Chapter 7

Economic studies should be as relevant to existing needs as those of engineering and other applied sciences. The scientific study of practical problems and difficulties is (generally speaking, and with honourable exceptions) far more advanced in almost every civilized country than it is in England, where the limited scale upon which such work is carried on, the indifference of statesmen, officials and business men, and the incapacity of the public to understand the close relation between scientific study and practical success, contrast very unfavourably with the state of affairs in Germany or the United States. The backwardness of economic science has been an index of the danger threatening the industrial and commercial supremacy of the United Kingdom. There are very few questions of public or commercial importance upon which the best and most recent investigations are to be found amongst English works. This would matter very little, perhaps, if Englishmen had a firm belief, established by actual experience, in the soundness of their policy, the present security of their position, and the sufficiency of their methods to strengthen or maintain it. But this is very far from being the case. If we take, for example, the corner-stone of the British commercial system in the 19th century, namely, the policy of “free trade” (q.v.), the public do not now read the economic works which supplied the theoretical basis of that policy, and, indeed, wouldEconomic problems in Great Britain.not be convinced by them. The great men of the period, Cobden and Bright, are merely historical figures. Long before his death, Bright’s references in public speeches to the achievements of the Anti-Corn Law League were received with respectful impatience, and Peel’s famous speech on the repeal of the corn laws would not convince the German Reichstag or a modern House of Commons. The result is that free trade had become by the end of the 19th century in the main an old habit, for which the ordinary English manufacturer could give no very reasonable explanation, whatever may be its influence in commerce and public affairs. The doctrine of free trade only prevailed in so far as it could be restated in terms which had a direct relevance to the existing position of England and existing conditions of international trade. And it was directly challenged by the representatives of Mr Chamberlain’s school of Imperialist thought (seeChamberlain, Joseph). It thus became the work of economic science ruthlessly to analyse the existing situation, explain the issues involved in the commercial policy of different countries, and point out the alternative methods of dealing with present difficulties, with their probable results.

The commercial policy of a state is merely the reflex of its system of public finance (seee.g.English Finance). The absence of conviction in regard to British commercial policy naturally had its counterpart in the attitude of many men to the financial system of the country. The eulogies showered upon it in the past were no longer considered adequate. The great increase in recent years in British military and naval expenditure, made necessary by the exceptional demands of a state of war and the great development of foreign powers, was partly responsible for the new difficulties; partly it was due to the great extension of the functions of the state during the latter part of the 19th century. The former causes may be considered partly permanent, partly temporary; but those of a permanent character are likely to increase in force, and those of a temporary character will leaveCommerce and finance.a deposit in the shape of an addition to the normal expenditure of the central government. The extension of government functions appeared much more likely to continue than to be checked. Normal expenditure might therefore be calculated to rise rather than fall. In spite of the vast increase in national wealth, it was found a matter of increasing difficulty to meet a comparatively slight strain without recourse to measures of a highly controversial character; and the search for new sources of revenue (as in 1909) at once raised, in an acute form, questions of national commercial policy and the relations between the United Kingdom and the colonies.

The development of the powers of the central government has been less than that of the functions of local governing authorities. This, again, is a movement much more likely to extend than to be checked. Local governing authorities now discharge economic functions of enormous importance and complexity, involving sums of money larger than sufficed to run important states a generation ago. The scientific study of the economics of local administration is, however, in its infancy, and requires to be taken up in earnest by economists. These questions of commercial policy and local government are closely bound up with the scientific study of the transport system. Although the British Empire contains within itself every known species of railway enterprise, the study of railways and other means of transport, and their relation to the business, the commerce and the social life of the country, is deplorably backward. It is obvious that no inquiry into commercial policy, or into such social questions as the housing of the poor, can be effective unless this deficiency is remedied.

The whole social and political fabric of the British Empire depends upon the efficiency of its industrial system. On this subject many monographs and larger works have been published in recent years, but dealing rather with such questions as trade unionism, co-operation and factory legislation, than the structure and organization of particular industries, or the causes and the results of the formation of the great combinations, peculiarly characteristic of the United States, but not wanting in England, which are amongst the most striking economic phenomena of modern times.

These are some of the questions which must absorb the energies of the rising generation of economists. The claim of economics for recognition as a science and as a subject of study must be based on its relevance to the actual life of the economic world, on its ability to unravel the practical difficulties of each generation, and so contribute to the progress of nations.

Literature.—See alsoFree Trade;Protection;Tariff;Commercial Treaties;Trusts;Money;Finance; &c. The bibliography of economics as a whole would include a history of all the writers on the subject, and is beyond our scope here; see the numerous articles on economic subjects throughout this work. The article by Dr J.K. Ingram in the ninth edition of theEncyclopaedia Britannicais still a valuable historical account. It is only possible to mention here a few of the more recent text-books. The most important general work published in English is Marshall’sPrinciples of Economics, vol. i. (1st edition, 1890; 4th edition, 1898). J. Shield Nicholson’sPrinciples of Political Economy(3 vols.) not only gives a survey of economic principles since Mill’s time, but contains much suggestive and original work. The writer of this article is much indebted to the works of Schmoller, particularly hisGrundris der allgemeinen Volkswirtschaftslehre(1900), and Adolph Wagner, particularly hisGrundlegung der politischen Ökonomie. On the history of economic theory, Cannan’sHistory of the Theories of Production and Distribution(1776-1848) is an admirable criticism, from a purely objective standpoint, of the works of the English classical writers. The most important English works published in recent years on general English economic history are W. Cunningham’sGrowth of Industry and Commerce, and W.J. Ashley’sEconomic History, while Vinogradoff’sVillenage in EnglandandThe Growth of the Manor, as well as Maitland’sDomesday Studies, are of great importance to the student of early economic institutions. D’Avenel’sHistoire économique de la propriété, &c.(1200-1800), is a monumental work on the history of prices in France. Other books dealing with special subjects are likely to take a very high place in economic literature. We may mention particularly Charles Booth’sLife and Labour of the People in London, B.S. Rowntree’sPoverty, Sidney and Beatrice Webb’sHistory of Trade UnionismandIndustrial Democracy, and Dr Arthur Shadwell’sIndustrial Efficiency(1906). These books are generally regarded as typical of the best English work of recent years in economic investigation. We may also mention Schloss’sMethods of Industrial Remuneration, a most important contribution to the study of the wages question; C.F. Bastable’s works onInternational TradeandPublic Finance; George Clare on theMoney Marketand theForeign Exchanges; and A.T. Hadley’sEconomics: An Account of the Relations between Private Property and Public Welfare(1896). Studies of particular questions, both concrete and theoretical, in foreign languages are too numerousto specify, and much of the best modern work is to be found in economic periodicals.

Literature.—See alsoFree Trade;Protection;Tariff;Commercial Treaties;Trusts;Money;Finance; &c. The bibliography of economics as a whole would include a history of all the writers on the subject, and is beyond our scope here; see the numerous articles on economic subjects throughout this work. The article by Dr J.K. Ingram in the ninth edition of theEncyclopaedia Britannicais still a valuable historical account. It is only possible to mention here a few of the more recent text-books. The most important general work published in English is Marshall’sPrinciples of Economics, vol. i. (1st edition, 1890; 4th edition, 1898). J. Shield Nicholson’sPrinciples of Political Economy(3 vols.) not only gives a survey of economic principles since Mill’s time, but contains much suggestive and original work. The writer of this article is much indebted to the works of Schmoller, particularly hisGrundris der allgemeinen Volkswirtschaftslehre(1900), and Adolph Wagner, particularly hisGrundlegung der politischen Ökonomie. On the history of economic theory, Cannan’sHistory of the Theories of Production and Distribution(1776-1848) is an admirable criticism, from a purely objective standpoint, of the works of the English classical writers. The most important English works published in recent years on general English economic history are W. Cunningham’sGrowth of Industry and Commerce, and W.J. Ashley’sEconomic History, while Vinogradoff’sVillenage in EnglandandThe Growth of the Manor, as well as Maitland’sDomesday Studies, are of great importance to the student of early economic institutions. D’Avenel’sHistoire économique de la propriété, &c.(1200-1800), is a monumental work on the history of prices in France. Other books dealing with special subjects are likely to take a very high place in economic literature. We may mention particularly Charles Booth’sLife and Labour of the People in London, B.S. Rowntree’sPoverty, Sidney and Beatrice Webb’sHistory of Trade UnionismandIndustrial Democracy, and Dr Arthur Shadwell’sIndustrial Efficiency(1906). These books are generally regarded as typical of the best English work of recent years in economic investigation. We may also mention Schloss’sMethods of Industrial Remuneration, a most important contribution to the study of the wages question; C.F. Bastable’s works onInternational TradeandPublic Finance; George Clare on theMoney Marketand theForeign Exchanges; and A.T. Hadley’sEconomics: An Account of the Relations between Private Property and Public Welfare(1896). Studies of particular questions, both concrete and theoretical, in foreign languages are too numerousto specify, and much of the best modern work is to be found in economic periodicals.

(W. A. S. H.)

ECONOMY,a township and a village of Beaver county, Pennsylvania, U.S.A., on the E. bank of the Ohio river, 17 m. N.W. of Pittsburg. Pop. of township (1900) 1062; (1910) 860. The village is served by the Pennsylvania system. It was owned until 1904, when it was sold to a land company, by the Harmony Society (seeCommunism), commonly called the Economites, Harmonists or Rappists. The founder, George Rapp, after living with his would-be primitive Christian followers at Harmony, Butler county, Pennsylvania, in 1803-1814, and in 1815-1824 in New Harmony (q.v.), Indiana, which he then sold to Robert Owen, settled here in 1824 and rapidly built up a village, in which each family received a house and garden. The culture of silk, flax, grapes (for wine-making) and fruits and cereals in general, and the manufacture of flour and of woollen, flannel and cotton fabrics, were carried on under a rule requiring every adult to labour 12 or 14 hours each day in field or mill. Celibacy had been adopted in 1807 as the rule of the community. New members were received after a half-year’s probation, and members who left received their original investment. Three hundred thus separated from Rapp in 1833, with $105,000 as their share of the communal property, to build the millennial kingdom of New Jerusalem at Phillipsburg (now Monaca), Beaver county, Pennsylvania, under the lead of Bernhard Müller, who had come to Economy in 1831 as a fellow religionist, and was called Count Maximilian de Leon (or Proli); in 1833 Leon went, with his followers, to Louisiana, and established a religious colony 6 m. from Natchitoches. After his death his wife until 1871 was head of a similar community at Germantown in Webster parish. The Harmonists at Economy flourished under the rule of a tradesman, R.L. Baker, or Romelius Langenbacher, after the death of Rapp in 1847, and during the Civil War had about $500,000 buried away. Their numbers were for a time kept up by the addition of fresh converts, but the employés who were not Harmonists soon greatly outnumbered the members of the community, the basis of which was always religious. Baker died in 1868, and his successor, John Henrici, in 1892, when John S. Duss became first trustee. In 1907 there were only two or three members in the society. In 1851 the township of Harmony was set apart from Economy.

See Morris Hillquit,History of Socialism in the United States(New York, 1903); William A. Hinds,American Communities(revised edition, Chicago, 1902); John L. Bole,The Harmony Society(Philadelphia, 1904); Charles Nordhoff,The Communistic Societies of the United States(New York, 1875); and among several excellent monographs in German, Karl Knortz,Die christlichkommunistische Kolonie der Rappisten(Leipzig, 1892), and J. Hanno Deiler,Eine vergessene deutsche Colonie: eine Stimme zur Verteidigung des Grafen de Leon(New Orleans, 1900).

See Morris Hillquit,History of Socialism in the United States(New York, 1903); William A. Hinds,American Communities(revised edition, Chicago, 1902); John L. Bole,The Harmony Society(Philadelphia, 1904); Charles Nordhoff,The Communistic Societies of the United States(New York, 1875); and among several excellent monographs in German, Karl Knortz,Die christlichkommunistische Kolonie der Rappisten(Leipzig, 1892), and J. Hanno Deiler,Eine vergessene deutsche Colonie: eine Stimme zur Verteidigung des Grafen de Leon(New Orleans, 1900).

ECONOMY,a word ranging in application from the careful thrift of an individual to the systematic arrangement of an organization. It is derived from the Gr.οἰκονομία, the management (νέμειν, to control) of anοἶκοςor house, extended in meaning to the administration of a state. Of its original sense, the art or science of managing a household, the expression “domestic economy” survives, but the principal use in this sense is confined to the thrifty management of the financial resources of a household or of an individual. It is thus used as equivalent to “saving,” not only of money, but of time, labour or effort, and, generally, of the least expenditure of means to attain a required end. It is on the principle of “economy” that many phonetic changes occur in the development of languages, and, in aesthetics, the name has been applied to a principle or law that effects are pleasant in proportion to the smallness of the effort made, and of the means taken to produce the result. The phrase “economy of truth” is due to an invidious application of the use, in patristic theology, of the wordοἰκονομίαfor the careful presentation of such doctrine as would be applicable to the hearer (see J.H. Newman,History of the Arians of the 4th Century). “Economy” is also used in theology in such expressions as “Mosaic” or “Christian economy” as a synonym of “dispensation,” for the administration of the world by God at particular times or for particular races. From the meaning of organization or administration of a house or state the word is applied more widely to the ordered arrangement of any organized body, and is equivalent almost to “system”; thus the “economy” of nature or of animal or plant life may be spoken of. The most common use, however, of the word is that of “political economy,” the science dealing with the production, distribution and consumption of wealth (seeEconomics).

ECSTASY(Gr.ἔκστασις, fromἐξίστημι, put out of its place, alter), a term applied to a morbid mental condition, in which the mind is entirely absorbed in the contemplation of one dominant idea or object, and loses for the time its normal self-control. With this there is commonly associated the prevalence of some strong emotion, which manifests itself in various ways, and with varying degrees of intensity. This state resembles in many points that of catalepsy (q.v.), but differs from it sufficiently to constitute it a separate affection. The patient in ecstasy may lie in a fixed position like the cataleptic, apparently quite unconscious, yet, on awaking, there is a distinct recollection of visions perceived during this period. More frequently there is violent emotional excitement which may find expression in impassioned utterances, and in extravagant bodily movements and gesticulations. Ecstasy usually presents itself as a kind of temporary religious insanity, and has frequently appeared as an epidemic. It is well illustrated in the celebrated examples of the dancing epidemics of Germany and Italy in the middle ages, and theConvulsionnairesof St Medard at the grave of the Abbé Paris in the early part of the 18th century, and in more recent times has been witnessed during periods of religious revivalism. (See alsoInsanityandNeuropathology.)

ECTOSPORA,a homogeneous and natural division of Protozoan parasites included under the Sporozoa; they comprise the three orders, Gregarines, Coccidia and Haemosporidia. The defining character of the Ectospora is that the spore-mother-cells (sporoblasts) are formed at the periphery of the parent-individual (sporont); we may, however, go further, and say that the formation of all the different reproductive elements is uniformly peripheral or exogenous. Two other very general features are (a) that the individual trophozoite is uninuclear, and (b) that growth and trophic activity are finished before the multiplicative or reproductive phase sets in.

There is now little doubt that the Ectospora possess a flagellate ancestry. The principal facts in favour of this view are as follows: the actual ontogenetic connexion known to exist between certain Haemoflagellates and certain Haemosporidia (seeTrypanosomes); the possession by many Coccidia of biflagellar microgametes (male elements), whose general structure greatly resembles that of a Heteromastigine Flagellate; the possession by various parasitic Flagellates (e.g.Herpetomonas) of an attached, resting phase, when the parasites become gregariniform, which strongly suggests the attached phase of many young, growing Gregarines; the typical gregarinoid and euglenoid movements of Gregarines and of the germs or other stages of Coccidia and Haemosporidia, which are quite comparable with the contractile and metabolic movements of Flagellates; and, lastly, the exogenous type of reproduction, which is easily derivable from the multiple division of certain Haemoflagellates, and this, in turn, from the typical binary longitudinal fission of a Flagellate.

ECUADOR(officiallyLa Republica del Ecuador), a republic of South America, bounded N. and N.E. by Colombia, S.E. and S. by Peru, and W. by the Pacific Ocean. Its boundary lines with Colombia and Peru were in 1909 still unsettled,Boundaries.large areas of territory being claimed by all three republics. Under an agreement of the 15th of December 1894, the disputes were to be decided by the Spanish sovereign as arbitrator, but nothing was accomplished. On the 5th of November 1904, Colombia and Ecuador agreed to submit their dispute to the German emperor, and a convention of the 12th of September 1905 between Colombia and Peru established amodus vivendifor the settlement of their conflicting claims, in which Ecuador is likewise interested. The maps of Ecuador, which are very defective, usually describe its territory asextending eastward to the Brazilian frontier, but as Peru is in actual occupation of the region east of Huiririma-chico, on the Napo river, 3½ degrees west of that frontier, those maps cannot be considered correct. The Trans-Andine territory occupied by Ecuador is a wedge-shaped area between the Coca and Napo, the provisional boundary line with Colombia, and a line running nearly west-south-west from Huiririma-chico (about lat. 2° 50′ S., long. 73° 20′ W.) to a point on the Santiago river in about lat. 4° 12′ S., long. 78° W., which forms the provisional boundary with Peru. The eastern part of this territory is also claimed by Peru, which would have the effect, if allowed, of restricting Ecuador to a comparatively small area covered by the Andes and western Cordillera and the narrow plain on the Pacific coast. From the Santiago river, a western affluent of the Marañon, the boundary line runs south-west and west across the Andes to the head waters of the Macara, down that stream to the Chira, or Achira, whose channel marks the frontier down to about 80° 17′ W., where a small stream (the Rio Alamo) enters from the north. The line then runs almost due north to the south shore of the Gulf of Guayaquil, following the western water parting of the lower Tumbez valley. A small district in the valley of the Chira is claimed by Peru. The northern boundary line is described elsewhere (seeColombia). A small section of this line terminating on the Pacific coast is also in dispute, Ecuador claiming the main channel of the Mira as the dividing line, and Colombia claiming a small district south of that channel, the line running due west from the mouth of the most southern outlet of the Mira opening into Panguapi Bay, to a point of intersection with that river.

Physical Geography.—The surface of Ecuador may be divided into three distinct regions: the Cis-Andine lying between the Western Cordillera and the coast; the Inter-Andine, which includes the two great mountain chains crossing the republic with the elevated plateau lying between; and the Trans-Andine, lying east of the Andes in the great Amazon valley. The first part consists of an alluvial, low-lying plain formed in great part by the detritus brought down by the mountain streams. It is irregular in form and is broken by isolated elevations and spurs from the Cordillera. Large areas are still subject to annual inundations in the rainy season, and the lower river courses are bordered with swamps. This is the most fertile and productive part of Ecuador, especially on the higher lands near the Cordillera. The Trans-Andine region is similar to the neighbouring territories of the upper Amazon basin occupied by Colombia, Brazil and Peru—a great forest-covered plain descending gently toward the east, broken on its western margin by short spurs from the Andes enclosing highly fertile valleys, and by low, isolated ranges between the larger river courses, and traversed by large rivers flowing into the Napo and Marañon. This region has been only partially explored, and but little is known of the large areas lying between the navigable rivers.The Inter-Andine or plateau region lies in and between the two great mountain chains which cross the greater part of the republic between and almost parallel with the 78th and 79th meridians. The eastern chain is known as the Andes of Ecuador, or the Cordillera Oriental, and the western asMountains.the Cordillera Occidental (Western Cordillera). Starting from the confused grouping on the southern frontier of the two great chains and some transverse ranges, they run nearly north by east to the Colombian frontier where another “knot” or junction occurs. The summits of the western range form a line of noteworthy regularity, but those of the eastern form a broken irregular line of varying distances from the first. The elevated plateau between the two great chains, which is about 300 m. long and 20 to 30 m. wide, is divided into three great shallow basins or plains by the transverse ridges orparamosof Tiupullo and Azuay. These are known as the Quito, Ambato and Cuenca basins. South of the latter is the irregular and deeply broken Loja basin, which can hardly be considered a part of the great Ecuador plateau. The three great basins, which are broken and subdivided by mountainous spurs and ridges, descend gradually toward the south, the Quito plain having an average elevation of 9500 ft. above the sea, Ambato 8500, and Cuenca 7800. They are also characterized by the increasing aridity of the plateau from north to south, the Quito plain being fertile and well covered with vegetation, and the Ambato and Cuenca plains being barren and desolate except in some favoured localities. The volcanic character of the region is likewise responsible for large areas of barren surfaces. Rising from this elevated plateau, along its eastern and western margins, are the Cordilleras with their principal summits culminating far above the line of perpetual snow, which in this region is about 15,750 ft. above the sea. These summits are remarkable, not only for their great height, but also for their apparent symmetrical arrangement in parallel lines, sometimes in pairs facing each other across this cyclopean passage. Nowhere in the world can there be found another such assemblage of snow-clad peaks, several of which are active volcanoes. There are 22 of them grouped around these central plains almost within sight of each other. The western chain has the distinction of having the highest summit, the eastern the greatest number of high summits and the highest average elevation. From the time of Humboldt’s visit to this remarkable region down to the present time there have been many diverse calculations of the height of these peaks, but with a considerable variation. It is estimated that there was a considerable decrease in the elevation of this part of the Andes during the past century, Quito having sunk 26 ft. in 122 years, Pichincha 218 ft. in the same time, and the farm of Antisana, where Humboldt resided for a time, 165 ft. in 64 years. At the same time Cotopaxi and Sangay, the two active volcanoes, have actually increased in elevation since the measurement of La Condamine in 1742. These changes in elevation, if correct, are due to seismic disturbances, a cause that may be partially responsible for the varying computations of the heights of these well-known peaks. Among modern investigators are W. Reiss and A. Stübel (1871-1873), and Edward Whymper (1880), whose measurements of the principal summits were:—Eastern Cordillera.Western Cordillera.Ft.Ft.Cayambe(W.)19,186Cotocachi(W.)16,301Sara-Urcu”15,502Mojanda(R. & S.)14,088Antisana”19,335Pichincha(W.)15,918Sincholagua(R. & S.)16,365Atacatzo(R. & S.)14,892Rumiñagui”15,607El Corazon (Chamalari)(W.)15,871Cotopaxi(W.)19,613Iliniza(R. & S.)17,405Tunguragua(R. & S.)16,690Carahuairazo(W.)16,515Altar (Capac-Urcu)”17,730Chimborazo”20,498Sangay”17,464The Imbabura volcano, celebrated for its destructive eruptions of mud and water, stands midway between the two ranges at the northern end of the plateau, and belongs to the transverse ridge of knot (nudo) which unites them. It is the most northern of the higher peaks of Ecuador, with the exception of Cotocachi, and possibly of Chiles on the Colombian frontier, and reaches the elevation of 15,033 ft. Ibarra on the northern flanks of the volcano has suffered severely from its eruptions. The name is derived fromimba, fish, andbura, mother, and is said to have originated from the quantities of a fish called “preñadilla” (Pimelodus cyclopum) discharged from its crater during one of its eruptions—a phenomenon which, after a searching investigation, was discredited by Wagner. Cayambe, or Cayembi, the second highest peak of the Ecuadorean Andes, has the noteworthy distinction of standing very nearly on the equator. Its base covers a large area, and its square top, rising far above the snow-line, is one of the sights of Quito. Antisana is crowned with a double dome, and is described as an extinct volcano, though Humboldt saw smoke issuing from it in 1802. On its western side is the famoushacienda(farm) of Antisana, 13,306 ft. above the sea, where Humboldt resided for several months in 1802. Sara-Urcu stands south-east of Antisana in a densely forested region, drenched with rain and only slightly explored. Sincholagua and Rumiñagui are the next two peaks, going southward, and then the unrivalled cone of Cotopaxi (q.v.)—the highest active volcano in the world—from whose summit smoke curls upward unceasingly.Llanganati or Cerro Hermoso is chiefly known through the tradition that the treasures of the Incas were buried in a lake on its slopes. It consists of a group of summits, the highest being credited with 17,843 ft. Tunguragua, or Tungurahua, has a cone-shaped summit like that of Cotopaxi, with a slope of 38°. It rises from a plain somewhat lower than the neighbouring central plateau and stands free from the surrounding elevations, except on the south, which give it an exceptionally imposing appearance. Among its characteristic features is a cataract fed by melting snows, which descends 1500 ft. in three leaps, and an enormous basaltic lava-stream, which crosses the face of the mountain in a north-easterly direction. Its most notable eruption was in 1777. It has been sometimes classed among the extinct volcanoes, but smoke has been seen issuing from it at different dates, and a violent eruption occurred on January 12, 1886. The fertile cultivated valley of Baños, with its thermal springs, lies at the base of Tunguragua, which F. Hassaurek describes as “the most beautiful of all the snow peaks in the country.” The next in line is El Altar, which the natives call Capac-Urcu (“king mountain”), whose broken cone and impressive outlines make it one of the most attractive mountains of Ecuador. Its summit comprises a group of eight snow-clad peaks, and its crater is surrounded by a steep and jagged wall of rocks. There is a tradition that this mountain was once higher than Chimborazo, but a series of eruptions caused the cone to fall in and reduced its summit to its present altitude and broken appearance. Altar has shown no signs of activity since the discovery of America. Sangay, or Sangai, the next and last large volcano to the south, is in a state of frequent eruption, however, and is known as one of the most restless volcanoes of the world. Since the Spanish conquest it has been in a state of uninterrupted activity, but no damage has been done, because there are no civilized settlements in its immediate vicinity. Though of great interest to scientific investigators because of this unceasing activity, and of its peculiar position in the Andean system, and because of the difficult and dangerous country by which it is surrounded, Sangay has been but rarely visited by European travellers. Its eruptions are not on a grand scale, but small outbursts of lava and explosions of steam occur at frequent intervals, and at longer intervals more violent explosions in which the molten rock is thrown 2000 ft. above its summit, and ashes are carried away as far as the streets of Guayaquil.Turning to the Cordillera Occidental and taking the principal peaks in order from south to north, the first to claim attention is Chimborazo (fromChimpu-raza, “mountain of snow”), the highest summit of Ecuador, and once believed to be the culminating point of the Andes. Humboldt, who unsuccessfully attempted its ascent in 1802, gives its elevation as 21,425 ft., Reiss and Stubel as 20,703, and Whymper as 20,498. It stands 76 m. north-east of Guayaquil, and, according to Spruce, rises majestically from the valley of the Guayas, on the west, without a “positive break from the summit down to the plain.” This, however, is erroneous, for Whymper located a detached range running parallel with the Cordillera on the west, for a distance of 65 m. with the Chimbo valley between them. The magnificence of its mass is imposing from almost any point of view, but it can be most fully appreciated from its western or Pacific side, where its base is covered with forest up to the snow-line, above which its pure white cone rises another 5000 ft. An unobstructed view of the great mountain is rarely obtained, however, because of the mists and clouds which cover its cone. Its summits were reached for the first time in 1880 by Edward Whymper, all previous attempts having failed. It is considered to be an extinct volcano because it makes the plumb-line deviate only 7″ to 8″, from which it is deduced that the mountain is hollow. Moreover, the calcined matter resembling white sand which covers its sides below the snow-line, extensive beds of lava, and the issue of streams of hot water from its northern side, seem to confirm the deduction that Chimborazo is an extinct volcano. Immediately north of Chimborazo, and separated from it by only a narrow valley, are the lower triple summits of Carahuairazo, or Carguairazo (which the natives callChimborazo-embra, “Chimborazo’s wife”), whose hollow cone collapsed in 1698 during a great earthquake, and left the jagged rim which adds so much to its present picturesque appearance. Mr Whymper’s measurement is for the middle peak. Quirotoa, still farther north, is supposed to have suffered a similar catastrophe. Its hollow summit, 13,510 ft. above sea-level, now contains a large lake. Iliniza, which stands west by north of Cotopaxi, has two pyramidal peaks, and is one of the most interesting mountains of the Ecuadorean group. It stands at the western end of the Tiupullo ridge, and overlooks the Quito basin to the north-east. The French academician Bouger, who was chief of the scientific commission sent to Ecuador in 1736 to measure a degree of the meridian on the equator, made a trigonometrical measurement of Iliniza, and Wagner ascended to within 800 ft. of its summit in 1859. The geological structure of the mountain furnishes no evidence of volcanic activity. Chamalari, which the Spaniards called El Corazon from its heart-shaped appearance, is similarly destitute of a crater. It overlooks the Quito basin and has been ascended many times. Among the earlier explorers to reach its summit were Bouger and La Condamine, Humboldt and Bonpland, and José Cáldas, the Granadian naturalist. Atacatzo is an extinct volcano, with nothing noteworthy in its appearance and history. Pichincha, its famous neighbour, is apparently of later origin, according to Wagner, and of slightly lower elevation. Perhaps no Ecuadorean volcano is better known than Pichincha, the “boiling mountain,” because of its destructive eruptions and its proximity to the city of Quito. Its summit comprises three groups of rocky peaks, of which the most westerly, Rucu-Pichincha (Old Pichincha), contains the crater, a funnel-shaped basin 2460 ft. deep and about 1500 ft. wide at the bottom, whose walls in places rise perpendicularly and in others at an angle of 20°. The exterior of the cone has an angle of 30°. Bouger and La Condamine were the first to reach its brink in 1742, after which Humboldt made the ascent in 1802, Boussingault and Hall in 1831, Garcia Moreno and Sebastian Wisse in 1844 and 1845 (descending into the crater for the first time), Garcia Moreno and Jameson in 1857, Farrand and Hassaurek in 1862, Orton in 1867, and Whymper in 1880. Farrand spent more than a week in the crater trying to get some good photographic views, and Orton has given a graphic description of his experiences in the same place. He found that the real cone of eruption was an irregular heap 250 ft. in height and 800 ft. in diameter, containing about 70 vents. The temperature of the vapour within the fumarole was 184°, and water boiled at 189°. There have been five eruptions of Pichincha since the Spanish conquest—in 1539, 1566, 1575, 1587 and 1660. The second covered Quito 3 ft. deep with ashes and stones, but the last three were considered as the most destructive to that city. The last happily broke down the western side of the crater, which, it is believed, will ensure the city against harm in any subsequent eruption. Since the earthquake of August 1867 Pichincha has sent forth dense masses of black smoke and great quantities of fine sand. Cotocachi is a double-peaked mountain, rising from an extremely rough country. It was ascended by Whymper in 1880. All the higher summits of Ecuador have true glaciers, the largest being found on Antisana, Cayambe and Chimborazo. Whymper located and named no less than eleven on Chimborazo, and counted twelve on Cayambe.There are two distinct hydrographic systems in Ecuador—the streams that flow south-eastward to the Marañon, or Amazon, and those which flow westward to the Pacific. The southern part of the great central plateau is arid and has a veryRivers.light rainfall; it has no streams, therefore, except from melting snows, and the higher elevations which receive the impact of the easterly winds. Farther north the rainfall becomes heavier, the plateau is covered with vegetation, and a considerable number of small rivers flow westward through the Cordillera to the Pacific. The Eastern Cordillera, or Andes, forms the water-parting between the two systems. The largest of the eastward-flowing rivers is the Napo, which rises in the eastern defiles of Cotopaxi and Sincholagua—the principal source being the Rio del Valle, which traverses the Valle Vicioso. It at first flows south by east, and at the village of Napo is 1450 ft. above sea-level, at the mouth of the Coca 858 ft., at the mouth of the Aguarico 586 ft., 500 at the mouth of the Curaray, and 385 at its junction with the Marañon. Orton estimates its current at Napo in the month of November as 6 m. an hour; in the next 80 m. the river falls 350 ft. and produces a fine series of rapids; and from Santa Rosa downwards the rate is not less than 4 m. an hour. Its breadth at Napo is only 120 ft., but at Coca it has widened to 1500 ft., and at its mouth to nearly 1 m. Like most of the large Amazon tributaries, its discharge into the Marañon is through several distinct channels. The Napo is navigable for steam-boats for some distance above the mouth of the Coca, and thence for canoes as far as the Cando cataract, 3332 ft. above the sea. Its total length is 920 m. The principal tributaries of the Napo are the Coca and Aguarico from the north, and the Curaray from the south. The Coca rises on the eastern slopes of the Andes near Cayambe and the Guamani range, and flows eastward near the equator to San Rafael (about 76° 30′ W. long.), where it turns sharply southward to a junction with the Napo in about lat. 1° S., long. 76° W. TheCoca forms the provisional boundary line between Ecuador and Colombia from its source to the Napo. The Aguarico also rises on the eastern slopes of the Andes north of Cayambe and flows south-eastward to a junction with the Napo in about long. 75° W., its length being roughly estimated at 420 m. Little is known of its course, or of the country through which it flows, which is provisionally occupied by Colombia. The Curaray has its sources in the defiles of the Cerros de Llanganati, and flows south-eastward to the Napo, its length being estimated at 490 m. Its lower course is sluggish, where its waters are made unpalatable by a reddish slime. The Napo and its tributaries are celebrated in the early history of South America as the route by which Gonzalo Pizarro and Orellana first reached the Amazon, and it was afterwards the principal route by which the early expeditions across the continent at this point connected the Andean Plateau with the Amazon. The other rivers which flow through the Oriente territory of Ecuador into the Marañon are the Tigre, Pastaza, Morona and Santiago. The Tigre, of which little was known until a recent date, is formed by the confluence of the Cunambo and Huiviyacu, whose sources are on the eastern slopes of the Andes near those of the Curaray. Its length below this confluence is 416 m., into which are received 109 tributaries, the largest of which are the Pucacuro and Corrientes. The Tigre is navigable at all stages up to the Cunambo confluence, and promises to afford one of the most valuable river routes in Ecuador. It enters the Marañon very near the 74th meridian. The Pastaza, or Pastassa, unlike the rivers already described, has its source on the central plateau west of the principal chain of the Andes, within the shadow of Cotopaxi, and breaks through the Cordillera to the north of Tunguragua. After flowing southward along the base of the high Andes for a short distance and receiving a number of torrents from the snowclad heights, it turns south-eastward across the plain and enters the Marañon about 70 m. above the mouth of the Huallaga. The stream is known as the Patate down to its junction with the Chambo, near Baños, and is not called Pastaza until the Agoyan falls are passed. It was navigated by Don Pedro Maldonado as early as 1741, and is navigable for steamboats of 2 to 4 ft. draft up to the mouth of the Huasaga (about 124 m.) in times of high water, and for canoes nearly 200 m. farther. The Pastaza, however, is subject to irresistible floods caused by the sudden rising of the mountain torrents on its upper course, especially the Toro, which sweep down with such fury that navigation on the river is practically impossible. The shallowness of the lower stream, where the current is sluggish, is probably due to the great quantities of silt brought down by these floods. Many of the rivers of eastern Ecuador are subject to similar floods from the Andean slopes, which have cut away broad, deep channels, through the adjacent plains, leaving long, narrow ridges between their courses which the natives callcuchillas. The Morona is formed by the confluence of the Manhuasisa and Cangaima about 310 m. above its mouth, and is freely navigable for small steamboats to that point. The two confluents just mentioned have their sources in the Andes, and flow for some distance across the plain before uniting to form the Morona. Both are navigable for considerable distances. The Morona follows a very tortuous course before entering the Marañon, at long. 70° W., and receives a large number of affluents, one of which serves as the outlet for Lake Rimachuma, in Peruvian territory. Very little is definitely known of the affluents of the Morona, Pastaza and Tigre, as the territory through which they run has been but slightly explored. The Santiago, which enters the Marañon near the Pongo de Manseriche, is formed by the confluence of the Paute, which rises in the province of Azuay, and the Zamora, which has its source among the mountains of Loja. According to Alexander Garland (Peru in 1906), the rivers of eastern Ecuador are navigable at low water for steamers of 2 to 4 ft. draft for an aggregate distance of 1503 m., as follows:—Miles.Napo, to the mouth of the Aguarico559Curaray, up to Canonaco286Tigre, up to Cunambo-Huiviyacu confluence416Pastaza31Morona, up to the Rarayacu211These same rivers are navigable at high water for steamers of 19½ ft. draft for an aggregate distance of 1330 m., including 68 m. of the Aguarico, and for steamers of 2 to 4 ft. draft for an additional 733 m. The last aggregate includes an extension of 93 m. on the Pastaza, 99 on the Morona, 186 on the Napo, and the balance on the Manhuasisa, Cangaima, Pucacuro, Corrientes, Cunambo and Huiviyacu.On the western versant of the Andes of Ecuador there are three river systems of considerable size—the Mira, the Esmeraldas and the Guayas. The sources of the first—the Rioblanco, Pisco and Puntal—are to be found on the northern slopes of the transverse ridge which culminates in the Imbabura volcano. Its course is north and north-west to the Colombian frontier, thence westward and north-west to the Pacific, breaking through the Western Cordillera on its way. It forms the boundary line for some distance between Ecuador and Colombia, but near its mouth where the river turns northward Colombia has taken possession of the left bank and all the territory covered by its large delta. Its principal tributaries on the left are the San Pedro, Paramba, Cachiyacu, Chachavi and Canumbi, and on the right the San Juan, Caiquer and Nulpe. The delta channels of the Mira are navigable, being tributary to the Colombian port of Tumaco. The Esmeraldas drains all that part of the central plateau lying between the transverse ridge of Tiupullo on the south, and the Imbabura ridge on the north, together with the western slopes of the Cordillera between Iliniza and Cotocachi, and a considerable part of the lower plain. It is formed by the confluence of the Quininde and Toachi with the Guaillabamba between 40 and 50 m. above its mouth, and discharges into the Pacific in lat. 1° N., long. 79° 40′ W., through a narrow and precipitous gorge. The volume and current of the river is sufficient to freshen the sea 2 m. from the coast. The Guaillabamba is the larger and more important tributary, and should be considered the main stream. It rises in the Chillo valley in the vicinity of Cayambe, and flows across the northern end of the central plateau, breaking through the Western Cordillera between Cotocachi and Pichincha. One of its plateau tributaries, Rio Pedregal, rises on the slopes of Cotopaxi and is celebrated for its three beautiful cascades, the highest of which is about 220 ft. The Toachi and Quininde have their sources on the western slopes of the Cordillera. The Guayas or Guayaquil river is in part an estuary extending northward from the Gulf of Guayaquil, bordered by mangrove swamps and mud banks formed by the silt brought down from the neighbouring mountains. All the bordering country on both sides is of the same description, and for a long distance inland extensive areas of swampy country are submerged during the rainy season. Above the mouth of the Daule the river is known as the Bodegas, which in turn is formed by the confluence of the Babahoyo and the Vinces. The Guayas also receives a large tributary from the east called the Yaguachi. All these streams are navigable on their lower courses, regular steamboat communication being maintained on the Guayas and Bodegas to a river port of the latter name, 80 m. above Guayaquil, and for 40 m. on the Daule. The navigable channels of all the rivers are computed at 200 m. The drainage basin of the Guayas, according to Theodor Wolf, covers an area of 14,000 sq. m., and includes the greater part of the lower plain and the western slopes of the Cordillera Occidental as far north as Iliniza. The Babahoyo, which is the main stream, has its sources on the slopes of Chimborazo, the Daule on the Sandomo ridge in the latitude of Pichincha, the Yaguachi on the south-eastern slopes of Chimborazo, whence it flows southward for a considerable distance before breaking through the Cordillera to the western plain. The Guayas is one of the most interesting and varied of the South American river systems, and is of great economic importance to Ecuador. In addition to these three river systems, there are a large number of short streams on the coast flowing into the Pacific and Gulf of Guayaquil, only two of which have any special importance in the present undeveloped state of the country. These are the Santiago, which drains several fertile valleys in northern Esmeraldas and western Carchi, and whose outlet is connected with some navigable tide-water channels, including the Pailon basin and the Caráquez, or Caracas, on which is located the village of Bahia de Caráquez (lat. 0° 34′ S.), the nearest port to the city of Quito.There are a considerable number of small lakes in Ecuador, but no large ones. These are of two classes—those of the bowl-like valleys and extinct craters of the mountainous region, and the reservoir lakes of the lowland plains caused byLakes.the annual overflow of the rivers. It is impossible to say how many of the latter there may be, for much of the territory where they are found is unexplored. They are usually shallow and malarial. Among the upland lakes, there are some of special interest because of their position and historical association. The Yaguar-cocha (“lake of blood”), in the province of Imbabura, near Ibarra, which is only 1½ m. in circumference, is celebrated for the tradition that Huayna-Capac, one of the great conquerors of the Inca dynasty, defeated an army of rebellious Carranquis on its shores, and threw so many of their bleeding corpses into it as to turn its waters to the colour of blood. On the south-east skirt of Cotocachi, 10,200 ft. above the sea, is the beautiful little Cuy-cocha, which originated, it is believed, through the falling in of the mountain’s sides. There are two others of apparently the same origin on the north-west slopes of the Mojanda volcano, but they are less attractive because of their gloomy surroundings. In the deep valley between the mountains of Imbabura and Mojanda is the lake of San Pablo, 8848 ft. above the sea. It is one of the largest of its class, being about 5 m. in circumference, and is situated in an exceptionally fertile region. It drains through the Peguchi into the Rio Blanco, a tributary of the Mira. Other well-known lakes of the plateau region are Quirotoa, about 4600 ft. in diameter; Colta, east of Riobamba, and Colay, south of the same place. Among the many thermal springs throughout the Andean districts, the best known are at Belermos and San Pedro del Tingo, north-east of Quito; at Cachillacta, in the district of Nanegal; at Timbugpoyo, near Latacunga; at Baños (5906 ft. elevation), near the foot of Tunguragua; and on the slopes of Rumiñagui and Chimborazo.The coast of Ecuador extends from about lat. 1° 20′ N. to the vicinity of the Boca Jambeli on the southern shore of the Gulf of Guayaquil, in lat. 3° 14′ S., and has an outward curve. Its more prominent headlands are Punta Galera, CaboCoast.Pasado, Cabo de San Lorenzo and La Puntilla, or Santa ÉlenaPoint. The bays on this coast are commonly broad indentations, and the rivers discharging into them are generally obstructed by bars. The small ports along the coast, therefore, do not afford much protection to shipping. The most northern of these bays is the Ancon de Sardinas, lying south of the Mira delta. The head of the bay is fringed with islands and reefs, behind which is the mouth of the Santiago river, Poza Harbour, San Lorenzo Bay, Pailon basin and a network of navigable channels, all of which are difficult of access. The small ports of La Tola and Pailon are located on these waters. The port of Esmeraldas, near the mouth of the Esmeraldas river, is located near the southern entrance to this bay. As the mouth of the river is obstructed by a bar and its current is swift, the anchorage is outside in an open roadstead, only slightly protected on the south. Farther south is the broad Bay of Manta, with a small port of the same name at its southern extremity. The most frequented port on this part of the coast is that of Bahia de Caráquez, at the mouth of the Caráquez, or Caracas river, which is also obstructed by a bar. There is a fertile, productive country back of this port, and it is the objective point of a road from Quito. Immediately north of the Gulf of Guayaquil is the Bay of Santa Élena, with a small port of the same name, which has a good, well-sheltered anchorage and is the landing-place of the West Coast cable. The Gulf of Guayaquil, which lies between the Ecuadorean and Peruvian coasts, is the largest gulf on the Pacific coast of South America between Panama and Chiloe. Its mouth is 140 m. wide between La Puntilla on the north and Cabo Blanco on the south, and it penetrates the land eastward, with a slight curve northward at its head, for a distance of about 100 m., terminating in the Guayas estuary or river, on which is located the port of Guayaquil. The upper end of the bay and its northern shores are fringed with swamps through which numerous estuaries penetrate for some distance inland. Immediately west of the Guayas river the Estero Salado, which comprises a great many shallow tide-water channels, or bayous, penetrates as far inland as Guayaquil, but is used only by canoes. The upper end of the gulf is filling up with the silt brought down from the Cordillera. It is divided midway by the large island of Puna, at the eastern end of which is the anchorage for steamers too large to ascend the Guayas. The steamship channel passes between this island and the Peruvian coast, and is known as the Jambeli channel. The passage north of Puna Island is known as the Morro channel, but its entrance is obstructed by shoals and it is considered dangerous for shipping. A small port in the Jambeli channel, on the south-east shore of the gulf, is that of Puerto Bolivar, or Puerto Huaila, the shipping port for the town of Machala and the Zaruma mining region.There are few islands off the coast of Ecuador, and only one of any considerable size—that of Puna in the Gulf of Guayaquil, which is 29 m. long from north-east to south-west and 8 to 14 m. wide. It lies in the north-east part of the gulf, and isIslands.separated from the Ecuadorean mainland by the Morro channel, and from the southern mainland by the wider and deeper Jambeli channel. There is a low, mountainous ridge, called the Zampo Palo, running through it, and its eastern shores have some moderately high bluffs; otherwise the island is low and swampy, and its shores, except the eastern end, are fringed with mud banks. The island is densely wooded (in marked contrast with the opposite Peruvian shore), and is considered unhealthy throughout the greater part. It has a population of 200, chiefly centred in the village of Puna, at its north-east extremity, which is a shipping port and health resort for the city of Guayaquil. Puna island is celebrated for its connexion with Pizarro’s invasion of Peru in 1531. It is said that it had a considerable population at that time, and that the natives resisted the invaders so vigorously that it cost six months to reduce them. Midway in the outer part of the Gulf of Guayaquil is Amortajada or Santa Clara island, whose resemblance to a shrouded corpse suggested the name which it bears. It lies 12 m. south-west of Puna island and 80 m. from Guayaquil. It rises to a considerable elevation, and carries a light 256 ft. above sea-level. There are some low, swampy islands, or mud flats, covered with mangrove thickets, in the lower Guayas river, but they are uninhabited and of no importance. North of the Gulf of Guayaquil there are only two small islands on the coast of more than local interest. The first of these is Salango, in lat. 1° 25′ S., which is 2 m. in circumference and rises to a height of 524 ft. It is richly wooded, and has a well-sheltered anchorage much frequented by whalers in search of water and fresh provisions. The next is La Plata, in lat. 1° 16′ S., which rises to a height of 790 ft., and has a deep anchorage on its eastern side where Drake is said to have anchored in 1579 to divide the spoils of the Spanish treasure ship “Cacafuego.” The Galapagos Islands (q.v.) belong to the republic of Ecuador, and form a part of the province of Guayas.Geology.1—The great longitudinal depression which lies between the eastern and the western branches of the Andes is also the boundary between the ancient rocks of the east and the Mesozoic beds which form the greater part of the west of the country. The Eastern Cordillera is composed of gneiss, mica and chlorite schist and other crystalline rocks of ancient date; the Western Cordillera, on the other hand, is formed of porphyritic eruptive rocks of Mesozoic age, together with sedimentary deposits containing Cretaceous fossils. Most of the country between the Andes and the sea is covered by Tertiary and Quaternary beds; but the range of hills which runs north-west from Guayaquil is formed of Cretaceous and porphyritic rocks similar to those of the Andes. In the intra-andine depression, between the East and West Cordilleras, recent deposits with plant remains occur near Loja, and to the north-east of Cuenca is a sandstone containing mercury ores, somewhat similar to that of Peru. Farther north nearly the whole of the depression is filled with lavas, tuffs and agglomerates, derived from the Tertiary and recent volcanoes which form the most striking feature of the Andes of Ecuador. These volcanoes are most numerous in the northern half of the country, and they stand indifferently upon the folded Mesozoic beds of the Western Cordillera (e.g.Chimborazo, Iliniza, Pichincha), the ancient rocks of the Eastern Cordillera (Altar, Tunguragua, Cotopaxi, Antisana), or the floor of the great depression between. The lavas and ashes are for the most part andesitic.Climate.—Climatic conditions in Ecuador are very largely contingent on altitude, and the transition from one climate to another is a matter of only a few hours’ journey. Although the equator crosses the northern part of the republic, only 15 m. north of the city Of Quito, a very considerable part of its area has the temperature of the temperate zone, and snow-crowned summits are to be seen every day in the year from its great central plateau. In addition to the climatic changes due to altitude, there are others caused by local arid conditions, by volcanic influences and by the influence of mountain ranges on the temperature and rainfall of certain districts. These influences are not general; on the contrary, they often affect very limited areas. For instance, Guayaquil has a hot humid climate and mangrove swamps line the shores of Guayas down to the gulf; at Santa Élena, about 60 m. due west, arid conditions prevail and vegetation is scanty and dwarfed; at Salango island, 50 m. north of Santa Élena, there is an abundance of moisture and vegetation is luxuriant; 33 m. farther north, at Manta, the country is a desert; and at Atacames bay, 135 m. north of Manta, the rainfall and vegetation are again favourable. On the plateau similar conditions prevail. There is no great display of arboreal vegetation anywhere except in the valleys and lower passes where the rainfall is abundant, but in general terms it may be said that the rainfall and vegetation which characterize the Quito basin soon disappear as one proceeds southward, and are substituted by arid conditions. Even here there are local modifications, as at Ambato, where a shallow depression, surrounded by barren, dust-covered ridges exposed to cold winds, is celebrated for its warm, equable climate and its fruit. It is to be noted that the Gulf of Guayaquil separates the humid, forest-covered coastal plain of Ecuador from the arid, barren coast of Peru, the two regions being widely dissimilar. The mean annual temperature, on this plain, according to an official publication, is 82.4° F., and the range is from 66° to 95°. The heat is modified at many points on the coast, however, by the cold Humboldt current which sweeps up the west coast of South America from the Antarctic seas. The year is divided into a wet and dry season—the former running from December to June, and the latter from July to December. The rainy season, orinvierno, is broken by a short period of dry weather, called theveranillo(little summer), shortly after the December solstice; otherwise it rains every day, the streams overflow, land traffic is suspended, and the air is drenched with moisture and becomes oppressive and pestiferous. The dry season, which is called theverano, or summer, is also broken by a short rainy spell called theinviernillo(little winter) or “cordonazo de San Francisco,” which follows the September equinox. Apart from these the two seasons are sometimes broken by cloudless skies in winter, and a drizzling mist, called thegarua, in summer. In the inter-andine region the variations in temperature are frequent and the averages comparatively low. An official estimate gives the mean annual temperature as 64° to 68° between 6000 and 11,000 ft. In Quito the mean annual temperature is 58.8°, the diurnal variation 10°, the annual maximum 70°, and the annual minimum 45°. Other returns give the mean annual temperature at 55°. It is said that pulmonary tuberculosis is unknown in these altitudes, though it is common in the coast districts. Catarrhal complaints are common, however, and leprosy is widely prevalent, it being necessary to maintain three large hospitals for lepers. In the higher altitudes there are wide variations in the snow-fall and intensity of the cold even on the same mountain. The line of permanent snow is much higher on the plateau side in both ranges, the precipitation being greater on the outer sides—those facing the forested lowlands—and the terrestrial radiation being greater from the barren surfaces of the plateau. In some instances the difference in the elevation of the snow-line has been found to be fully 1000 ft. Moreover, no two summits seem to retain the snow permanently at the same altitude. For instance, in 1880 Whymper found permanent snow on Cotocachi at 14,500 ft., while near by Imbabura was bare to its summit (15,033 ft.); Antisana was permanently covered at 16,000 ft., and near by Sara-Urcu, which is drenched with rains and mists from the Amazon valleyall the year round, at 14,000 ft.; Sincholagua had large beds of permanent snow at 15,300 ft., Cotopaxi was permanently covered at 15,500 ft. on its western side, Corazon had daily snowstorms down to 14,500 ft., but no permanent beds of snow on its east side (elevation 15,871 ft.); and Chimborazo had deep snow at 15,600 ft. on its north-east and south sides in June—July. The eastern range was found to receive the heaviest snowfall. The elevation at which human residence is possible seems to be unusually high in Ecuador. Many of the towns and villages of central Ecuador lie at altitudes ranging from 8606 ft. (Ambato) to 9839 ft. (Machachi). The capital city of Quito is 9343 ft. above the sea, and is celebrated for its agreeable temperature, and also for its healthiness in spite of prevailing unsanitary conditions. Above these towns are a number of farms and herdsmen’s habitations, where men live the whole or a part of the year with less discomfort from low temperature than is experienced in northern Europe and northern United States. According to Whymper, thetamboof Chuquipoquio, at the foot of Chimborazo, is 11,704 ft., and thehaciendaof Pedregal, near Iliniza, 11,629 ft., both being permanently occupied. Thehaciendaof Antisana, 13,306 ft., and the herdsmen’s hut of Cunayaco on Chimborazo, 13,396 ft., are occupied only for a part of the year. The highest elevations are generally covered with ice and snow, and glaciers, according to Whymper, are to be found upon no less than nine of the culminating peaks, and possibly upon two or three more. These serve to modify the temperatures of the plateau, which is swept by cold winds at all seasons of the year. The prevailing wind is that of the north-east and south-east trade winds, broken and modified on the plateau and western lowlands by mountain barriers. Westerly and north-west winds are sometimes experienced, but are not permanent.Flora.—The flora of the Quito basin has been well studied by various European botanists, more especially by Dr William Jameson (1796-1873) of the university of Quito, who began the preparation of a synopsis of the Ecuadorean flora in 1864-1865 (Synopsis plantarum Quitensium, 2 vols., Quito, 1865). The flora of the forested lowlands on both sides of the Andes has not been studied and described so fully. From the Pacific coast upward to a height of about 3000 to 4000 ft. the vegetation is distinctively tropical, including among its economic products cacao, cotton, sugar, tobacco, rice, maize, yucca (also known as cassava and mandioca), peanuts, bananas, sweet potatoes, yams, arracacha (Conium moschatum, H.B.K., orArracacha esculenta), indigo, rubber (Castilloa), ivory-nuts, cinchona and bread-fruit. Most of these become rare at 3000 ft., but a few, like sugar-cane, are cultivated as high as 8000 ft. The alluvial valley of the Guayas, above Guayaquil, is celebrated for the richness of its vegetation, which, in fruit alone, includes cacao, coffee, coco-nuts, pine-apples, oranges, lemons, guayavas (Psidium pomiferum), guavas (Inga spectabilis), shaddocks (or grape-fruit), pomegranates, apricots, chirimoyas (Anona Chirimolia), granadillas (Passiflora quadrangularis), paltas (Persea gratissima, otherwise known as “alligator pears”), tunas (Cactus), mangoes (Mangifera Indica), pacays (Prosopis dulcis), aji (Chile pepper), and many others of less importance. Besides rubber, the forests produce a great variety of cabinet and construction woods, ivory-nuts (from the “tagua” palm,Phytelephas macrocarpa), “toquilla” fibre (Carludovica palmata) for the manufacture of so-called Panama hats, cabbage palms, several species of cinchona, vanilla and dyewoods. Among the large trees which are valued for their timber are redwood (Humiria balsamifera), Brazil-wood, algarrobo, palo de cruz (Jacquinea ruscifolia), guaiacum or holy wood, rosewood, cedar and walnut. From 6000 to 10,000 ft. above the sea, the indigenous species include the potato, maize, oca (Oxalis tuberosa), and quinua (Chenopodium quinoa), and the exotic species, wheat, barley, oats, alfalfa (Medicago sativa), and most of the fruits and vegetables of the northern temperate zone. Wheat does not form a head below 4500 ft., nor ripen above 10,500. The larger forest trees are rarely seen above 10,000 ft., and even there only on the outer slopes of the Cordilleras. TheEscallonia myrtalloides, however, is found at an elevation of 13,000 ft., and the shrubbyBefarias400 or 500 ft. higher. A characteristic growth of the open plateau and upland valleys is the cabulla, cabaya or maguey (Agave americana), whose fibre is much used by the natives in the manufacture of cordage, sandals (alpargatas) and other useful articles. In the treeless region lying between 11,600 and 13,800, or in other places between 12,000 and 14,000 ft., the similarity of the vegetation to that of the corresponding European region, according to Wagner, is especially striking. On theparamosof Chimborazo, Pichincha, Iliniza, &c., the relation of characteristic genera to those identical with genera in the Alpine flora of Europe is as 5 to 4; and the botanist might almost suppose himself in the Upper Engadine. Of the flora of the highest Andes, Whymper found 42 species, of various orders, above 16,000 ft., almost all of which were from Antisana and Chimborazo; 12 genera of mosses were found above 15,000 ft., and 59 species of flowering plants above 14,000 ft., of which 35 species came from above 15,000 and 20 species from above 16,000 ft. The highest specimen obtained was a lichen (Lecanora subfusca, L.) on the south side of Chimborazo, 18,400 ft. above sea-level. Mosses (Grimmia) were found on Chimborazo at 16,660 ft., ferns (Polypodium pycnolepis, Kze.) at 14,900, and specimens ofGentiana rupicola, H. B. K.,Achyrophorus quitensis, Sz. Bip.,Culcitium nivale, H. B. K., at 16,300;Phyllactis inconspicua, Wedd., at 16,600,Astragalus geminiflorus, H. B. K., at 14-15,000,Geranium diffusum, H. B. K., at 16,000,Malvastrum phyllanthos, Asa Gray, at 16,500,Draba obovata, Benth., at 16,660, andRanunculus praemorsus, Kth., at 16,500—all on Chimborazo.Fuchsia loxensis, H. B. K., was found on the slope of Sara-Urcu at 12,779 ft., and currant bushes (Ribes glandulosum, R. & P.), on Chimborazo, at 14,000. On the eastern slopes of the Andes, where the rainfall is continuous throughout the year and the atmosphere is surcharged with moisture, the forest growth is phenomenal. It is similar to that of the Colombian and Peruvianmontanas, modified, if at all, by the excessive humidity which prevails in this region.Fauna.—The fauna of Ecuador is comparatively poor in mammalia, but the birds and still more the insects are very numerous. The Quadrumana are represented by a large number of species, the eastern forests being very much like the other parts of the great Amazonian basin in this respect. The Carnivora include the puma (Felis concolor), jaguar (F. onca), ocelot (F. grisea), bear (Ursus ornatus), fox, weasel and otter. A small deer and, in southern Ecuador, the llama (Auchenia) with its allied species, the alpaca, guanaco and vicuña, represent the ruminants. The rodents are numerous and include most, if not all, of the Amazonian species—the capybara (Hydrochoerus capybara), cavia (C. aperea), paca (Coelogenys paca) and cutia (Dasyprocta aguti), all amphibious and having an extensive range. Tapirs are to be found in the eastern forests, the peccary in more open woodlands, and the opossum in nearly every part of the country. Cattle, horses, asses, sheep and swine were introduced by the Spaniards, and thrive well in some of the provinces. Excellent horses are reared in the uplands, as well as mules and cattle, the pasturage on the mountain slopes being good, and alfalfa being grown in abundance in many districts. The Reptilia include countless numbers of alligators in the Guayas and its tributaries and in the tide-water channels of many of the smaller rivers; many species of lizards, of which Mr Whymper found three in the Quito basin; snakes of every description from the huge anaconda of the Amazon region down to the beautifully marked coral snake; and a great variety of frogs and toads. Bats also are very numerous, especially in the eastern forest region, where the vampire bat is a serious obstacle to permanent settlement. The avifauna of Ecuador is distinguished for the great variety of its genera and species, among which are many peculiar to the Amazon valley, and others to the colder uplands. Among the Amazon species may be mentioned the parrot, macaw (Macrocercus), toucan (Ramphastos), curassow (Crax), penelope, trogon, and horned screamer (Palamedea cornuta). There are also herons, ibises, storks and cranes, including the great black-headed white crane,Mycteria americana, which ranges from northern Argentina to Colombia. One species of ibis, theTheristicus caudatus, is to be found, it is said, only on the slopes of Antisana. Species of the pheasant and partridge are not uncommon, and the “guácharo” (Steatornis caripensis), once believed to inhabit Venezuela only, is found in Ecuador also. The Raptores are well represented by a large number of genera and species, which include the condor, eagle, vulture, falcon, hawk and owl. The condor (Sarcorhamphus gryphus) is commonly found between the elevations of 6000 and 16,000 ft., rarely, if ever, descending to the lowland plains or rising above the lower peaks. It preys upon the smaller animals and inflicts much loss upon stock farmers through the destruction of calves, lambs, &c., but it very rarely ventures to attack man or any of the larger animals. The eagle common to Ecuador is theMorphnus taeniatus, and possibly theM. guaianensison the eastern slopes of the Andes. The harrier-eagle (Herpetotheres cachinnans) is also to be found throughout this part of the continent. An eagle with buzzard-like habits, theLeucopternis plumbea, is likewise common in Ecuador. Among the vultures the turkey-buzzard group (RhinogryphusorCathartes), including theR. aurus,burrovianusandperniger, is common everywhere. The carrion crow, or black vulture (Catharista atrata), is also common to every part of the country, and is the general scavenger. The carrion hawks are represented by thePolyborus tharus, popularly called the “caracara,” and thePhalcobaenus carunculatus; the falcons by theAesalon columbarius; and the kites by theGampsonyx swainsoni. The Ecuadorean owl is theBubo nigrescens. An interesting species of the song birds is popularly known as the “flautero” (flute-bird), which inhabits the eastern forests. Its notes are marvellous imitations of “the most mellow, sweet-sounding flute,” but the singer itself, according to Mr Simson, is “a very insignificant-looking little, greyish-coloured bird,” which “always dies in captivity.” The most interesting group of the smaller birds is that of the hummingbirds, of which the number and variety is astonishing. Some of these have a very wide range, while others are apparently limited to a small district, or to a certain altitude. The best-known fish of Ecuador is the insignificantPimelodus cyclopum, the only fish found in the streams and lakes of the plateau region. Its fame rests on Humboldt’s publication of the tradition that great numbers of this tiny fish had been thrown out during the eruptions of Imbabura and other volcanoes. Mr Whymper’s explanation of the phenomenon is that the fish are scattered over the land by the sudden overflow during volcanic eruptions of the rivers and lakes which they inhabit. The rivers of the eastern plains are probably stocked with the fish found in the Amazon. On the coast, the Ancon de Sardinas bay is so named from the multitude of small fish (sardinas) which inhabit itswaters. Elsewhere there are no fisheries of importance, except those of the Galapagos Islands.The insect inhabitants of Ecuador, like the birds, include a large number of genera and species, but no complete entomological survey of the country has ever been made, and our knowledge in this respect is insufficient to warrant a detailed description. In one ascent of Pichincha in 1880, Mr Whymper collected 21 species of beetles, all new to science, between 12,000 and 15,600 ft. elevation. On Cotopaxi, at elevations of 13,000 to 15,800 ft., 18 species of the genusColpodeswere collected, of which 16 were new. This may be considered a fair illustration of the situation in Ecuador so far as natural history exploration is concerned. Of the Machachi basin, near Quito, which he calls a “zoologist’s paradise,” Mr Whymper writes (Travels amongst the Great Andes of the Equator): “Butterflies above, below and around; now here, now there, by many turns and twists displaying the brilliant tessellation of their under-sides.... May-flies and dragon-flies danced in the sunlight; lizards darted across the paths; and legions of spiders pervaded the grass, many very beautiful—frosted—silver backs, or curious, like the saltigrades, who took a few steps and then gave a leap. There were crickets in infinite numbers; and flies innumerable, from slim daddy-long-legs to ponderous, black, hairy fellows known to science asDejeaniae; hymenopterous insects in profusion, including our old friend the bishop of Ambato (possiblyDielis), in company with another formidable stinger, with chrome antennae, called by the natives ’the Devil’; and occasionalPhasmas(caballo de palo) crawling painfully about, like animated twigs.” This description refers to a fertile sub-tropical oasis on the partially barren plateau; below in the forested lowlands, where tropical conditions prevail, the numbers and varieties are many times greater. The Coleoptera are especially numerous; Mr Whymper took home with him 206 species which had been identified and described up to 1892, most of them from the uplands and most of them new to science. The total number of species in Ecuador is roughly estimated to be 8000. The Hymenoptera are also numerous, but less so than the Lepidoptera, with which the mountain slopes and sunny, open spaces seem to be literally covered. Of moths alone Mr Whymper took away with him specimens representing no less than 23 genera, with a probable addition of 13 genera more among his undescribed specimens, the largest of which (anErebus odora) was 7¼ in. across the wings. Among the Diptera, which includes a very wide range of genera and species, are some of a highly troublesome character, though on the whole, Mr Whymper did not find the flies and mosquitoes so. His explorations, however, did not extend to the eastern region, where the mosquitoes are usually described by travellers as extremely troublesome. Sand-flies are common, and in the eastern forests the tinypiúmfly (Trombidium, sp.?) is a veritable pest. Of the insects which infest dwellings and prey upon their human inmates, such as fleas, bed-bugs, roaches, &c., Ecuador has more than a bountiful supply. Lice-eating is a widely prevalent habit among the Indians and mestizos, and demonstrates how numerous these parasites are among the people. A good illustration of the prevalence of house-infesting animals and insects is given by Mr Whymper (op. cit.p. 391), who made a collection of 50 different specimens of the vermin which infested his bedroom in Guayaquil.

Physical Geography.—The surface of Ecuador may be divided into three distinct regions: the Cis-Andine lying between the Western Cordillera and the coast; the Inter-Andine, which includes the two great mountain chains crossing the republic with the elevated plateau lying between; and the Trans-Andine, lying east of the Andes in the great Amazon valley. The first part consists of an alluvial, low-lying plain formed in great part by the detritus brought down by the mountain streams. It is irregular in form and is broken by isolated elevations and spurs from the Cordillera. Large areas are still subject to annual inundations in the rainy season, and the lower river courses are bordered with swamps. This is the most fertile and productive part of Ecuador, especially on the higher lands near the Cordillera. The Trans-Andine region is similar to the neighbouring territories of the upper Amazon basin occupied by Colombia, Brazil and Peru—a great forest-covered plain descending gently toward the east, broken on its western margin by short spurs from the Andes enclosing highly fertile valleys, and by low, isolated ranges between the larger river courses, and traversed by large rivers flowing into the Napo and Marañon. This region has been only partially explored, and but little is known of the large areas lying between the navigable rivers.

The Inter-Andine or plateau region lies in and between the two great mountain chains which cross the greater part of the republic between and almost parallel with the 78th and 79th meridians. The eastern chain is known as the Andes of Ecuador, or the Cordillera Oriental, and the western asMountains.the Cordillera Occidental (Western Cordillera). Starting from the confused grouping on the southern frontier of the two great chains and some transverse ranges, they run nearly north by east to the Colombian frontier where another “knot” or junction occurs. The summits of the western range form a line of noteworthy regularity, but those of the eastern form a broken irregular line of varying distances from the first. The elevated plateau between the two great chains, which is about 300 m. long and 20 to 30 m. wide, is divided into three great shallow basins or plains by the transverse ridges orparamosof Tiupullo and Azuay. These are known as the Quito, Ambato and Cuenca basins. South of the latter is the irregular and deeply broken Loja basin, which can hardly be considered a part of the great Ecuador plateau. The three great basins, which are broken and subdivided by mountainous spurs and ridges, descend gradually toward the south, the Quito plain having an average elevation of 9500 ft. above the sea, Ambato 8500, and Cuenca 7800. They are also characterized by the increasing aridity of the plateau from north to south, the Quito plain being fertile and well covered with vegetation, and the Ambato and Cuenca plains being barren and desolate except in some favoured localities. The volcanic character of the region is likewise responsible for large areas of barren surfaces. Rising from this elevated plateau, along its eastern and western margins, are the Cordilleras with their principal summits culminating far above the line of perpetual snow, which in this region is about 15,750 ft. above the sea. These summits are remarkable, not only for their great height, but also for their apparent symmetrical arrangement in parallel lines, sometimes in pairs facing each other across this cyclopean passage. Nowhere in the world can there be found another such assemblage of snow-clad peaks, several of which are active volcanoes. There are 22 of them grouped around these central plains almost within sight of each other. The western chain has the distinction of having the highest summit, the eastern the greatest number of high summits and the highest average elevation. From the time of Humboldt’s visit to this remarkable region down to the present time there have been many diverse calculations of the height of these peaks, but with a considerable variation. It is estimated that there was a considerable decrease in the elevation of this part of the Andes during the past century, Quito having sunk 26 ft. in 122 years, Pichincha 218 ft. in the same time, and the farm of Antisana, where Humboldt resided for a time, 165 ft. in 64 years. At the same time Cotopaxi and Sangay, the two active volcanoes, have actually increased in elevation since the measurement of La Condamine in 1742. These changes in elevation, if correct, are due to seismic disturbances, a cause that may be partially responsible for the varying computations of the heights of these well-known peaks. Among modern investigators are W. Reiss and A. Stübel (1871-1873), and Edward Whymper (1880), whose measurements of the principal summits were:—

The Imbabura volcano, celebrated for its destructive eruptions of mud and water, stands midway between the two ranges at the northern end of the plateau, and belongs to the transverse ridge of knot (nudo) which unites them. It is the most northern of the higher peaks of Ecuador, with the exception of Cotocachi, and possibly of Chiles on the Colombian frontier, and reaches the elevation of 15,033 ft. Ibarra on the northern flanks of the volcano has suffered severely from its eruptions. The name is derived fromimba, fish, andbura, mother, and is said to have originated from the quantities of a fish called “preñadilla” (Pimelodus cyclopum) discharged from its crater during one of its eruptions—a phenomenon which, after a searching investigation, was discredited by Wagner. Cayambe, or Cayembi, the second highest peak of the Ecuadorean Andes, has the noteworthy distinction of standing very nearly on the equator. Its base covers a large area, and its square top, rising far above the snow-line, is one of the sights of Quito. Antisana is crowned with a double dome, and is described as an extinct volcano, though Humboldt saw smoke issuing from it in 1802. On its western side is the famoushacienda(farm) of Antisana, 13,306 ft. above the sea, where Humboldt resided for several months in 1802. Sara-Urcu stands south-east of Antisana in a densely forested region, drenched with rain and only slightly explored. Sincholagua and Rumiñagui are the next two peaks, going southward, and then the unrivalled cone of Cotopaxi (q.v.)—the highest active volcano in the world—from whose summit smoke curls upward unceasingly.

Llanganati or Cerro Hermoso is chiefly known through the tradition that the treasures of the Incas were buried in a lake on its slopes. It consists of a group of summits, the highest being credited with 17,843 ft. Tunguragua, or Tungurahua, has a cone-shaped summit like that of Cotopaxi, with a slope of 38°. It rises from a plain somewhat lower than the neighbouring central plateau and stands free from the surrounding elevations, except on the south, which give it an exceptionally imposing appearance. Among its characteristic features is a cataract fed by melting snows, which descends 1500 ft. in three leaps, and an enormous basaltic lava-stream, which crosses the face of the mountain in a north-easterly direction. Its most notable eruption was in 1777. It has been sometimes classed among the extinct volcanoes, but smoke has been seen issuing from it at different dates, and a violent eruption occurred on January 12, 1886. The fertile cultivated valley of Baños, with its thermal springs, lies at the base of Tunguragua, which F. Hassaurek describes as “the most beautiful of all the snow peaks in the country.” The next in line is El Altar, which the natives call Capac-Urcu (“king mountain”), whose broken cone and impressive outlines make it one of the most attractive mountains of Ecuador. Its summit comprises a group of eight snow-clad peaks, and its crater is surrounded by a steep and jagged wall of rocks. There is a tradition that this mountain was once higher than Chimborazo, but a series of eruptions caused the cone to fall in and reduced its summit to its present altitude and broken appearance. Altar has shown no signs of activity since the discovery of America. Sangay, or Sangai, the next and last large volcano to the south, is in a state of frequent eruption, however, and is known as one of the most restless volcanoes of the world. Since the Spanish conquest it has been in a state of uninterrupted activity, but no damage has been done, because there are no civilized settlements in its immediate vicinity. Though of great interest to scientific investigators because of this unceasing activity, and of its peculiar position in the Andean system, and because of the difficult and dangerous country by which it is surrounded, Sangay has been but rarely visited by European travellers. Its eruptions are not on a grand scale, but small outbursts of lava and explosions of steam occur at frequent intervals, and at longer intervals more violent explosions in which the molten rock is thrown 2000 ft. above its summit, and ashes are carried away as far as the streets of Guayaquil.

Turning to the Cordillera Occidental and taking the principal peaks in order from south to north, the first to claim attention is Chimborazo (fromChimpu-raza, “mountain of snow”), the highest summit of Ecuador, and once believed to be the culminating point of the Andes. Humboldt, who unsuccessfully attempted its ascent in 1802, gives its elevation as 21,425 ft., Reiss and Stubel as 20,703, and Whymper as 20,498. It stands 76 m. north-east of Guayaquil, and, according to Spruce, rises majestically from the valley of the Guayas, on the west, without a “positive break from the summit down to the plain.” This, however, is erroneous, for Whymper located a detached range running parallel with the Cordillera on the west, for a distance of 65 m. with the Chimbo valley between them. The magnificence of its mass is imposing from almost any point of view, but it can be most fully appreciated from its western or Pacific side, where its base is covered with forest up to the snow-line, above which its pure white cone rises another 5000 ft. An unobstructed view of the great mountain is rarely obtained, however, because of the mists and clouds which cover its cone. Its summits were reached for the first time in 1880 by Edward Whymper, all previous attempts having failed. It is considered to be an extinct volcano because it makes the plumb-line deviate only 7″ to 8″, from which it is deduced that the mountain is hollow. Moreover, the calcined matter resembling white sand which covers its sides below the snow-line, extensive beds of lava, and the issue of streams of hot water from its northern side, seem to confirm the deduction that Chimborazo is an extinct volcano. Immediately north of Chimborazo, and separated from it by only a narrow valley, are the lower triple summits of Carahuairazo, or Carguairazo (which the natives callChimborazo-embra, “Chimborazo’s wife”), whose hollow cone collapsed in 1698 during a great earthquake, and left the jagged rim which adds so much to its present picturesque appearance. Mr Whymper’s measurement is for the middle peak. Quirotoa, still farther north, is supposed to have suffered a similar catastrophe. Its hollow summit, 13,510 ft. above sea-level, now contains a large lake. Iliniza, which stands west by north of Cotopaxi, has two pyramidal peaks, and is one of the most interesting mountains of the Ecuadorean group. It stands at the western end of the Tiupullo ridge, and overlooks the Quito basin to the north-east. The French academician Bouger, who was chief of the scientific commission sent to Ecuador in 1736 to measure a degree of the meridian on the equator, made a trigonometrical measurement of Iliniza, and Wagner ascended to within 800 ft. of its summit in 1859. The geological structure of the mountain furnishes no evidence of volcanic activity. Chamalari, which the Spaniards called El Corazon from its heart-shaped appearance, is similarly destitute of a crater. It overlooks the Quito basin and has been ascended many times. Among the earlier explorers to reach its summit were Bouger and La Condamine, Humboldt and Bonpland, and José Cáldas, the Granadian naturalist. Atacatzo is an extinct volcano, with nothing noteworthy in its appearance and history. Pichincha, its famous neighbour, is apparently of later origin, according to Wagner, and of slightly lower elevation. Perhaps no Ecuadorean volcano is better known than Pichincha, the “boiling mountain,” because of its destructive eruptions and its proximity to the city of Quito. Its summit comprises three groups of rocky peaks, of which the most westerly, Rucu-Pichincha (Old Pichincha), contains the crater, a funnel-shaped basin 2460 ft. deep and about 1500 ft. wide at the bottom, whose walls in places rise perpendicularly and in others at an angle of 20°. The exterior of the cone has an angle of 30°. Bouger and La Condamine were the first to reach its brink in 1742, after which Humboldt made the ascent in 1802, Boussingault and Hall in 1831, Garcia Moreno and Sebastian Wisse in 1844 and 1845 (descending into the crater for the first time), Garcia Moreno and Jameson in 1857, Farrand and Hassaurek in 1862, Orton in 1867, and Whymper in 1880. Farrand spent more than a week in the crater trying to get some good photographic views, and Orton has given a graphic description of his experiences in the same place. He found that the real cone of eruption was an irregular heap 250 ft. in height and 800 ft. in diameter, containing about 70 vents. The temperature of the vapour within the fumarole was 184°, and water boiled at 189°. There have been five eruptions of Pichincha since the Spanish conquest—in 1539, 1566, 1575, 1587 and 1660. The second covered Quito 3 ft. deep with ashes and stones, but the last three were considered as the most destructive to that city. The last happily broke down the western side of the crater, which, it is believed, will ensure the city against harm in any subsequent eruption. Since the earthquake of August 1867 Pichincha has sent forth dense masses of black smoke and great quantities of fine sand. Cotocachi is a double-peaked mountain, rising from an extremely rough country. It was ascended by Whymper in 1880. All the higher summits of Ecuador have true glaciers, the largest being found on Antisana, Cayambe and Chimborazo. Whymper located and named no less than eleven on Chimborazo, and counted twelve on Cayambe.

There are two distinct hydrographic systems in Ecuador—the streams that flow south-eastward to the Marañon, or Amazon, and those which flow westward to the Pacific. The southern part of the great central plateau is arid and has a veryRivers.light rainfall; it has no streams, therefore, except from melting snows, and the higher elevations which receive the impact of the easterly winds. Farther north the rainfall becomes heavier, the plateau is covered with vegetation, and a considerable number of small rivers flow westward through the Cordillera to the Pacific. The Eastern Cordillera, or Andes, forms the water-parting between the two systems. The largest of the eastward-flowing rivers is the Napo, which rises in the eastern defiles of Cotopaxi and Sincholagua—the principal source being the Rio del Valle, which traverses the Valle Vicioso. It at first flows south by east, and at the village of Napo is 1450 ft. above sea-level, at the mouth of the Coca 858 ft., at the mouth of the Aguarico 586 ft., 500 at the mouth of the Curaray, and 385 at its junction with the Marañon. Orton estimates its current at Napo in the month of November as 6 m. an hour; in the next 80 m. the river falls 350 ft. and produces a fine series of rapids; and from Santa Rosa downwards the rate is not less than 4 m. an hour. Its breadth at Napo is only 120 ft., but at Coca it has widened to 1500 ft., and at its mouth to nearly 1 m. Like most of the large Amazon tributaries, its discharge into the Marañon is through several distinct channels. The Napo is navigable for steam-boats for some distance above the mouth of the Coca, and thence for canoes as far as the Cando cataract, 3332 ft. above the sea. Its total length is 920 m. The principal tributaries of the Napo are the Coca and Aguarico from the north, and the Curaray from the south. The Coca rises on the eastern slopes of the Andes near Cayambe and the Guamani range, and flows eastward near the equator to San Rafael (about 76° 30′ W. long.), where it turns sharply southward to a junction with the Napo in about lat. 1° S., long. 76° W. TheCoca forms the provisional boundary line between Ecuador and Colombia from its source to the Napo. The Aguarico also rises on the eastern slopes of the Andes north of Cayambe and flows south-eastward to a junction with the Napo in about long. 75° W., its length being roughly estimated at 420 m. Little is known of its course, or of the country through which it flows, which is provisionally occupied by Colombia. The Curaray has its sources in the defiles of the Cerros de Llanganati, and flows south-eastward to the Napo, its length being estimated at 490 m. Its lower course is sluggish, where its waters are made unpalatable by a reddish slime. The Napo and its tributaries are celebrated in the early history of South America as the route by which Gonzalo Pizarro and Orellana first reached the Amazon, and it was afterwards the principal route by which the early expeditions across the continent at this point connected the Andean Plateau with the Amazon. The other rivers which flow through the Oriente territory of Ecuador into the Marañon are the Tigre, Pastaza, Morona and Santiago. The Tigre, of which little was known until a recent date, is formed by the confluence of the Cunambo and Huiviyacu, whose sources are on the eastern slopes of the Andes near those of the Curaray. Its length below this confluence is 416 m., into which are received 109 tributaries, the largest of which are the Pucacuro and Corrientes. The Tigre is navigable at all stages up to the Cunambo confluence, and promises to afford one of the most valuable river routes in Ecuador. It enters the Marañon very near the 74th meridian. The Pastaza, or Pastassa, unlike the rivers already described, has its source on the central plateau west of the principal chain of the Andes, within the shadow of Cotopaxi, and breaks through the Cordillera to the north of Tunguragua. After flowing southward along the base of the high Andes for a short distance and receiving a number of torrents from the snowclad heights, it turns south-eastward across the plain and enters the Marañon about 70 m. above the mouth of the Huallaga. The stream is known as the Patate down to its junction with the Chambo, near Baños, and is not called Pastaza until the Agoyan falls are passed. It was navigated by Don Pedro Maldonado as early as 1741, and is navigable for steamboats of 2 to 4 ft. draft up to the mouth of the Huasaga (about 124 m.) in times of high water, and for canoes nearly 200 m. farther. The Pastaza, however, is subject to irresistible floods caused by the sudden rising of the mountain torrents on its upper course, especially the Toro, which sweep down with such fury that navigation on the river is practically impossible. The shallowness of the lower stream, where the current is sluggish, is probably due to the great quantities of silt brought down by these floods. Many of the rivers of eastern Ecuador are subject to similar floods from the Andean slopes, which have cut away broad, deep channels, through the adjacent plains, leaving long, narrow ridges between their courses which the natives callcuchillas. The Morona is formed by the confluence of the Manhuasisa and Cangaima about 310 m. above its mouth, and is freely navigable for small steamboats to that point. The two confluents just mentioned have their sources in the Andes, and flow for some distance across the plain before uniting to form the Morona. Both are navigable for considerable distances. The Morona follows a very tortuous course before entering the Marañon, at long. 70° W., and receives a large number of affluents, one of which serves as the outlet for Lake Rimachuma, in Peruvian territory. Very little is definitely known of the affluents of the Morona, Pastaza and Tigre, as the territory through which they run has been but slightly explored. The Santiago, which enters the Marañon near the Pongo de Manseriche, is formed by the confluence of the Paute, which rises in the province of Azuay, and the Zamora, which has its source among the mountains of Loja. According to Alexander Garland (Peru in 1906), the rivers of eastern Ecuador are navigable at low water for steamers of 2 to 4 ft. draft for an aggregate distance of 1503 m., as follows:—

These same rivers are navigable at high water for steamers of 19½ ft. draft for an aggregate distance of 1330 m., including 68 m. of the Aguarico, and for steamers of 2 to 4 ft. draft for an additional 733 m. The last aggregate includes an extension of 93 m. on the Pastaza, 99 on the Morona, 186 on the Napo, and the balance on the Manhuasisa, Cangaima, Pucacuro, Corrientes, Cunambo and Huiviyacu.

On the western versant of the Andes of Ecuador there are three river systems of considerable size—the Mira, the Esmeraldas and the Guayas. The sources of the first—the Rioblanco, Pisco and Puntal—are to be found on the northern slopes of the transverse ridge which culminates in the Imbabura volcano. Its course is north and north-west to the Colombian frontier, thence westward and north-west to the Pacific, breaking through the Western Cordillera on its way. It forms the boundary line for some distance between Ecuador and Colombia, but near its mouth where the river turns northward Colombia has taken possession of the left bank and all the territory covered by its large delta. Its principal tributaries on the left are the San Pedro, Paramba, Cachiyacu, Chachavi and Canumbi, and on the right the San Juan, Caiquer and Nulpe. The delta channels of the Mira are navigable, being tributary to the Colombian port of Tumaco. The Esmeraldas drains all that part of the central plateau lying between the transverse ridge of Tiupullo on the south, and the Imbabura ridge on the north, together with the western slopes of the Cordillera between Iliniza and Cotocachi, and a considerable part of the lower plain. It is formed by the confluence of the Quininde and Toachi with the Guaillabamba between 40 and 50 m. above its mouth, and discharges into the Pacific in lat. 1° N., long. 79° 40′ W., through a narrow and precipitous gorge. The volume and current of the river is sufficient to freshen the sea 2 m. from the coast. The Guaillabamba is the larger and more important tributary, and should be considered the main stream. It rises in the Chillo valley in the vicinity of Cayambe, and flows across the northern end of the central plateau, breaking through the Western Cordillera between Cotocachi and Pichincha. One of its plateau tributaries, Rio Pedregal, rises on the slopes of Cotopaxi and is celebrated for its three beautiful cascades, the highest of which is about 220 ft. The Toachi and Quininde have their sources on the western slopes of the Cordillera. The Guayas or Guayaquil river is in part an estuary extending northward from the Gulf of Guayaquil, bordered by mangrove swamps and mud banks formed by the silt brought down from the neighbouring mountains. All the bordering country on both sides is of the same description, and for a long distance inland extensive areas of swampy country are submerged during the rainy season. Above the mouth of the Daule the river is known as the Bodegas, which in turn is formed by the confluence of the Babahoyo and the Vinces. The Guayas also receives a large tributary from the east called the Yaguachi. All these streams are navigable on their lower courses, regular steamboat communication being maintained on the Guayas and Bodegas to a river port of the latter name, 80 m. above Guayaquil, and for 40 m. on the Daule. The navigable channels of all the rivers are computed at 200 m. The drainage basin of the Guayas, according to Theodor Wolf, covers an area of 14,000 sq. m., and includes the greater part of the lower plain and the western slopes of the Cordillera Occidental as far north as Iliniza. The Babahoyo, which is the main stream, has its sources on the slopes of Chimborazo, the Daule on the Sandomo ridge in the latitude of Pichincha, the Yaguachi on the south-eastern slopes of Chimborazo, whence it flows southward for a considerable distance before breaking through the Cordillera to the western plain. The Guayas is one of the most interesting and varied of the South American river systems, and is of great economic importance to Ecuador. In addition to these three river systems, there are a large number of short streams on the coast flowing into the Pacific and Gulf of Guayaquil, only two of which have any special importance in the present undeveloped state of the country. These are the Santiago, which drains several fertile valleys in northern Esmeraldas and western Carchi, and whose outlet is connected with some navigable tide-water channels, including the Pailon basin and the Caráquez, or Caracas, on which is located the village of Bahia de Caráquez (lat. 0° 34′ S.), the nearest port to the city of Quito.

There are a considerable number of small lakes in Ecuador, but no large ones. These are of two classes—those of the bowl-like valleys and extinct craters of the mountainous region, and the reservoir lakes of the lowland plains caused byLakes.the annual overflow of the rivers. It is impossible to say how many of the latter there may be, for much of the territory where they are found is unexplored. They are usually shallow and malarial. Among the upland lakes, there are some of special interest because of their position and historical association. The Yaguar-cocha (“lake of blood”), in the province of Imbabura, near Ibarra, which is only 1½ m. in circumference, is celebrated for the tradition that Huayna-Capac, one of the great conquerors of the Inca dynasty, defeated an army of rebellious Carranquis on its shores, and threw so many of their bleeding corpses into it as to turn its waters to the colour of blood. On the south-east skirt of Cotocachi, 10,200 ft. above the sea, is the beautiful little Cuy-cocha, which originated, it is believed, through the falling in of the mountain’s sides. There are two others of apparently the same origin on the north-west slopes of the Mojanda volcano, but they are less attractive because of their gloomy surroundings. In the deep valley between the mountains of Imbabura and Mojanda is the lake of San Pablo, 8848 ft. above the sea. It is one of the largest of its class, being about 5 m. in circumference, and is situated in an exceptionally fertile region. It drains through the Peguchi into the Rio Blanco, a tributary of the Mira. Other well-known lakes of the plateau region are Quirotoa, about 4600 ft. in diameter; Colta, east of Riobamba, and Colay, south of the same place. Among the many thermal springs throughout the Andean districts, the best known are at Belermos and San Pedro del Tingo, north-east of Quito; at Cachillacta, in the district of Nanegal; at Timbugpoyo, near Latacunga; at Baños (5906 ft. elevation), near the foot of Tunguragua; and on the slopes of Rumiñagui and Chimborazo.

The coast of Ecuador extends from about lat. 1° 20′ N. to the vicinity of the Boca Jambeli on the southern shore of the Gulf of Guayaquil, in lat. 3° 14′ S., and has an outward curve. Its more prominent headlands are Punta Galera, CaboCoast.Pasado, Cabo de San Lorenzo and La Puntilla, or Santa ÉlenaPoint. The bays on this coast are commonly broad indentations, and the rivers discharging into them are generally obstructed by bars. The small ports along the coast, therefore, do not afford much protection to shipping. The most northern of these bays is the Ancon de Sardinas, lying south of the Mira delta. The head of the bay is fringed with islands and reefs, behind which is the mouth of the Santiago river, Poza Harbour, San Lorenzo Bay, Pailon basin and a network of navigable channels, all of which are difficult of access. The small ports of La Tola and Pailon are located on these waters. The port of Esmeraldas, near the mouth of the Esmeraldas river, is located near the southern entrance to this bay. As the mouth of the river is obstructed by a bar and its current is swift, the anchorage is outside in an open roadstead, only slightly protected on the south. Farther south is the broad Bay of Manta, with a small port of the same name at its southern extremity. The most frequented port on this part of the coast is that of Bahia de Caráquez, at the mouth of the Caráquez, or Caracas river, which is also obstructed by a bar. There is a fertile, productive country back of this port, and it is the objective point of a road from Quito. Immediately north of the Gulf of Guayaquil is the Bay of Santa Élena, with a small port of the same name, which has a good, well-sheltered anchorage and is the landing-place of the West Coast cable. The Gulf of Guayaquil, which lies between the Ecuadorean and Peruvian coasts, is the largest gulf on the Pacific coast of South America between Panama and Chiloe. Its mouth is 140 m. wide between La Puntilla on the north and Cabo Blanco on the south, and it penetrates the land eastward, with a slight curve northward at its head, for a distance of about 100 m., terminating in the Guayas estuary or river, on which is located the port of Guayaquil. The upper end of the bay and its northern shores are fringed with swamps through which numerous estuaries penetrate for some distance inland. Immediately west of the Guayas river the Estero Salado, which comprises a great many shallow tide-water channels, or bayous, penetrates as far inland as Guayaquil, but is used only by canoes. The upper end of the gulf is filling up with the silt brought down from the Cordillera. It is divided midway by the large island of Puna, at the eastern end of which is the anchorage for steamers too large to ascend the Guayas. The steamship channel passes between this island and the Peruvian coast, and is known as the Jambeli channel. The passage north of Puna Island is known as the Morro channel, but its entrance is obstructed by shoals and it is considered dangerous for shipping. A small port in the Jambeli channel, on the south-east shore of the gulf, is that of Puerto Bolivar, or Puerto Huaila, the shipping port for the town of Machala and the Zaruma mining region.

There are few islands off the coast of Ecuador, and only one of any considerable size—that of Puna in the Gulf of Guayaquil, which is 29 m. long from north-east to south-west and 8 to 14 m. wide. It lies in the north-east part of the gulf, and isIslands.separated from the Ecuadorean mainland by the Morro channel, and from the southern mainland by the wider and deeper Jambeli channel. There is a low, mountainous ridge, called the Zampo Palo, running through it, and its eastern shores have some moderately high bluffs; otherwise the island is low and swampy, and its shores, except the eastern end, are fringed with mud banks. The island is densely wooded (in marked contrast with the opposite Peruvian shore), and is considered unhealthy throughout the greater part. It has a population of 200, chiefly centred in the village of Puna, at its north-east extremity, which is a shipping port and health resort for the city of Guayaquil. Puna island is celebrated for its connexion with Pizarro’s invasion of Peru in 1531. It is said that it had a considerable population at that time, and that the natives resisted the invaders so vigorously that it cost six months to reduce them. Midway in the outer part of the Gulf of Guayaquil is Amortajada or Santa Clara island, whose resemblance to a shrouded corpse suggested the name which it bears. It lies 12 m. south-west of Puna island and 80 m. from Guayaquil. It rises to a considerable elevation, and carries a light 256 ft. above sea-level. There are some low, swampy islands, or mud flats, covered with mangrove thickets, in the lower Guayas river, but they are uninhabited and of no importance. North of the Gulf of Guayaquil there are only two small islands on the coast of more than local interest. The first of these is Salango, in lat. 1° 25′ S., which is 2 m. in circumference and rises to a height of 524 ft. It is richly wooded, and has a well-sheltered anchorage much frequented by whalers in search of water and fresh provisions. The next is La Plata, in lat. 1° 16′ S., which rises to a height of 790 ft., and has a deep anchorage on its eastern side where Drake is said to have anchored in 1579 to divide the spoils of the Spanish treasure ship “Cacafuego.” The Galapagos Islands (q.v.) belong to the republic of Ecuador, and form a part of the province of Guayas.

Geology.1—The great longitudinal depression which lies between the eastern and the western branches of the Andes is also the boundary between the ancient rocks of the east and the Mesozoic beds which form the greater part of the west of the country. The Eastern Cordillera is composed of gneiss, mica and chlorite schist and other crystalline rocks of ancient date; the Western Cordillera, on the other hand, is formed of porphyritic eruptive rocks of Mesozoic age, together with sedimentary deposits containing Cretaceous fossils. Most of the country between the Andes and the sea is covered by Tertiary and Quaternary beds; but the range of hills which runs north-west from Guayaquil is formed of Cretaceous and porphyritic rocks similar to those of the Andes. In the intra-andine depression, between the East and West Cordilleras, recent deposits with plant remains occur near Loja, and to the north-east of Cuenca is a sandstone containing mercury ores, somewhat similar to that of Peru. Farther north nearly the whole of the depression is filled with lavas, tuffs and agglomerates, derived from the Tertiary and recent volcanoes which form the most striking feature of the Andes of Ecuador. These volcanoes are most numerous in the northern half of the country, and they stand indifferently upon the folded Mesozoic beds of the Western Cordillera (e.g.Chimborazo, Iliniza, Pichincha), the ancient rocks of the Eastern Cordillera (Altar, Tunguragua, Cotopaxi, Antisana), or the floor of the great depression between. The lavas and ashes are for the most part andesitic.

Climate.—Climatic conditions in Ecuador are very largely contingent on altitude, and the transition from one climate to another is a matter of only a few hours’ journey. Although the equator crosses the northern part of the republic, only 15 m. north of the city Of Quito, a very considerable part of its area has the temperature of the temperate zone, and snow-crowned summits are to be seen every day in the year from its great central plateau. In addition to the climatic changes due to altitude, there are others caused by local arid conditions, by volcanic influences and by the influence of mountain ranges on the temperature and rainfall of certain districts. These influences are not general; on the contrary, they often affect very limited areas. For instance, Guayaquil has a hot humid climate and mangrove swamps line the shores of Guayas down to the gulf; at Santa Élena, about 60 m. due west, arid conditions prevail and vegetation is scanty and dwarfed; at Salango island, 50 m. north of Santa Élena, there is an abundance of moisture and vegetation is luxuriant; 33 m. farther north, at Manta, the country is a desert; and at Atacames bay, 135 m. north of Manta, the rainfall and vegetation are again favourable. On the plateau similar conditions prevail. There is no great display of arboreal vegetation anywhere except in the valleys and lower passes where the rainfall is abundant, but in general terms it may be said that the rainfall and vegetation which characterize the Quito basin soon disappear as one proceeds southward, and are substituted by arid conditions. Even here there are local modifications, as at Ambato, where a shallow depression, surrounded by barren, dust-covered ridges exposed to cold winds, is celebrated for its warm, equable climate and its fruit. It is to be noted that the Gulf of Guayaquil separates the humid, forest-covered coastal plain of Ecuador from the arid, barren coast of Peru, the two regions being widely dissimilar. The mean annual temperature, on this plain, according to an official publication, is 82.4° F., and the range is from 66° to 95°. The heat is modified at many points on the coast, however, by the cold Humboldt current which sweeps up the west coast of South America from the Antarctic seas. The year is divided into a wet and dry season—the former running from December to June, and the latter from July to December. The rainy season, orinvierno, is broken by a short period of dry weather, called theveranillo(little summer), shortly after the December solstice; otherwise it rains every day, the streams overflow, land traffic is suspended, and the air is drenched with moisture and becomes oppressive and pestiferous. The dry season, which is called theverano, or summer, is also broken by a short rainy spell called theinviernillo(little winter) or “cordonazo de San Francisco,” which follows the September equinox. Apart from these the two seasons are sometimes broken by cloudless skies in winter, and a drizzling mist, called thegarua, in summer. In the inter-andine region the variations in temperature are frequent and the averages comparatively low. An official estimate gives the mean annual temperature as 64° to 68° between 6000 and 11,000 ft. In Quito the mean annual temperature is 58.8°, the diurnal variation 10°, the annual maximum 70°, and the annual minimum 45°. Other returns give the mean annual temperature at 55°. It is said that pulmonary tuberculosis is unknown in these altitudes, though it is common in the coast districts. Catarrhal complaints are common, however, and leprosy is widely prevalent, it being necessary to maintain three large hospitals for lepers. In the higher altitudes there are wide variations in the snow-fall and intensity of the cold even on the same mountain. The line of permanent snow is much higher on the plateau side in both ranges, the precipitation being greater on the outer sides—those facing the forested lowlands—and the terrestrial radiation being greater from the barren surfaces of the plateau. In some instances the difference in the elevation of the snow-line has been found to be fully 1000 ft. Moreover, no two summits seem to retain the snow permanently at the same altitude. For instance, in 1880 Whymper found permanent snow on Cotocachi at 14,500 ft., while near by Imbabura was bare to its summit (15,033 ft.); Antisana was permanently covered at 16,000 ft., and near by Sara-Urcu, which is drenched with rains and mists from the Amazon valleyall the year round, at 14,000 ft.; Sincholagua had large beds of permanent snow at 15,300 ft., Cotopaxi was permanently covered at 15,500 ft. on its western side, Corazon had daily snowstorms down to 14,500 ft., but no permanent beds of snow on its east side (elevation 15,871 ft.); and Chimborazo had deep snow at 15,600 ft. on its north-east and south sides in June—July. The eastern range was found to receive the heaviest snowfall. The elevation at which human residence is possible seems to be unusually high in Ecuador. Many of the towns and villages of central Ecuador lie at altitudes ranging from 8606 ft. (Ambato) to 9839 ft. (Machachi). The capital city of Quito is 9343 ft. above the sea, and is celebrated for its agreeable temperature, and also for its healthiness in spite of prevailing unsanitary conditions. Above these towns are a number of farms and herdsmen’s habitations, where men live the whole or a part of the year with less discomfort from low temperature than is experienced in northern Europe and northern United States. According to Whymper, thetamboof Chuquipoquio, at the foot of Chimborazo, is 11,704 ft., and thehaciendaof Pedregal, near Iliniza, 11,629 ft., both being permanently occupied. Thehaciendaof Antisana, 13,306 ft., and the herdsmen’s hut of Cunayaco on Chimborazo, 13,396 ft., are occupied only for a part of the year. The highest elevations are generally covered with ice and snow, and glaciers, according to Whymper, are to be found upon no less than nine of the culminating peaks, and possibly upon two or three more. These serve to modify the temperatures of the plateau, which is swept by cold winds at all seasons of the year. The prevailing wind is that of the north-east and south-east trade winds, broken and modified on the plateau and western lowlands by mountain barriers. Westerly and north-west winds are sometimes experienced, but are not permanent.

Flora.—The flora of the Quito basin has been well studied by various European botanists, more especially by Dr William Jameson (1796-1873) of the university of Quito, who began the preparation of a synopsis of the Ecuadorean flora in 1864-1865 (Synopsis plantarum Quitensium, 2 vols., Quito, 1865). The flora of the forested lowlands on both sides of the Andes has not been studied and described so fully. From the Pacific coast upward to a height of about 3000 to 4000 ft. the vegetation is distinctively tropical, including among its economic products cacao, cotton, sugar, tobacco, rice, maize, yucca (also known as cassava and mandioca), peanuts, bananas, sweet potatoes, yams, arracacha (Conium moschatum, H.B.K., orArracacha esculenta), indigo, rubber (Castilloa), ivory-nuts, cinchona and bread-fruit. Most of these become rare at 3000 ft., but a few, like sugar-cane, are cultivated as high as 8000 ft. The alluvial valley of the Guayas, above Guayaquil, is celebrated for the richness of its vegetation, which, in fruit alone, includes cacao, coffee, coco-nuts, pine-apples, oranges, lemons, guayavas (Psidium pomiferum), guavas (Inga spectabilis), shaddocks (or grape-fruit), pomegranates, apricots, chirimoyas (Anona Chirimolia), granadillas (Passiflora quadrangularis), paltas (Persea gratissima, otherwise known as “alligator pears”), tunas (Cactus), mangoes (Mangifera Indica), pacays (Prosopis dulcis), aji (Chile pepper), and many others of less importance. Besides rubber, the forests produce a great variety of cabinet and construction woods, ivory-nuts (from the “tagua” palm,Phytelephas macrocarpa), “toquilla” fibre (Carludovica palmata) for the manufacture of so-called Panama hats, cabbage palms, several species of cinchona, vanilla and dyewoods. Among the large trees which are valued for their timber are redwood (Humiria balsamifera), Brazil-wood, algarrobo, palo de cruz (Jacquinea ruscifolia), guaiacum or holy wood, rosewood, cedar and walnut. From 6000 to 10,000 ft. above the sea, the indigenous species include the potato, maize, oca (Oxalis tuberosa), and quinua (Chenopodium quinoa), and the exotic species, wheat, barley, oats, alfalfa (Medicago sativa), and most of the fruits and vegetables of the northern temperate zone. Wheat does not form a head below 4500 ft., nor ripen above 10,500. The larger forest trees are rarely seen above 10,000 ft., and even there only on the outer slopes of the Cordilleras. TheEscallonia myrtalloides, however, is found at an elevation of 13,000 ft., and the shrubbyBefarias400 or 500 ft. higher. A characteristic growth of the open plateau and upland valleys is the cabulla, cabaya or maguey (Agave americana), whose fibre is much used by the natives in the manufacture of cordage, sandals (alpargatas) and other useful articles. In the treeless region lying between 11,600 and 13,800, or in other places between 12,000 and 14,000 ft., the similarity of the vegetation to that of the corresponding European region, according to Wagner, is especially striking. On theparamosof Chimborazo, Pichincha, Iliniza, &c., the relation of characteristic genera to those identical with genera in the Alpine flora of Europe is as 5 to 4; and the botanist might almost suppose himself in the Upper Engadine. Of the flora of the highest Andes, Whymper found 42 species, of various orders, above 16,000 ft., almost all of which were from Antisana and Chimborazo; 12 genera of mosses were found above 15,000 ft., and 59 species of flowering plants above 14,000 ft., of which 35 species came from above 15,000 and 20 species from above 16,000 ft. The highest specimen obtained was a lichen (Lecanora subfusca, L.) on the south side of Chimborazo, 18,400 ft. above sea-level. Mosses (Grimmia) were found on Chimborazo at 16,660 ft., ferns (Polypodium pycnolepis, Kze.) at 14,900, and specimens ofGentiana rupicola, H. B. K.,Achyrophorus quitensis, Sz. Bip.,Culcitium nivale, H. B. K., at 16,300;Phyllactis inconspicua, Wedd., at 16,600,Astragalus geminiflorus, H. B. K., at 14-15,000,Geranium diffusum, H. B. K., at 16,000,Malvastrum phyllanthos, Asa Gray, at 16,500,Draba obovata, Benth., at 16,660, andRanunculus praemorsus, Kth., at 16,500—all on Chimborazo.Fuchsia loxensis, H. B. K., was found on the slope of Sara-Urcu at 12,779 ft., and currant bushes (Ribes glandulosum, R. & P.), on Chimborazo, at 14,000. On the eastern slopes of the Andes, where the rainfall is continuous throughout the year and the atmosphere is surcharged with moisture, the forest growth is phenomenal. It is similar to that of the Colombian and Peruvianmontanas, modified, if at all, by the excessive humidity which prevails in this region.

Fauna.—The fauna of Ecuador is comparatively poor in mammalia, but the birds and still more the insects are very numerous. The Quadrumana are represented by a large number of species, the eastern forests being very much like the other parts of the great Amazonian basin in this respect. The Carnivora include the puma (Felis concolor), jaguar (F. onca), ocelot (F. grisea), bear (Ursus ornatus), fox, weasel and otter. A small deer and, in southern Ecuador, the llama (Auchenia) with its allied species, the alpaca, guanaco and vicuña, represent the ruminants. The rodents are numerous and include most, if not all, of the Amazonian species—the capybara (Hydrochoerus capybara), cavia (C. aperea), paca (Coelogenys paca) and cutia (Dasyprocta aguti), all amphibious and having an extensive range. Tapirs are to be found in the eastern forests, the peccary in more open woodlands, and the opossum in nearly every part of the country. Cattle, horses, asses, sheep and swine were introduced by the Spaniards, and thrive well in some of the provinces. Excellent horses are reared in the uplands, as well as mules and cattle, the pasturage on the mountain slopes being good, and alfalfa being grown in abundance in many districts. The Reptilia include countless numbers of alligators in the Guayas and its tributaries and in the tide-water channels of many of the smaller rivers; many species of lizards, of which Mr Whymper found three in the Quito basin; snakes of every description from the huge anaconda of the Amazon region down to the beautifully marked coral snake; and a great variety of frogs and toads. Bats also are very numerous, especially in the eastern forest region, where the vampire bat is a serious obstacle to permanent settlement. The avifauna of Ecuador is distinguished for the great variety of its genera and species, among which are many peculiar to the Amazon valley, and others to the colder uplands. Among the Amazon species may be mentioned the parrot, macaw (Macrocercus), toucan (Ramphastos), curassow (Crax), penelope, trogon, and horned screamer (Palamedea cornuta). There are also herons, ibises, storks and cranes, including the great black-headed white crane,Mycteria americana, which ranges from northern Argentina to Colombia. One species of ibis, theTheristicus caudatus, is to be found, it is said, only on the slopes of Antisana. Species of the pheasant and partridge are not uncommon, and the “guácharo” (Steatornis caripensis), once believed to inhabit Venezuela only, is found in Ecuador also. The Raptores are well represented by a large number of genera and species, which include the condor, eagle, vulture, falcon, hawk and owl. The condor (Sarcorhamphus gryphus) is commonly found between the elevations of 6000 and 16,000 ft., rarely, if ever, descending to the lowland plains or rising above the lower peaks. It preys upon the smaller animals and inflicts much loss upon stock farmers through the destruction of calves, lambs, &c., but it very rarely ventures to attack man or any of the larger animals. The eagle common to Ecuador is theMorphnus taeniatus, and possibly theM. guaianensison the eastern slopes of the Andes. The harrier-eagle (Herpetotheres cachinnans) is also to be found throughout this part of the continent. An eagle with buzzard-like habits, theLeucopternis plumbea, is likewise common in Ecuador. Among the vultures the turkey-buzzard group (RhinogryphusorCathartes), including theR. aurus,burrovianusandperniger, is common everywhere. The carrion crow, or black vulture (Catharista atrata), is also common to every part of the country, and is the general scavenger. The carrion hawks are represented by thePolyborus tharus, popularly called the “caracara,” and thePhalcobaenus carunculatus; the falcons by theAesalon columbarius; and the kites by theGampsonyx swainsoni. The Ecuadorean owl is theBubo nigrescens. An interesting species of the song birds is popularly known as the “flautero” (flute-bird), which inhabits the eastern forests. Its notes are marvellous imitations of “the most mellow, sweet-sounding flute,” but the singer itself, according to Mr Simson, is “a very insignificant-looking little, greyish-coloured bird,” which “always dies in captivity.” The most interesting group of the smaller birds is that of the hummingbirds, of which the number and variety is astonishing. Some of these have a very wide range, while others are apparently limited to a small district, or to a certain altitude. The best-known fish of Ecuador is the insignificantPimelodus cyclopum, the only fish found in the streams and lakes of the plateau region. Its fame rests on Humboldt’s publication of the tradition that great numbers of this tiny fish had been thrown out during the eruptions of Imbabura and other volcanoes. Mr Whymper’s explanation of the phenomenon is that the fish are scattered over the land by the sudden overflow during volcanic eruptions of the rivers and lakes which they inhabit. The rivers of the eastern plains are probably stocked with the fish found in the Amazon. On the coast, the Ancon de Sardinas bay is so named from the multitude of small fish (sardinas) which inhabit itswaters. Elsewhere there are no fisheries of importance, except those of the Galapagos Islands.

The insect inhabitants of Ecuador, like the birds, include a large number of genera and species, but no complete entomological survey of the country has ever been made, and our knowledge in this respect is insufficient to warrant a detailed description. In one ascent of Pichincha in 1880, Mr Whymper collected 21 species of beetles, all new to science, between 12,000 and 15,600 ft. elevation. On Cotopaxi, at elevations of 13,000 to 15,800 ft., 18 species of the genusColpodeswere collected, of which 16 were new. This may be considered a fair illustration of the situation in Ecuador so far as natural history exploration is concerned. Of the Machachi basin, near Quito, which he calls a “zoologist’s paradise,” Mr Whymper writes (Travels amongst the Great Andes of the Equator): “Butterflies above, below and around; now here, now there, by many turns and twists displaying the brilliant tessellation of their under-sides.... May-flies and dragon-flies danced in the sunlight; lizards darted across the paths; and legions of spiders pervaded the grass, many very beautiful—frosted—silver backs, or curious, like the saltigrades, who took a few steps and then gave a leap. There were crickets in infinite numbers; and flies innumerable, from slim daddy-long-legs to ponderous, black, hairy fellows known to science asDejeaniae; hymenopterous insects in profusion, including our old friend the bishop of Ambato (possiblyDielis), in company with another formidable stinger, with chrome antennae, called by the natives ’the Devil’; and occasionalPhasmas(caballo de palo) crawling painfully about, like animated twigs.” This description refers to a fertile sub-tropical oasis on the partially barren plateau; below in the forested lowlands, where tropical conditions prevail, the numbers and varieties are many times greater. The Coleoptera are especially numerous; Mr Whymper took home with him 206 species which had been identified and described up to 1892, most of them from the uplands and most of them new to science. The total number of species in Ecuador is roughly estimated to be 8000. The Hymenoptera are also numerous, but less so than the Lepidoptera, with which the mountain slopes and sunny, open spaces seem to be literally covered. Of moths alone Mr Whymper took away with him specimens representing no less than 23 genera, with a probable addition of 13 genera more among his undescribed specimens, the largest of which (anErebus odora) was 7¼ in. across the wings. Among the Diptera, which includes a very wide range of genera and species, are some of a highly troublesome character, though on the whole, Mr Whymper did not find the flies and mosquitoes so. His explorations, however, did not extend to the eastern region, where the mosquitoes are usually described by travellers as extremely troublesome. Sand-flies are common, and in the eastern forests the tinypiúmfly (Trombidium, sp.?) is a veritable pest. Of the insects which infest dwellings and prey upon their human inmates, such as fleas, bed-bugs, roaches, &c., Ecuador has more than a bountiful supply. Lice-eating is a widely prevalent habit among the Indians and mestizos, and demonstrates how numerous these parasites are among the people. A good illustration of the prevalence of house-infesting animals and insects is given by Mr Whymper (op. cit.p. 391), who made a collection of 50 different specimens of the vermin which infested his bedroom in Guayaquil.


Back to IndexNext