capable of resisting this force, they require to be rigidly held; although the one or the other must be capable of rotation, there should otherwise be no possibility of one part of the magnetic circuit shifting relatively to any other part. An important conclusion may be drawn from this circumstance. If the armature be placed exactly concentric within the bore of the poles, and the two or more magnetic fields be symmetrical about a line joining their centres, there is no tendency for the armature core to be drawn in one direction more than in another; but if there is any difference between the densities of the several fields, it will cause an unbalanced stress on the armature and its shaft, under which it will bend, and as this bending is continually reversed relatively to the fibres of the shaft, they will eventually become weakened and give way. Especially is this likely to take place in dynamos with short air-gaps, wherein any difference in the lengths of the air-gaps produces a much greater percentage difference in the flux-density than in dynamos with long air-gaps. In toothed armatures with short air-gaps the shaft must on this account be sufficiently strong to withstand the stress without appreciable bending.

Of the countless shapes which the field-magnet may take, it may be said, without much exaggeration, that almost all have been tried; yet those which have proved economical and successful, and hence have met with general adoption, may be classed under a comparatively small number of types. For bipolar machines thesingle horse-shoe(fig. 25), which is the lineal successor of the permanent magnet employed in the first magneto-electric machines, was formerly very largely used. It takes two principal forms, according as the pole-pieces and armature are above or beneath the magnet limbs and yoke. The “over-type” form is best suited to small belt-driven dynamos, while the “under-type” is admirably adapted to be directly driven by the steam-engine, the armature shaft being immediately coupled to the crank-shaft of the engine. In the latter case the magnet must be mounted on non-magnetic supports of gun-metal or zinc, so as to hold it at some distance away from the iron bedplate which carries both engine and dynamo; otherwise a large proportion of the flux which passes through the magnet limbs would leak through the bedplate across from pole to pole without passing through the armature core, and so would not be cut by the armature wires.

Next may be placed the “Manchester” field (fig. 26)—the type of a divided magnetic circuit in which the flux forming one field or pole is divided between two magnets. An exciting coil is placed on each half of the double horse-shoe magnet, the pair being so wound that consequent poles are formed above and below the armature. Each magnet thus carries one-half of the total flux, the lines of the two halves uniting to form a common field where they issue forth into or leave the air-gaps. The pole-pieces may be lighter than in the single horse-shoe type, and the field is much more symmetrical, whence it is well suited to ring armatures of large diameter. Yet these advantages are greatly discounted by the excessive magnetic leakage, and by the increased weight of copper in the exciting coils. Even if the greater percentage which the leakage lines bear to the useful flux is neglected, and the cross sectional area of each magnet core is but half that of the equivalent single horse-shoe, the weight of wire in the double magnet for the same rise of temperature in the coils must be some 40% more than in the single horse-shoe, and the rate at which energy is expended in heating the coils will exceed that of the single horse-shoe in the same proportion.

Thirdly comes the two-poleironcladtype, so called from the exciting coil being more or less encased by the iron yoke; this latter is divided into two halves, which pass on either side of the armature. Unless the yoke be kept well away from the polar edges and armature, the leakage across the air into the yoke becomes considerable, especially if only one exciting coil is used, as in fig. 27A; it is better, therefore, to divide the excitation between two coils, as in fig. 27B, when the field also becomes symmetrical.

From this form is easily derived themultipolartype of fig. 28 or fig. 29, which is by far the most usual for any number of poles from four upwards; its leakage coefficient is but small, and it is economical in weight both of iron and copper.

As regards the materials of which magnets are made, generally speaking there is little difference in the permeability of “wrought iron” or “mild steel forgings” and good “cast steel”; typicalMaterials of magnets.(B, H) curves connecting the magnetizing force required with different flux-densities for these materials are given underElectromagnetism. On the other hand there is a marked inferiority in the case of “cast iron,” which for a flux-density of B = 8000 C.G.S. lines per sq. cm. requires practically the same number of ampere-turns per centimetre length as steel requires for B = 16,000. Whatever the material, if the flux-density be pressed to a high value the ampere-turns are very largely increased owing to its approaching saturation, and this implies either a large amount of copper in the field coils or an undue expenditure of electrical energy in their excitation. Hence there is a limit imposed by practical considerations to the density at which the magnet should be worked, and this limit may be placed at about B = 16,000 for wrought iron or steel, and at half this value for cast iron. For a given flux, therefore, the cast iron magnet must have twice the sectional area and be twice as heavy, although this disadvantage is partly compensated by its greater cheapness. If, however, cast iron be used for the portion of the magnetic circuit which is covered with the exciting coils, the further disadvantage must be added that the weight of copper on the field-magnet is much increased, so that it is usual to employ forgings or cast steel for the magnet cores on which the coils are wound. If weight is not a disadvantage, a cast iron yoke may be combined with the wrought iron or cast steel magnet cores. An absence of joints in the magnetic circuit is only desirable from the point of view of economy of expense in machining the component parts during manufacture; when the surfaces which abut against each other are drawn firmly together by screws, the want of homogeneity at the joint, which virtually amounts to the presence of a very thin film of air, produces little or no effect on the total reluctance by comparison with the very much longer air-gaps surrounding the armature. In order to reduce the eddy-currents in the pole-pieces, due to the use of toothed armatures with relatively wide slots, the poles themselves must be laminated, or must have fixed to them laminated pole-shoes, built up of thin strips of mild steel riveted together (as shown in fig. 29).

However it be built up, the mechanical strength of the magnet system must be carefully considered. Any two surfaces between which there exists a field of density Bgexperience a force tending to draw them together proportional to the square of the density, and having a value of Bg² / (1.735 × 106) ℔ per sq. in. of surface, over which the density may be regarded as having the uniform value Bg. Hence, quite apart from the torque with which the stationary part of the dynamo tends to turn with the rotating part as soon as current is taken out of the armature, there exists a force tending to make the pole-pieces close on the armature as soon as the field is excited. Since both armature and magnet must be capable of resisting this force, they require to be rigidly held; although the one or the other must be capable of rotation, there should otherwise be no possibility of one part of the magnetic circuit shifting relatively to any other part. An important conclusion may be drawn from this circumstance. If the armature be placed exactly concentric within the bore of the poles, and the two or more magnetic fields be symmetrical about a line joining their centres, there is no tendency for the armature core to be drawn in one direction more than in another; but if there is any difference between the densities of the several fields, it will cause an unbalanced stress on the armature and its shaft, under which it will bend, and as this bending is continually reversed relatively to the fibres of the shaft, they will eventually become weakened and give way. Especially is this likely to take place in dynamos with short air-gaps, wherein any difference in the lengths of the air-gaps produces a much greater percentage difference in the flux-density than in dynamos with long air-gaps. In toothed armatures with short air-gaps the shaft must on this account be sufficiently strong to withstand the stress without appreciable bending.

Reference has already been made to the importance in dynamo design of thepredetermination of the fluxdue to a given number of ampere-turns wound on the field-magnet, or, conversely, of the number of ampere-turns which mustThe magnetic circuit.be furnished by the exciting coils in order that a certain flux corresponding to one field may flow through the armature core from each pole. An equally important problem is the correct proportioning of the field-magnet, so that the useful flux Zamay be obtained with the greatest economy in materials and exciting energy. The key to the two problems is to be found in the concept of a magnetic circuit as originated by H.A. Rowland and R.H.M. Bosanquet;16and the full solution of both may be especially connected with the name of Dr J. Hopkinson, from his practical application of the concept in his design of the Edison-Hopkinson machine, and in his paper on “Dynamo-Electric Machinery.”17The publication of this paper in 1886 begins the second era in the history of the dynamo; it at once raised its design from the level of empirical rules-of-thumb to a science, and is thus worthy to be ranked as the necessary supplement of the original discoveries of Faraday. The process of predetermining the necessary ampere-turns is described in a simple case underElectromagnetism. In its extension to the complete dynamo, it consists merely in the division of the magnetic circuit into such portions as have the same sectional area and permeability and carry approximately the same total flux; the difference of magnetic potential that must exist between the ends of each section of the magnet in order that the flux may pass through it is then calculatedseriatimfor the several portions into which the magnetic circuit is divided, and the separate items are summed up into one magnetomotive force that must be furnished by the exciting coils.

The chief sections of the magnetic circuit are (1) the air-gaps, (2) the armature core, and (3) the iron magnet.Theair-gapof a dynamo with smooth-core armature is partly filled with copper and partly with the cotton, mica, or other materials used to insulate the core and wires; all these substances are, however, sensibly non-magnetic, so that the whole interferric gap between the iron of the pole-pieces and the iron of the armature may be treated as an air-space, of which the permeability is constant for all values of the flux density, and in the C.G.S. system is unity. Hence if lgand Agbe the length and area of the single air-gap in cm. and sq. cm., the reluctance of the double air-gap is 2lg/ Ag, and the difference of magnetic potential required to pass Zalines over this reluctance is Za·2lg/ Ag= Bg·2lg; or, since one ampere-turn gives 1.257 C.G.S. units of magnetomotive force, the exciting power in ampere-turns required over the two air-gaps is Xg= Bg·2lg/ 1.257 = 0.8Bg·2lg. In the determination of the area Agsmall allowance must be made for the fringe of lines which extend beyond the actual polar face. In the toothed armature with open slots, the lines are no longer uniformly distributed over the air-gap area, but are graduated into alternate bands of dense and weak induction corresponding to the teeth and slots. Further, the lines curve round into the sides of the teeth, so that their average length of path in the air and the air-gap reluctance is not so easily calculated. Allowance must be made for this by taking an increased length of air-gap = mlg, where m is the ratiomaximum density/mean density, of which the value is chiefly determined by the ratios of the width of tooth to width of slot and of the width of slot to the air-gap between pole-face and surface of the armature core.Thearmature coremust be divided into the teeth and the core proper below the teeth. Owing to the tapering section of the teeth, the density rises towards their root, and when this reaches a high value, such as 18,000 or more lines per sq. cm., the saturation of the iron again forces an increasing proportion of the lines outwards into the slot. A distinction must then be drawn between the “apparent” induction which would hold if all the lines were concentrated in the teeth, and the “real” induction. The area of the iron is obtained by multiplying the number of teeth under the pole-face by their width and by the net length of the iron core parallel to the axis of rotation. The latter is the gross length of the armature less the space lost through the insulating varnish or paper between the disks or through the presence of ventilating ducts, which are introduced at intervals along the length of the core. The former deduction averages about 7 to 10% of the gross length, while the latter, especially in large multipolar machines, is an even more important item. Alter calculating the density at different sections of the teeth, reference has now to be made to a (B, H) or flux-density curve, from which may be found the number of ampere-turns required per cm. length of path. This number may be expressed as a function of the density in the teeth, and ƒ(Bt) be its average value over the length of a tooth, the ampere-turns of excitation required over the teeth on either side of the core as the lines of one field enter or leave the armature is Xt= ƒ(Bt)·2lt, where ltis the length of a single tooth in cm.In the core proper below the teeth the length of path continually shortens as we pass from the middle of the pole towards the centre line of symmetry. On the other hand, as the lines gradually accumulate in the core, their density increases from zero midway under the poles until it reaches a maximum on the line of symmetry. The two effects partially counteract one another, and tend to equalize the difference of magnetic potential required over the paths of varying lengths; but since the reluctivity of the iron increases more rapidly than the density of the lines, we may approximately take for the length of path (la) the minimum peripheral distance between the edges of adjacent pole-faces, and then assume the maximum value of the density of the lines as holding throughout this entire path. In ring and drum machines the flux issuing from one pole divides into two halves in the armature core, so that the maximum density of lines in the armature is Ba= Za/ 2ab, where a = the radial depth of the disks in centimetres and b = the net length of iron core. The total exciting power required between the pole-pieces is therefore, at no load, Xp= Xg+ Xt+ Xa, where Xa= ƒ(Ba)·la; in order, however, to allow for the effect of the armature current, which increases with the load, a further term Xb, must be added.Fig.30.In the continuous-current dynamo it may be, and usually is, necessary to move the brushes forward from the interpolar line of symmetry through a small angle in the direction of rotation, in order to avoid sparking between the brushes and the commutator (vide infra). When the dynamo is giving current, the wires on either side of the diameter of commutation form a current-sheet flowing along the surface of the armature from end to end, and whatever the actual end-connexions of the wires, the wires may be imagined to be joined together into a system of loops such that the two sides of each loop are carrying current in opposite directions. Thus a number of armature ampere-turns are formed, and their effect on the entire system of magnet and armature must be taken into account. So long as the diameter of commutation coincides with the line of symmetry, the armature may be regarded as a cylindrical electromagnet producing a flux of lines, as shown in fig. 30. The direction of the self-induced flux in the air-gaps is the same as that of the lines of the external field in one quadrant on one side of DC, but opposed to it in the other quadrant on the same side of DC; hence in the resultant field due to the combined action of the field-magnet and armature ampere-turns, the flux is as much strengthened over the one half of each polar face as it is weakened over the other, and the total number of lines is unaffected, although their distribution is altered. The armature ampere-turns are then calledcross-turns, since they produce a cross-field, which, when combined with the symmetrical field, causes the leading pole-cornersllto be weakened and the trailing pole-corners tt to be strengthened, the neutral line of zero field being thus twisted forwards in the direction of rotation. But when the brushes and diameter of commutation are shifted forward, as shown in fig. 31, it will be seen that a number of ampere-turns, forming a zone between the lines DnandmC, are in effect wound immediately on the magnetic circuit proper, and this belt of ampere-turns is in direct opposition to the ampere-turns of the field, as shown by the dotted and crossed wires on the pole-pieces. The armature ampere-turns are then divisible into the two bands, theback-turns, included within twice the angle of lead λ, weakening the field, and the cross-turns, bounded by the lines Dm, nC, again producing distortion of the weakened symmetrical field. If, therefore, a certain flux is to be passed through the armature core in opposition to the demagnetizing turns, the difference of magnetic potential between the pole-faces must include not only Xa, Xt, and Xg, but also an item Xb, in order to balance the “back” ampere-turns of the armature. The amount by which the brushes must be shifted forward increases with the armature current, and in corresponding proportion the back ampere-turns are also increased, their value being cτ2λ / 360°, where c = the current carried by each of the τ active wires. Thus the term Xb, takes into account the effect of the armature reaction on the total flux; it varies as the armature current and angle of lead required to avoid sparking are increased; and the reason for its introduction in the fourth place (Xp= Xg+ Xt+ Xa+ Xb), is that it increases the magnetic difference of potential which must exist between the poles of the dynamo, and to which the greater part of the leakage is due. The leakage paths which are in parallel with the armature across the poles must now be estimated, and so a new value be derived for the flux at the commencement of theiron-magnetpath. If P = their joint permeance, the leakage flux due to the difference of potential at the poles is zl= 1.257Xp× P, and this must be added to the useful flux Za, or Zp= Za+ Zl. There are also certain leakage paths in parallel with the magnet cores, and upon the permeance of these a varying number of ampere-turns is acting as we proceed along the magnet coils; the magnet flux therefore increases by the addition of leakage along the length of the limbs, and finally reaches a maximum near the yoke. Either, then, the density in the magnet Bm= Zm/ Amwill vary if the same sectional area be retained throughout, or the sectional area of the magnet must itself be progressively increased. In general, sufficient accuracy will be obtained by assuming a certain number of additional leakage lines znas traversing the entire length of magnet limbs and yoke (= lm), so that the density in the magnet has the uniform value Bm= (Zp+ zn) / Am. The leakage flux added on actually within the length of the magnet core or znwill be approximately equal to half the total M.M.F. of the coils multiplied by the permeance of the leakage paths around one coil. The corresponding value of H can then be obtained from the (B, H) curve of the material of which the magnet is composed, and the ampere-turns thus determined must be added to Xp, or X = Xp+ Xm, where Xm= ƒ(Bm)lm. The final equation for the exciting power required on a magnetic circuit as a whole will therefore take the formX = AT = 0.8Bg·2lg+ ƒ(Bt) 2lt+ ƒ(Ba) la+ Xb+ ƒ(Bm) lm.(3)Fig. 31.If the magnet cores are of wrought iron or cast steel, and the yoke is of cast iron, the last term must be divided into two portions corresponding to the different materials,i.e.into f(Bm)lm+ f(By)ly. In the ordinary multipolar machine with as many magnet-coils as there are poles, each coil must furnish half the above number of ampere-turns.Since no substance is impermeable to the passage of magnetic flux, the only form of magnetic circuit free from leakage is one uniformly wound with ampere-turns over its whole length. The reduction of themagnetic leakageto a minimum in anyMagnetic leakage.given type is therefore primarily a question of distributing the winding as far as possible uniformly upon the circuit, and as the winding must be more or less concentrated into coils, it resolves itself into the necessity of introducing as long air-paths as possible between any surfaces which are at different magnetic potentials. No iron should be brought near the machine which does not form part of the magnetic circuit proper, and especially no iron should be brought near the poles, between which the difference of magnetic potential practically reaches its maximum value. In default of a machine of the same size or similar type on which to experiment, the probable direction of the leakage flux must be assumed from the drawing, and the air surrounding the machine must be mapped out into areas, between which the permeances are calculated as closely as possible by means of such approximate formulae as those devised by Professor G. Forbes.In the earliest “magneto-electric” machines permanent steel magnets, either simple or compound, were employed, and for many years these were retained in certain alternators, some of which are still in use for arc lighting in lighthouses.Excitation of field-magnet.But since the field they furnish is very weak, a great advance was made when they were replaced by soft iron electromagnets, which could be made to yield a much more intense flux. As early as 1831 Faraday18experimented with electromagnets, and after 1850 they gradually superseded the permanent magnet. When the total ampere-turns required to excite the electromagnet have been determined, it remains to decide how the excitation shall be obtained; and, according to the methodadopted, continuous-current machines may be divided into four well-defined classes.Fig. 32.The simplest method, and that which was first used, isseparate excitationfrom some other source of direct current, which may be either a primary or a secondary battery or another dynamo (fig. 32). But since the armature yields a continuous current, it was early suggested (by J. Brett in 1848 and F. Sinsteden in 1851) that this current might be utilized to increase the flux; combinations of permanent and electromagnets were therefore next employed, acting either on the main armature or on separate armatures, until in 1867 Dr Werner von Siemens and Sir C. Wheatstone almost simultaneously discovered that the dynamo could be madeself-excitingthrough the residual magnetism retained in the soft iron cores of the electromagnet. The former proposed to take the whole of the current round the magnet coils which were in series with the armature and external circuit, while the latter proposed to utilize only a portion derived by a shunt from the main circuit; we thus arrive at the second and third classes, namely,seriesandshuntmachines. The starting of the process of excitation in either case is the same; when the brushes are touching the commutator and the armature is rotated, the small amount of flux left in the magnet is cut by the wires, and a very small current begins to flow round the closed circuit; this increases the flux, which in turn further increases the E.M.F. and current, until, finally, the cumulative effect stops through the increasing saturation of the iron cores. Fig. 33, illustrating theseriesmachine, shows the winding of the exciting coils to be composed of a few turns of thick wire. Since the current is undivided throughout the whole circuit, the resistance of both the armature and field-magnet winding must be low as compared with that of the external circuit, if the useful power available at the terminals of the machine is to form a large percentage of the total electrical power—in other words, if the efficiency is to be high. Fig. 34 shows the third method, in which the winding of the field-magnets is ashuntor fine-wire circuit of many turns applied to the terminals of the machine; in this ease the resistance of the shunt must be high as compared with that of the external circuit, in order that only a small proportion of the total energy may be absorbed in the field.Fig. 33.Fig. 34.Since the whole of the armature current passes round the field-magnet of the series machine, any alteration in the resistance of the external circuit will affect the excitation and also the voltage. A curve connecting together corresponding values of external current and terminal voltage for a given speed of rotation is known as theexternal-characteristicof the machine; in its main features it has the same appearance as a curve of magnetic flux, but when the current exceeds a certain amount it begins to bend downwards and the voltage decreases. The reason for this will be found in the armature reaction at large loads, which gradually produces a more and more powerful demagnetizing effect, as the brushes are shifted forwards to avoid sparking; eventually the back ampere-turns overpower any addition to the field that would otherwise be due to the increased current flowing round the magnet. The “external characteristic” for a shunt machine has an entirely different shape. The field-magnet circuit being connected in parallel with the external circuit, the exciting current, if the applied voltage remains the same, is in no way affected by alterations in the resistance of the latter. As, however, an increase in the external current causes a greater loss of volts in the armature and a greater armature reaction, the terminal voltage, which is also the exciting voltage, is highest at no load and then diminishes. The fall is at first gradual, but after a certain critical value of the armature current is reached, the machine is rapidly demagnetized and loses its voltage entirely.Fig.35.The last method of excitation, namely,compound-winding(fig. 35), is a combination of the two preceding, and was first used by S.A. Varley and by C.F. Brush. If a machine is in the first instance shunt-wound, and a certain number of series-turns are added, the latter, since they carry the external current, can be made to counteract the effect which the increased external current would have in lowering the voltage of the simple shunt machine. The ampere-turns of the series winding must be such that they not only balance the increase of the demagnetizing back ampere-turns on the armature, but further increase the useful flux, and compensate for the loss of volts over their own resistance and that of the armature. The machine will then give for a constant speed a nearly constant voltage at its terminals, and the curve of the external characteristic becomes a straight line for all loads within its capacity. Since with most prime movers an increase of the load is accompanied by a drop in speed, this effect may also be counteracted; while, lastly, if the series-turns are still further increased, the voltage may be made to rise with an increasing load, and the machine is “over-compounded.”

The chief sections of the magnetic circuit are (1) the air-gaps, (2) the armature core, and (3) the iron magnet.

Theair-gapof a dynamo with smooth-core armature is partly filled with copper and partly with the cotton, mica, or other materials used to insulate the core and wires; all these substances are, however, sensibly non-magnetic, so that the whole interferric gap between the iron of the pole-pieces and the iron of the armature may be treated as an air-space, of which the permeability is constant for all values of the flux density, and in the C.G.S. system is unity. Hence if lgand Agbe the length and area of the single air-gap in cm. and sq. cm., the reluctance of the double air-gap is 2lg/ Ag, and the difference of magnetic potential required to pass Zalines over this reluctance is Za·2lg/ Ag= Bg·2lg; or, since one ampere-turn gives 1.257 C.G.S. units of magnetomotive force, the exciting power in ampere-turns required over the two air-gaps is Xg= Bg·2lg/ 1.257 = 0.8Bg·2lg. In the determination of the area Agsmall allowance must be made for the fringe of lines which extend beyond the actual polar face. In the toothed armature with open slots, the lines are no longer uniformly distributed over the air-gap area, but are graduated into alternate bands of dense and weak induction corresponding to the teeth and slots. Further, the lines curve round into the sides of the teeth, so that their average length of path in the air and the air-gap reluctance is not so easily calculated. Allowance must be made for this by taking an increased length of air-gap = mlg, where m is the ratiomaximum density/mean density, of which the value is chiefly determined by the ratios of the width of tooth to width of slot and of the width of slot to the air-gap between pole-face and surface of the armature core.

Thearmature coremust be divided into the teeth and the core proper below the teeth. Owing to the tapering section of the teeth, the density rises towards their root, and when this reaches a high value, such as 18,000 or more lines per sq. cm., the saturation of the iron again forces an increasing proportion of the lines outwards into the slot. A distinction must then be drawn between the “apparent” induction which would hold if all the lines were concentrated in the teeth, and the “real” induction. The area of the iron is obtained by multiplying the number of teeth under the pole-face by their width and by the net length of the iron core parallel to the axis of rotation. The latter is the gross length of the armature less the space lost through the insulating varnish or paper between the disks or through the presence of ventilating ducts, which are introduced at intervals along the length of the core. The former deduction averages about 7 to 10% of the gross length, while the latter, especially in large multipolar machines, is an even more important item. Alter calculating the density at different sections of the teeth, reference has now to be made to a (B, H) or flux-density curve, from which may be found the number of ampere-turns required per cm. length of path. This number may be expressed as a function of the density in the teeth, and ƒ(Bt) be its average value over the length of a tooth, the ampere-turns of excitation required over the teeth on either side of the core as the lines of one field enter or leave the armature is Xt= ƒ(Bt)·2lt, where ltis the length of a single tooth in cm.

In the core proper below the teeth the length of path continually shortens as we pass from the middle of the pole towards the centre line of symmetry. On the other hand, as the lines gradually accumulate in the core, their density increases from zero midway under the poles until it reaches a maximum on the line of symmetry. The two effects partially counteract one another, and tend to equalize the difference of magnetic potential required over the paths of varying lengths; but since the reluctivity of the iron increases more rapidly than the density of the lines, we may approximately take for the length of path (la) the minimum peripheral distance between the edges of adjacent pole-faces, and then assume the maximum value of the density of the lines as holding throughout this entire path. In ring and drum machines the flux issuing from one pole divides into two halves in the armature core, so that the maximum density of lines in the armature is Ba= Za/ 2ab, where a = the radial depth of the disks in centimetres and b = the net length of iron core. The total exciting power required between the pole-pieces is therefore, at no load, Xp= Xg+ Xt+ Xa, where Xa= ƒ(Ba)·la; in order, however, to allow for the effect of the armature current, which increases with the load, a further term Xb, must be added.

In the continuous-current dynamo it may be, and usually is, necessary to move the brushes forward from the interpolar line of symmetry through a small angle in the direction of rotation, in order to avoid sparking between the brushes and the commutator (vide infra). When the dynamo is giving current, the wires on either side of the diameter of commutation form a current-sheet flowing along the surface of the armature from end to end, and whatever the actual end-connexions of the wires, the wires may be imagined to be joined together into a system of loops such that the two sides of each loop are carrying current in opposite directions. Thus a number of armature ampere-turns are formed, and their effect on the entire system of magnet and armature must be taken into account. So long as the diameter of commutation coincides with the line of symmetry, the armature may be regarded as a cylindrical electromagnet producing a flux of lines, as shown in fig. 30. The direction of the self-induced flux in the air-gaps is the same as that of the lines of the external field in one quadrant on one side of DC, but opposed to it in the other quadrant on the same side of DC; hence in the resultant field due to the combined action of the field-magnet and armature ampere-turns, the flux is as much strengthened over the one half of each polar face as it is weakened over the other, and the total number of lines is unaffected, although their distribution is altered. The armature ampere-turns are then calledcross-turns, since they produce a cross-field, which, when combined with the symmetrical field, causes the leading pole-cornersllto be weakened and the trailing pole-corners tt to be strengthened, the neutral line of zero field being thus twisted forwards in the direction of rotation. But when the brushes and diameter of commutation are shifted forward, as shown in fig. 31, it will be seen that a number of ampere-turns, forming a zone between the lines DnandmC, are in effect wound immediately on the magnetic circuit proper, and this belt of ampere-turns is in direct opposition to the ampere-turns of the field, as shown by the dotted and crossed wires on the pole-pieces. The armature ampere-turns are then divisible into the two bands, theback-turns, included within twice the angle of lead λ, weakening the field, and the cross-turns, bounded by the lines Dm, nC, again producing distortion of the weakened symmetrical field. If, therefore, a certain flux is to be passed through the armature core in opposition to the demagnetizing turns, the difference of magnetic potential between the pole-faces must include not only Xa, Xt, and Xg, but also an item Xb, in order to balance the “back” ampere-turns of the armature. The amount by which the brushes must be shifted forward increases with the armature current, and in corresponding proportion the back ampere-turns are also increased, their value being cτ2λ / 360°, where c = the current carried by each of the τ active wires. Thus the term Xb, takes into account the effect of the armature reaction on the total flux; it varies as the armature current and angle of lead required to avoid sparking are increased; and the reason for its introduction in the fourth place (Xp= Xg+ Xt+ Xa+ Xb), is that it increases the magnetic difference of potential which must exist between the poles of the dynamo, and to which the greater part of the leakage is due. The leakage paths which are in parallel with the armature across the poles must now be estimated, and so a new value be derived for the flux at the commencement of theiron-magnetpath. If P = their joint permeance, the leakage flux due to the difference of potential at the poles is zl= 1.257Xp× P, and this must be added to the useful flux Za, or Zp= Za+ Zl. There are also certain leakage paths in parallel with the magnet cores, and upon the permeance of these a varying number of ampere-turns is acting as we proceed along the magnet coils; the magnet flux therefore increases by the addition of leakage along the length of the limbs, and finally reaches a maximum near the yoke. Either, then, the density in the magnet Bm= Zm/ Amwill vary if the same sectional area be retained throughout, or the sectional area of the magnet must itself be progressively increased. In general, sufficient accuracy will be obtained by assuming a certain number of additional leakage lines znas traversing the entire length of magnet limbs and yoke (= lm), so that the density in the magnet has the uniform value Bm= (Zp+ zn) / Am. The leakage flux added on actually within the length of the magnet core or znwill be approximately equal to half the total M.M.F. of the coils multiplied by the permeance of the leakage paths around one coil. The corresponding value of H can then be obtained from the (B, H) curve of the material of which the magnet is composed, and the ampere-turns thus determined must be added to Xp, or X = Xp+ Xm, where Xm= ƒ(Bm)lm. The final equation for the exciting power required on a magnetic circuit as a whole will therefore take the form

X = AT = 0.8Bg·2lg+ ƒ(Bt) 2lt+ ƒ(Ba) la+ Xb+ ƒ(Bm) lm.

(3)

If the magnet cores are of wrought iron or cast steel, and the yoke is of cast iron, the last term must be divided into two portions corresponding to the different materials,i.e.into f(Bm)lm+ f(By)ly. In the ordinary multipolar machine with as many magnet-coils as there are poles, each coil must furnish half the above number of ampere-turns.

Since no substance is impermeable to the passage of magnetic flux, the only form of magnetic circuit free from leakage is one uniformly wound with ampere-turns over its whole length. The reduction of themagnetic leakageto a minimum in anyMagnetic leakage.given type is therefore primarily a question of distributing the winding as far as possible uniformly upon the circuit, and as the winding must be more or less concentrated into coils, it resolves itself into the necessity of introducing as long air-paths as possible between any surfaces which are at different magnetic potentials. No iron should be brought near the machine which does not form part of the magnetic circuit proper, and especially no iron should be brought near the poles, between which the difference of magnetic potential practically reaches its maximum value. In default of a machine of the same size or similar type on which to experiment, the probable direction of the leakage flux must be assumed from the drawing, and the air surrounding the machine must be mapped out into areas, between which the permeances are calculated as closely as possible by means of such approximate formulae as those devised by Professor G. Forbes.

In the earliest “magneto-electric” machines permanent steel magnets, either simple or compound, were employed, and for many years these were retained in certain alternators, some of which are still in use for arc lighting in lighthouses.Excitation of field-magnet.But since the field they furnish is very weak, a great advance was made when they were replaced by soft iron electromagnets, which could be made to yield a much more intense flux. As early as 1831 Faraday18experimented with electromagnets, and after 1850 they gradually superseded the permanent magnet. When the total ampere-turns required to excite the electromagnet have been determined, it remains to decide how the excitation shall be obtained; and, according to the methodadopted, continuous-current machines may be divided into four well-defined classes.

The simplest method, and that which was first used, isseparate excitationfrom some other source of direct current, which may be either a primary or a secondary battery or another dynamo (fig. 32). But since the armature yields a continuous current, it was early suggested (by J. Brett in 1848 and F. Sinsteden in 1851) that this current might be utilized to increase the flux; combinations of permanent and electromagnets were therefore next employed, acting either on the main armature or on separate armatures, until in 1867 Dr Werner von Siemens and Sir C. Wheatstone almost simultaneously discovered that the dynamo could be madeself-excitingthrough the residual magnetism retained in the soft iron cores of the electromagnet. The former proposed to take the whole of the current round the magnet coils which were in series with the armature and external circuit, while the latter proposed to utilize only a portion derived by a shunt from the main circuit; we thus arrive at the second and third classes, namely,seriesandshuntmachines. The starting of the process of excitation in either case is the same; when the brushes are touching the commutator and the armature is rotated, the small amount of flux left in the magnet is cut by the wires, and a very small current begins to flow round the closed circuit; this increases the flux, which in turn further increases the E.M.F. and current, until, finally, the cumulative effect stops through the increasing saturation of the iron cores. Fig. 33, illustrating theseriesmachine, shows the winding of the exciting coils to be composed of a few turns of thick wire. Since the current is undivided throughout the whole circuit, the resistance of both the armature and field-magnet winding must be low as compared with that of the external circuit, if the useful power available at the terminals of the machine is to form a large percentage of the total electrical power—in other words, if the efficiency is to be high. Fig. 34 shows the third method, in which the winding of the field-magnets is ashuntor fine-wire circuit of many turns applied to the terminals of the machine; in this ease the resistance of the shunt must be high as compared with that of the external circuit, in order that only a small proportion of the total energy may be absorbed in the field.

Since the whole of the armature current passes round the field-magnet of the series machine, any alteration in the resistance of the external circuit will affect the excitation and also the voltage. A curve connecting together corresponding values of external current and terminal voltage for a given speed of rotation is known as theexternal-characteristicof the machine; in its main features it has the same appearance as a curve of magnetic flux, but when the current exceeds a certain amount it begins to bend downwards and the voltage decreases. The reason for this will be found in the armature reaction at large loads, which gradually produces a more and more powerful demagnetizing effect, as the brushes are shifted forwards to avoid sparking; eventually the back ampere-turns overpower any addition to the field that would otherwise be due to the increased current flowing round the magnet. The “external characteristic” for a shunt machine has an entirely different shape. The field-magnet circuit being connected in parallel with the external circuit, the exciting current, if the applied voltage remains the same, is in no way affected by alterations in the resistance of the latter. As, however, an increase in the external current causes a greater loss of volts in the armature and a greater armature reaction, the terminal voltage, which is also the exciting voltage, is highest at no load and then diminishes. The fall is at first gradual, but after a certain critical value of the armature current is reached, the machine is rapidly demagnetized and loses its voltage entirely.

The last method of excitation, namely,compound-winding(fig. 35), is a combination of the two preceding, and was first used by S.A. Varley and by C.F. Brush. If a machine is in the first instance shunt-wound, and a certain number of series-turns are added, the latter, since they carry the external current, can be made to counteract the effect which the increased external current would have in lowering the voltage of the simple shunt machine. The ampere-turns of the series winding must be such that they not only balance the increase of the demagnetizing back ampere-turns on the armature, but further increase the useful flux, and compensate for the loss of volts over their own resistance and that of the armature. The machine will then give for a constant speed a nearly constant voltage at its terminals, and the curve of the external characteristic becomes a straight line for all loads within its capacity. Since with most prime movers an increase of the load is accompanied by a drop in speed, this effect may also be counteracted; while, lastly, if the series-turns are still further increased, the voltage may be made to rise with an increasing load, and the machine is “over-compounded.”

At the initial moment when an armature coil is first short-circuited by the passage of the two sectors forming its ends under the contact surface of a brush, a certain amount of electromagnetic energy is stored up in its magneticCommutation and sparking at the brushes.field as linked with the ampere-turns of the coil when carrying its full share of the total armature current. During the period of short-circuit this quantity of energy has to be dissipated as the current falls to zero, and has again to be re-stored as the current is reversed and raised to the same value, but in the opposite direction. The period of short-circuit as fixed by the widths of the brush and of the mica insulation between the sectors, and by the peripheral speed of the commutator is extremely brief, and only lasts on an average from1⁄200th to1⁄1000th of a second. The problem of sparkless commutation is therefore primarily a question of our ability to dissipate and to re-store the required amount of energy with sufficient rapidity.

An important aid towards the solution of this problem is found in the effect of the varying contact-resistance between the brush and the surfaces of the leading and trailing sectors which it covers. As the commutator moves under the brush, the area of contact which the brush makes with the leading sector diminishes, and the resistance between the two rises; conversely, the area of contact between the brush and the trailing sector increases and the resistance falls. This action tends automatically to bring the current through each sector into strict proportionality to the amount of its surface which is covered by the brush, and so to keep the current-density and the loss of volts over the contacts uniform and constant. As soon as the current-density in the two portions of the brush becomes unequal, a greater amount of heat is developed at the commutator surface, and this in the first place affords an additional outlet for the dissipation of the stored energy of the coil, while after reversal of the current it is the accompaniment of a re-storage of the required energy. This energy, as well as that which is spent in heating the coil, can in fact, in default of other sources, be derived through the action of the unequal current-density from the electrical output of the rest of the armature winding, and so only indirectly from the prime mover.

In practice, when the normal contact-resistance of the brushes is low relatively to the resistance of the coil, as is the case with metal brushes of copper or brass gauze, but little benefit can be obtained from the action of the varying contact-resistance. It exerts no appreciable effect until close towards the end of the period of short-circuit, and then only with such a high-current-density at the trailing edge of the leaving sector that at the moment of parting the brush-tip is fused, or its metal volatilized, and sparking has in fact set in. With such brushes, then, it becomes necessary to call in the aid of a reversing E.M.F. impressed upon the coil by the magnetic field through which it is moving. If such a reversing field comes into action whilethe current is still unreversed, its E.M.F. is opposed to the direction of the current, and the coil is therefore driving the armature forward as in a motor; it thus affords a ready means of rapidly dissipating part of the initial energy in the form of mechanical work instead of as heat. After the current has been reversed, the converse process sets in, and the prime mover directly expends mechanical energy not only in heating the coil, but also in storing up electromagnetic energy with a rapidity dependent upon the strength of the reversing field. The required direction of external field can be obtained in the dynamo by shifting the brushes forward, so that the short-circuited coil enters into the fringe of lines issuing from the leading pole-tip,i.e.by giving the brushes an “angle of lead.” An objection to this process is that the main flux is thereby weakened owing to the belt of back ampere-turns which arises (v. supra). A still greater objection is that the amount of the angle of lead must be suited to the value of the load, the corrective power of copper brushes being very small if the reversing E.M.F. is not closely adjusted in proportion to the armature current.

On this account metal brushes have been almost entirely superseded by carbon moulded into hard blocks. With these, owing to their higher specific contact-resistance, a very considerable reversing effect can be obtained through the action of unequal current-density, and indeed in favourable cases complete sparklessness can be obtained throughout the entire range of load of the machine with a fixed position of the brushes. Yet if the work which they are called upon to perform exceeds certain limits, they tend to become overheated with consequent glowing or sparking at their tips, so that, wherever possible, it is advisable to reinforce their action by a certain amount of reversing field, the brushes being set so that its strength is roughly correct for, say, half load.

In the case of dynamos driven by steam-turbines, sparkless commutation is especially difficult to obtain owing to the high speed of rotation and the very short space of time in which the current has to be reversed. Special “reversing poles” then become necessary; these are wound with magnetizing coils in series with the main armature current, so that the strength of field which they yield is roughly proportional to the current which has to be reversed. These again may be combined with a “compensating winding” embedded in the pole-faces and carrying current in the opposite direction to the armature ampere-turns, so as to neutralize the cross effect of the latter and prevent distortion of the resultant field.


Back to IndexNext