Chapter 16

The affinities of acids have been compared in several ways. W. Ostwald (Lehrbuch der allg. Chemie, vol. ii., Leipzig, 1893) investigated the relative affinities of acids for potash, soda and ammonia, and proved them to be independent of the base used. The method employed was to measure the changes in volume caused by the action. His results are given in column I. of the following table, the affinity of hydrochloric acid being taken as one hundred. Another method is to allow an acid to act on an insoluble salt, and to measure the quantity which goes into solution. Determinations have been made with calcium oxalate, CaC2O4+ H2O, which is easily decomposed by acids, oxalic acid and a soluble calcium salt being formed. The affinities of acids relative to that of oxalic acid are thus found, so that the acids can be compared among themselves (column II.). If an aqueous solution of methyl acetate be allowed to stand, a slow decomposition goes on. This is much quickened by the presence of a little dilute acid, though the acid itself remains unchanged. It is found that the influence of different acids on this action is proportional to their specific coefficients of affinity. The results of this method are given in column III. Finally, in column IV. the electrical conductivities of normal solutions of the acids have been tabulated. A better basis of comparison would be the ratio of the actual to the limiting conductivity, but since the conductivity of acids is chiefly due to the mobility of the hydrogen ions, its limiting value is nearly the same for all, and the general result of the comparison would be unchanged.Acid.I.II.III.IV.Hydrochloric100100100100Nitric1021109299.6Sulphuric68677465.1Formic4.02.51.31.7Acetic1.21.00.30.4Propionic1.1· ·0.30.3Monochloracetic7.25.14.34.9Dichloracetic341823.025.3Trichloracetic826368.262.3Malic3.05.01.21.3Tartaric5.36.32.32.3Succinic0.10.20.50.6It must be remembered that, the solutions not being of quite the same strength, these numbers are not strictly comparable, and that the experimental difficulties involved in the chemical measurements are considerable. Nevertheless, the remarkable general agreement of the numbers in the four columns is quite enough to show the intimate connexion between chemical activity and electrical conductivity. We may take it, then, that only that portion of these bodies is chemically active which is electrolytically active—that ionization is necessary for such chemical activity as we are dealing with here, just as it is necessary for electrolytic conductivity.The ordinary laws of chemical equilibrium have been applied to the case of the dissociation of a substance into its ions. Let x be the number of molecules which dissociate per second when the number of undissociated molecules in unit volume is unity, then in a dilute solution where the molecules do not interfere with each other, xp is the number when the concentration is p. Recombination can only occur when two ions meet, and since the frequency with which this will happen is, in dilute solution, proportional to the square of the ionic concentration, we shall get for the number of molecules re-formed in one second yq² where q is the number of dissociated molecules in one cubic centimetre. When there is equilibrium, xp = yq². If μ be the molecular conductivity, and μ∞its value at infinite dilution, the fractional number of molecules dissociated is μ / μ∞, which we may write as α. The number of undissociated molecules is then 1 − α, so that if V be the volume of the solution containing 1 gramme-molecule of the dissolved substance, we getq = α / V and p = (1 − α) / V,hencex (1 − α) V = ya² / V²,andα²=x= constant = k.V (1 − α)yThis constant k gives a numerical value for the chemical affinity, and the equation should represent the effect of dilution on the molecular conductivity of binary electrolytes.In the case of substances like ammonia and acetic acid, where the dissociation is very small, 1 − α is nearly equal to unity, and only varies slowly with dilution. The equation then becomes α²/V = k, or α = √(Vk), so that the molecular conductivity is proportional to the square root of the dilution. Ostwald has confirmed the equation by observation on an enormous number of weak acids (Zeits. physikal. Chemie, 1888, ii. p. 278; 1889, iii. pp. 170, 241, 369). Thus in the case of cyanacetic acid, while the volume V changed by doubling from 16 to 1024 litres, the values of k were 0.00 (376, 373, 374, 361, 362, 361, 368). The mean values of k for other common acids were—formic, 0.0000214; acetic, 0.0000180; monochloracetic, 0.00155; dichloracetic, 0.051; trichloracetic, 1.21; propionic, 0.0000134. From these numbers we can, by help of the equation, calculate the conductivity of the acids for any dilution. The value of k, however, does not keep constant so satisfactorily in the case of highly dissociated substances, and empirical formulae have been constructed to represent the effect of dilution on them. Thus the values of the expressions α² / (1 − α√V) (Rudolphi,Zeits. physikal. Chemie, 1895, vol. xvii. p. 385) and α³ / (1 − α)²V (van ’t Hoff, ibid., 1895, vol. xviii. p. 300) are found to keep constant as V changes. Van ’t Hoff’s formula is equivalent to taking the frequency of dissociation as proportional to the square of the concentration of the molecules, and the frequency of recombination as proportional to the cube of the concentration of the ions. An explanation of the failure of the usual dilution law in these cases may be given if we remember that, while the electric forces between bodies like undissociated molecules, each associated with equal and opposite charges, will vary inversely as the fourth power of the distance, the forces between dissociated ions, each carrying one charge only, will be inversely proportional to the square of the distance. The forces between the ions of a strongly dissociated solution will thus be considerable at a dilution which makes forces between undissociated molecules quite insensible, and at the concentrations necessary to test Ostwald’s formula an electrolyte will be far from dilute in the thermodynamic sense of the term, which implies no appreciable intermolecular or interionic forces.When the solutions of two substances are mixed, similar considerations to those given above enable us to calculate the resultant changes in dissociation. (See Arrhenius,loc. cit.) The simplest and most important case is that of two electrolytes having one ion in common, such as two acids. It is evident that the undissociated part of each acid must eventually be in equilibrium with the free hydrogen ions, and, if the concentrations are not such as to secure this condition, readjustment must occur. In order that there should be no change in the states of dissociation on mixing, it is necessary, therefore, that the concentration of the hydrogen ions should be the same in each separate solution. Such solutions were called by Arrhenius “isohydric.” The two solutions, then, will so act on each other when mixed that they become isohydric. Let us suppose that we have one very active acid like hydrochloric, in which dissociation is nearly complete, another like acetic, in which it is very small. In order that the solutions of these should be isohydric and the concentrations of the hydrogen ions the same, we must have a very large quantity of the feebly dissociated acetic acid, and a very small quantity of the strongly dissociated hydrochloric, and in such proportions alone will equilibrium be possible. This explains the action of a strong acid on the salt of a weak acid. Let us allow dilute sodium acetate to react with dilute hydrochloric acid. Some acetic acid is formed, and this process will go on till the solutions of the two acids are isohydric: that is, till the dissociated hydrogen ions are in equilibrium with both. In order that this should hold, we have seen that a considerable quantity of acetic acid must be present, so that a corresponding amount of the salt will be decomposed, the quantity being greater the less the acid is dissociated. This “replacement” of a “weak” acid by a “strong” one is a matter of common observation in the chemical laboratory. Similar investigations applied to the general case of chemical equilibrium lead to an expression of exactly the same form as that given by C.M. Guldberg and P. Waage, which is universally accepted as an accurate representation of the facts.

The affinities of acids have been compared in several ways. W. Ostwald (Lehrbuch der allg. Chemie, vol. ii., Leipzig, 1893) investigated the relative affinities of acids for potash, soda and ammonia, and proved them to be independent of the base used. The method employed was to measure the changes in volume caused by the action. His results are given in column I. of the following table, the affinity of hydrochloric acid being taken as one hundred. Another method is to allow an acid to act on an insoluble salt, and to measure the quantity which goes into solution. Determinations have been made with calcium oxalate, CaC2O4+ H2O, which is easily decomposed by acids, oxalic acid and a soluble calcium salt being formed. The affinities of acids relative to that of oxalic acid are thus found, so that the acids can be compared among themselves (column II.). If an aqueous solution of methyl acetate be allowed to stand, a slow decomposition goes on. This is much quickened by the presence of a little dilute acid, though the acid itself remains unchanged. It is found that the influence of different acids on this action is proportional to their specific coefficients of affinity. The results of this method are given in column III. Finally, in column IV. the electrical conductivities of normal solutions of the acids have been tabulated. A better basis of comparison would be the ratio of the actual to the limiting conductivity, but since the conductivity of acids is chiefly due to the mobility of the hydrogen ions, its limiting value is nearly the same for all, and the general result of the comparison would be unchanged.

It must be remembered that, the solutions not being of quite the same strength, these numbers are not strictly comparable, and that the experimental difficulties involved in the chemical measurements are considerable. Nevertheless, the remarkable general agreement of the numbers in the four columns is quite enough to show the intimate connexion between chemical activity and electrical conductivity. We may take it, then, that only that portion of these bodies is chemically active which is electrolytically active—that ionization is necessary for such chemical activity as we are dealing with here, just as it is necessary for electrolytic conductivity.

The ordinary laws of chemical equilibrium have been applied to the case of the dissociation of a substance into its ions. Let x be the number of molecules which dissociate per second when the number of undissociated molecules in unit volume is unity, then in a dilute solution where the molecules do not interfere with each other, xp is the number when the concentration is p. Recombination can only occur when two ions meet, and since the frequency with which this will happen is, in dilute solution, proportional to the square of the ionic concentration, we shall get for the number of molecules re-formed in one second yq² where q is the number of dissociated molecules in one cubic centimetre. When there is equilibrium, xp = yq². If μ be the molecular conductivity, and μ∞its value at infinite dilution, the fractional number of molecules dissociated is μ / μ∞, which we may write as α. The number of undissociated molecules is then 1 − α, so that if V be the volume of the solution containing 1 gramme-molecule of the dissolved substance, we get

q = α / V and p = (1 − α) / V,

hence

x (1 − α) V = ya² / V²,

and

This constant k gives a numerical value for the chemical affinity, and the equation should represent the effect of dilution on the molecular conductivity of binary electrolytes.

In the case of substances like ammonia and acetic acid, where the dissociation is very small, 1 − α is nearly equal to unity, and only varies slowly with dilution. The equation then becomes α²/V = k, or α = √(Vk), so that the molecular conductivity is proportional to the square root of the dilution. Ostwald has confirmed the equation by observation on an enormous number of weak acids (Zeits. physikal. Chemie, 1888, ii. p. 278; 1889, iii. pp. 170, 241, 369). Thus in the case of cyanacetic acid, while the volume V changed by doubling from 16 to 1024 litres, the values of k were 0.00 (376, 373, 374, 361, 362, 361, 368). The mean values of k for other common acids were—formic, 0.0000214; acetic, 0.0000180; monochloracetic, 0.00155; dichloracetic, 0.051; trichloracetic, 1.21; propionic, 0.0000134. From these numbers we can, by help of the equation, calculate the conductivity of the acids for any dilution. The value of k, however, does not keep constant so satisfactorily in the case of highly dissociated substances, and empirical formulae have been constructed to represent the effect of dilution on them. Thus the values of the expressions α² / (1 − α√V) (Rudolphi,Zeits. physikal. Chemie, 1895, vol. xvii. p. 385) and α³ / (1 − α)²V (van ’t Hoff, ibid., 1895, vol. xviii. p. 300) are found to keep constant as V changes. Van ’t Hoff’s formula is equivalent to taking the frequency of dissociation as proportional to the square of the concentration of the molecules, and the frequency of recombination as proportional to the cube of the concentration of the ions. An explanation of the failure of the usual dilution law in these cases may be given if we remember that, while the electric forces between bodies like undissociated molecules, each associated with equal and opposite charges, will vary inversely as the fourth power of the distance, the forces between dissociated ions, each carrying one charge only, will be inversely proportional to the square of the distance. The forces between the ions of a strongly dissociated solution will thus be considerable at a dilution which makes forces between undissociated molecules quite insensible, and at the concentrations necessary to test Ostwald’s formula an electrolyte will be far from dilute in the thermodynamic sense of the term, which implies no appreciable intermolecular or interionic forces.

When the solutions of two substances are mixed, similar considerations to those given above enable us to calculate the resultant changes in dissociation. (See Arrhenius,loc. cit.) The simplest and most important case is that of two electrolytes having one ion in common, such as two acids. It is evident that the undissociated part of each acid must eventually be in equilibrium with the free hydrogen ions, and, if the concentrations are not such as to secure this condition, readjustment must occur. In order that there should be no change in the states of dissociation on mixing, it is necessary, therefore, that the concentration of the hydrogen ions should be the same in each separate solution. Such solutions were called by Arrhenius “isohydric.” The two solutions, then, will so act on each other when mixed that they become isohydric. Let us suppose that we have one very active acid like hydrochloric, in which dissociation is nearly complete, another like acetic, in which it is very small. In order that the solutions of these should be isohydric and the concentrations of the hydrogen ions the same, we must have a very large quantity of the feebly dissociated acetic acid, and a very small quantity of the strongly dissociated hydrochloric, and in such proportions alone will equilibrium be possible. This explains the action of a strong acid on the salt of a weak acid. Let us allow dilute sodium acetate to react with dilute hydrochloric acid. Some acetic acid is formed, and this process will go on till the solutions of the two acids are isohydric: that is, till the dissociated hydrogen ions are in equilibrium with both. In order that this should hold, we have seen that a considerable quantity of acetic acid must be present, so that a corresponding amount of the salt will be decomposed, the quantity being greater the less the acid is dissociated. This “replacement” of a “weak” acid by a “strong” one is a matter of common observation in the chemical laboratory. Similar investigations applied to the general case of chemical equilibrium lead to an expression of exactly the same form as that given by C.M. Guldberg and P. Waage, which is universally accepted as an accurate representation of the facts.

The temperature coefficient of conductivity has approximately the same value for most aqueous salt solutions. It decreases both as the temperature is raised and as the concentration is increased, ranging from about 3.5% per degree for extremely dilute solutions (i.e.practically pure water) at 0° to about 1.5for concentrated solutions at 18°. For acids its value is usually rather less than for salts at equivalent concentrations. The influence of temperature on the conductivity of solutions depends on (1) the ionization, and (2) the frictional resistance of the liquid to the passage of the ions, the reciprocal of which is called the ionic fluidity. At extreme dilution, when the ionization is complete, a variation in temperature cannot change its amount. The rise of conductivity with temperature, therefore, shows that the fluidity becomes greater when the solution is heated. As the concentration is increased and un-ionized molecules are formed, a change in temperature begins to affect the ionization as well as the fluidity. But the temperature coefficient of conductivity is now generally less than before; thus the effect of temperature on ionization must be of opposite sign to its effect on fluidity. The ionization of a solution, then, is usually diminished by raising the temperature, the rise in conductivity being due to the greater increase in fluidity. Nevertheless, in certain cases, the temperature coefficient of conductivity becomes negative at high temperatures, a solution of phosphoric acid, for example, reaching a maximum conductivity at 75° C.

The dissociation theory gives an immediate explanation of the fact that, in general, no heat-change occurs when two neutral salt solutions are mixed. Since the salts, both before and after mixture, exist mainly as dissociated ions, it is obvious that large thermal effects can only appear when the state of dissociation of the products is very different from that of the reagents. Let us consider the case of the neutralization of a base by an acid in the light of the dissociation theory. In dilute solution such substances as hydrochloric acid and potash are almost completely dissociated, so that, instead of representing the reaction as

HCl + KOH = KCl + H2O,

we must write

+   −   +   −   +   −H + Cl + K + OH = K + Cl + H2O.

+   −   +   −   +   −

H + Cl + K + OH = K + Cl + H2O.

The ions K and Cl suffer no change, but the hydrogen of the acid and the hydroxyl (OH) of the potash unite to form water, which is only very slightly dissociated. The heat liberated, then, is almost exclusively that produced by the formation of water from its ions. An exactly similar process occurs when any strongly dissociated acid acts on any strongly dissociated base, so that in all such cases the heat evolution should be approximately the same. This is fully borne out by the experiments of Julius Thomsen, who found that the heat of neutralization of one gramme-molecule of a strong base by an equivalent quantity of a strong acid was nearly constant, and equal to 13,700 or 13,800 calories. In the case of weaker acids, the dissociation of which is less complete, divergences from this constant value will occur, for some of the molecules have to be separated into their ions. For instance, sulphuric acid, which in the fairly strong solutions used by Thomsen is only about half dissociated, gives a higher value for the heat of neutralization, so that heat must be evolved when it is ionized. The heat of formation of a substance from its ions is, of course, very different from that evolved when it is formed from its elements in the usual way, since the energy associated with an ion is different from that possessed by the atoms of the element in their normal state. We can calculate the heat of formation from its ions for any substance dissolved in a given liquid, from a knowledge of the temperature coefficient of ionization, by means of an application of the well-known thermodynamical process, which also gives the latent heat of evaporation of a liquid when the temperature coefficient of its vapour pressure is known. The heats of formation thus obtained may be either positive or negative, and by using them to supplement the heat of formation of water, Arrhenius calculated the total heats of neutralization of soda by different acids, some of them only slightly dissociated, and found values agreeing well with observation (Zeits. physikal. Chemie, 1889, 4, p. 96; and 1892, 9, p. 339).

Voltaic Cells.—When two metallic conductors are placed in an electrolyte, a current will flow through a wire connecting them provided that a difference of any kind exists between the two conductors in the nature either of the metals or of the portions of the electrolyte which surround them. A current can be obtained by the combination of two metals in the same electrolyte, of two metals in different electrolytes, of the same metal in different electrolytes, or of the same metal in solutions of the same electrolyte at different concentrations. In accordance with the principles of energetics (q.v.), any change which involves a decrease in the total available energy of the system will tend to occur, and thus the necessary and sufficient condition for the production of electromotive force is that the available energy of the system should decrease when the current flows.

In order that the current should be maintained, and the electromotive force of the cell remain constant during action, it is necessary to ensure that the changes in the cell, chemical or other, which produce the current, should neither destroy the difference between the electrodes, nor coat either electrode with a non-conducting layer through which the current cannot pass. As an example of a fairly constant cell we may take that of Daniell, which consists of the electrical arrangement—zinc | zinc sulphate solution | copper sulphate solution | copper,—the two solutions being usually separated by a pot of porous earthenware. When the zinc and copper plates are connected through a wire, a current flows, the conventionally positive electricity passing from copper to zinc in the wire and from zinc to copper in the cell. Zinc dissolves at the anode, an equal amount of zinc replaces an equivalent amount of copper on the other side of the porous partition, and the same amount of copper is deposited on the cathode. This process involves a decrease in the available energy of the system, for the dissolution of zinc gives out more energy than the separation of copper absorbs. But the internal rearrangements which accompany the production of a current do not cause any change in the original nature of the electrodes, fresh zinc being exposed at the anode, and copper being deposited on copper at the cathode. Thus as long as a moderate current flows, the only variation in the cell is the appearance of zinc sulphate in the liquid on the copper side of the porous wall. In spite of this appearance, however, while the supply of copper is maintained, copper, being more easily separated from the solution than zinc, is deposited alone at the cathode, and the cell remains constant.

It is necessary to observe that the condition for change in a system is that the total available energy of the whole system should be decreased by the change. We must consider what change is allowed by the mechanism of the system, and deal with the sum of all the alterations in energy. Thus in the Daniell cell the dissolution of copper as well as of zinc would increase the loss in available energy. But when zinc dissolves, the zinc ions carry their electric charges with them, and the liquid tends to become positively electrified. The electric forces then soon stop further action unless an equivalent quantity of positive ions are removed from the solution. Hence zinc can only dissolve when some more easily separable substance is present in solution to be removed pari passu with the dissolution of zinc. The mechanism of such systems is well illustrated by an experiment devised by W. Ostwald. Plates of platinum and pure or amalgamated zinc are separated by a porous pot, and each surrounded by some of the same solution of a salt of a metal more oxidizable than zinc, such as potassium. When the plates are connected together by means of a wire, no current flows, and no appreciable amount of zinc dissolves, for the dissolution of zinc would involve the separation of potassium and a gain in available energy. If sulphuric acid be added to the vessel containing the zinc, these conditions are unaltered and still no zinc is dissolved. But, on the other hand, if a few drops of acid be placed in the vessel with the platinum, bubbles of hydrogen appear, and a current flows, zinc dissolving at the anode, and hydrogen being liberated at the cathode. In order that positively electrified ions may enter a solution, an equivalent amount of other positive ions must be removed or negative ions be added, and, for the process to occur spontaneously, the possible action at the two electrodes must involve a decrease in the total available energy of the system.

Considered thermodynamically, voltaic cells must be dividedinto reversible and non-reversible systems. If the slow processes of diffusion be ignored, the Daniell cell already described may be taken as a type of a reversible cell. Let an electromotive force exactly equal to that of the cell be applied to it in the reverse direction. When the applied electromotive force is diminished by an infinitesimal amount, the cell produces a current in the usual direction, and the ordinary chemical changes occur. If the external electromotive force exceed that of the cell by ever so little, a current flows in the opposite direction, and all the former chemical changes are reversed, copper dissolving from the copper plate, while zinc is deposited on the zinc plate. The cell, together with this balancing electromotive force, is thus a reversible system in true equilibrium, and the thermodynamical reasoning applicable to such systems can be used to examine its properties.

Now a well-known relation connects the available energy of a reversible system with the corresponding change in its total internal energy.

The available energy A is the amount of external work obtainable by an infinitesimal, reversible change in the system which occurs at a constant temperature T. If I be the change in the internal energy, the relation referred to gives us the equationA = I + T (dA/dT),where dA/dT denotes the rate of change of the available energy of the system per degree change in temperature. During a small electric transfer through the cell, the external work done is Ee, where E is the electromotive force. If the chemical changes which occur in the cell were allowed to take place in a closed vessel without the performance of electrical or other work, the change in energy would be measured by the heat evolved. Since the final state of the system would be the same as in the actual processes of the cell, the same amount of heat must give a measure of the change in internal energy when the cell is in action. Thus, if L denote the heat corresponding with the chemical changes associated with unit electric transfer, Le will be the heat corresponding with an electric transfer e, and will also be equal to the change in internal energy of the cell. Hence we get the equationEe = Le + Te (dE/dT) or E = L + T (dE/dT),as a particular case of the general thermodynamic equation of available energy. This equation was obtained in different ways by J. Willard Gibbs and H. von Helmholtz.It will be noticed that when dE/dT is zero, that is, when the electromotive force of the cell does not change with temperature, the electromotive force is measured by the heat of reaction per unit of electrochemical change. The earliest formulation of the subject, due to Lord Kelvin, assumed that this relation was true in all cases, and, calculated in this way, the electromotive force of Daniell’s cell, which happens to possess a very small temperature coefficient, was found to agree with observation.When one gramme of zinc is dissolved in dilute sulphuric acid, 1670 thermal units or calories are evolved. Hence for the electrochemical unit of zinc or 0.003388 gramme, the thermal evolution is 5.66 calories. Similarly, the heat which accompanies the dissolution of one electrochemical unit of copper is 3.00 calories. Thus, the thermal equivalent of the unit of resultant electrochemical change in Daniell’s cell is 5.66 − 3.00 = 2.66 calories. The dynamical equivalent of the calorie is 4.18 × 107ergs or C.G.S. units of work, and therefore the electromotive force of the cell should be 1.112 × 108C.G.S. units or 1.112 volts—a close agreement with the experimental result of about 1.08 volts. For cells in which the electromotive force varies with temperature, the full equation given by Gibbs and Helmholtz has also been confirmed experimentally.

The available energy A is the amount of external work obtainable by an infinitesimal, reversible change in the system which occurs at a constant temperature T. If I be the change in the internal energy, the relation referred to gives us the equation

A = I + T (dA/dT),

where dA/dT denotes the rate of change of the available energy of the system per degree change in temperature. During a small electric transfer through the cell, the external work done is Ee, where E is the electromotive force. If the chemical changes which occur in the cell were allowed to take place in a closed vessel without the performance of electrical or other work, the change in energy would be measured by the heat evolved. Since the final state of the system would be the same as in the actual processes of the cell, the same amount of heat must give a measure of the change in internal energy when the cell is in action. Thus, if L denote the heat corresponding with the chemical changes associated with unit electric transfer, Le will be the heat corresponding with an electric transfer e, and will also be equal to the change in internal energy of the cell. Hence we get the equation

Ee = Le + Te (dE/dT) or E = L + T (dE/dT),

as a particular case of the general thermodynamic equation of available energy. This equation was obtained in different ways by J. Willard Gibbs and H. von Helmholtz.

It will be noticed that when dE/dT is zero, that is, when the electromotive force of the cell does not change with temperature, the electromotive force is measured by the heat of reaction per unit of electrochemical change. The earliest formulation of the subject, due to Lord Kelvin, assumed that this relation was true in all cases, and, calculated in this way, the electromotive force of Daniell’s cell, which happens to possess a very small temperature coefficient, was found to agree with observation.

When one gramme of zinc is dissolved in dilute sulphuric acid, 1670 thermal units or calories are evolved. Hence for the electrochemical unit of zinc or 0.003388 gramme, the thermal evolution is 5.66 calories. Similarly, the heat which accompanies the dissolution of one electrochemical unit of copper is 3.00 calories. Thus, the thermal equivalent of the unit of resultant electrochemical change in Daniell’s cell is 5.66 − 3.00 = 2.66 calories. The dynamical equivalent of the calorie is 4.18 × 107ergs or C.G.S. units of work, and therefore the electromotive force of the cell should be 1.112 × 108C.G.S. units or 1.112 volts—a close agreement with the experimental result of about 1.08 volts. For cells in which the electromotive force varies with temperature, the full equation given by Gibbs and Helmholtz has also been confirmed experimentally.

As stated above, an electromotive force is set up whenever there is a difference of any kind at two electrodes immersed in electrolytes. In ordinary cells the difference is secured by using two dissimilar metals, but an electromotive force exists if two plates of the same metal are placed in solutions of different substances, or of the same substance at different concentrations. In the latter case, the tendency of the metal to dissolve in the more dilute solution is greater than its tendency to dissolve in the more concentrated solution, and thus there is a decrease in available energy when metal dissolves in the dilute solution and separates in equivalent quantity from the concentrated solution. An electromotive force is therefore set up in this direction, and, if we can calculate the change in available energy due to the processes of the cell, we can foretell the value of the electromotive force. Now the effective change produced by the action of the current is the concentration of the more dilute solution by the dissolution of metal in it, and the dilution of the originally stronger solution by the separation of metal from it. We may imagine these changes reversed in two ways. We may evaporate some of the solvent from the solution which has become weaker and thus reconcentrate it, condensing the vapour on the solution which had become stronger. By this reasoning Helmholtz showed how to obtain an expression for the work done. On the other hand, we may imagine the processes due to the electrical transfer to be reversed by an osmotic operation. Solvent may be supposed to be squeezed out from the solution which has become more dilute through a semi-permeable wall, and through another such wall allowed to mix with the solution which in the electrical operation had become more concentrated. Again, we may calculate the osmotic work done, and, if the whole cycle of operations be supposed to occur at the same temperature, the osmotic work must be equal and opposite to the electrical work of the first operation.

The result of the investigation shows that the electrical work Ee is given by the equationEe =∫p2p1vdp,where v is the volume of the solution used and p its osmotic pressure. When the solutions may be taken as effectively dilute, so that the gas laws apply to the osmotic pressure, this relation reduces toE =nrRTlogεc1eyc2where n is the number of ions given by one molecule of the salt, r the transport ratio of the anion, R the gas constant, T the absolute temperature, y the total valency of the anions obtained from one molecule, and c1and c2the concentrations of the two solutions.If we take as an example a concentration cell in which silver plates are placed in solutions of silver nitrate, one of which is ten times as strong as the other, this equation givesE = 0.060 × 108C.G.S. units= 0.060 volts.W. Nernst, to whom this theory is due, determined the electromotive force of this cell experimentally, and found the value 0.055 volt.

The result of the investigation shows that the electrical work Ee is given by the equation

Ee =∫p2p1vdp,

where v is the volume of the solution used and p its osmotic pressure. When the solutions may be taken as effectively dilute, so that the gas laws apply to the osmotic pressure, this relation reduces to

where n is the number of ions given by one molecule of the salt, r the transport ratio of the anion, R the gas constant, T the absolute temperature, y the total valency of the anions obtained from one molecule, and c1and c2the concentrations of the two solutions.

If we take as an example a concentration cell in which silver plates are placed in solutions of silver nitrate, one of which is ten times as strong as the other, this equation gives

E = 0.060 × 108C.G.S. units= 0.060 volts.

E = 0.060 × 108C.G.S. units

= 0.060 volts.

W. Nernst, to whom this theory is due, determined the electromotive force of this cell experimentally, and found the value 0.055 volt.

The logarithmic formulae for these concentration cells indicate that theoretically their electromotive force can be increased to any extent by diminishing without limit the concentration of the more dilute solution, log c1/c2then becoming very great. This condition may be realized to some extent in a manner that throws light on the general theory of the voltaic cell. Let us consider the arrangement—silver | silver chloride with potassium chloride solution | potassium nitrate solution | silver nitrate solution | silver. Silver chloride is a very insoluble substance, and here the amount in solution is still further reduced by the presence of excess of chlorine ions of the potassium salt. Thus silver, at one end of the cell in contact with many silver ions of the silver nitrate solution, at the other end is in contact with a liquid in which the concentration of those ions is very small indeed. The result is that a high electromotive force is set up, which has been calculated as 0.52 volt, and observed as 0.51 volt. Again, Hittorf has shown that the effect of a cyanide round a copper electrode is to combine with the copper ions. The concentration of the simple copper ions is then so much diminished that the copper plate becomes an anode with regard to zinc. Thus the cell—copper | potassium cyanide solution | potassium sulphate solution—zinc sulphate solution | zinc—gives a current which carries copper into solution and deposits zinc. In a similar way silver could be made to act as anode with respect to cadmium.

It is now evident that the electromotive force of an ordinary chemical cell such as that of Daniell depends on the concentration of the solutions as well as on the nature of the metals. In ordinary cases possible changes in the concentrations only affect the electromotive force by a few parts in a hundred, but, by means such as those indicated above, it is possible to produce such immense differences in the concentrations that the electromotive force of the cell is not only changed appreciably but even reversed in direction. Once more we see that it is the total impending change in the available energy of the system which controls the electromotive force.

Any reversible cell can theoretically be employed as an accumulator, though, in practice, conditions of general convenience are more sought after than thermodynamic efficiency.The effective electromotive force of the common lead accumulator (q.v.) is less than that required to charge it. This drop in the electromotive force has led to the belief that the cell is not reversible. F. Dolezalek, however, has attributed the difference to mechanical hindrances, which prevent the equalization of acid concentration in the neighbourhood of the electrodes, rather than to any essentially irreversible chemical action. The fact that the Gibbs-Helmholtz equation is found to apply also indicates that the lead accumulator is approximately reversible in the thermodynamic sense of the term.

Polarization and Contact Difference of Potential.—If we connect together in series a single Daniell’s cell, a galvanometer, and two platinum electrodes dipping into acidulated water, no visible chemical decomposition ensues. At first a considerable current is indicated by the galvanometer; the deflexion soon diminishes, however, and finally becomes very small. If, instead of using a single Daniell’s cell, we employ some source of electromotive force which can be varied as we please, and gradually raise its intensity, we shall find that, when it exceeds a certain value, about 1.7 volt, a permanent current of considerable strength flows through the solution, and, after the initial period, shows no signs of decrease. This current is accompanied by chemical decomposition. Now let us disconnect the platinum plates from the battery and join them directly with the galvanometer. A current will flow for a while in the reverse direction; the system of plates and acidulated water through which a current has been passed, acts as an accumulator, and will itself yield a current in return. These phenomena are explained by the existence of a reverse electromotive force at the surface of the platinum plates. Only when the applied electromotive force exceeds this reverse force of polarization, will a permanent steady current pass through the liquid, and visible chemical decomposition proceed. It seems that this reverse electromotive force of polarization is due to the deposit on the electrodes of minute quantities of the products of chemical decomposition. Differences between the two electrodes are thus set up, and, as we have seen above, an electromotive force will therefore exist between them. To pass a steady current in the direction opposite to this electromotive force of polarization, the applied electromotive force E must exceed that of polarization E′, and the excess E − E′ is the effective electromotive force of the circuit, the current being, in accordance with Ohm’s law, proportional to the applied electromotive force and represented by (E − E′) / R, where R is a constant called the resistance of the circuit.

When we use platinum electrodes in acidulated water, hydrogen and oxygen are evolved. The opposing force of polarization is about 1.7 volt, but, when the plates are disconnected and used as a source of current, the electromotive force they give is only about 1.07 volt. This irreversibility is due to the work required to evolve bubbles of gas at the surface of bright platinum plates. If the plates be covered with a deposit of platinum black, in which the gases are absorbed as fast as they are produced, the minimum decomposition point is 1.07 volt, and the process is reversible. If secondary effects are eliminated, the deposition of metals also is a reversible process; the decomposition voltage is equal to the electromotive force which the metal itself gives when going into solution. The phenomena of polarization are thus seen to be due to the changes of surface produced, and are correlated with the differences of potential which exist at any surface of separation between a metal and an electrolyte.

Many experiments have been made with a view of separating the two potential-differences which must exist in any cell made of two metals and a liquid, and of determining each one individually. If we regard the thermal effect at each junction as a measure of the potential-difference there, as the total thermal effect in the cell undoubtedly is of the sum of its potential-differences, in cases where the temperature coefficient is negligible, the heat evolved on solution of a metal should give the electrical potential-difference at its surface. Hence, if we assume that, in the Daniell’s cell, the temperature coefficients are negligible at the individual contacts as well as in the cell as a whole, the sign of the potential-difference ought to be the same at the surface of the zinc as it is at the surface of the copper. Since zinc goes into solution and copper comes out, the electromotive force of the cell will be the difference between the two effects. On the other hand, it is commonly thought that the single potential-differences at the surface of metals and electrolytes have been determined by methods based on the use of the capillary electrometer and on others depending on what is called a dropping electrode, that is, mercury dropping rapidly into an electrolyte and forming a cell with the mercury at rest in the bottom of the vessel. By both these methods the single potential-differences found at the surfaces of the zinc and copper have opposite signs, and the effective electromotive force of a Daniell’s cell is the sum of the two effects. Which of these conflicting views represents the truth still remains uncertain.

Diffusion of Electrolytes and Contact Difference of Potential between Liquids.—An application of the theory of ionic velocity due to W. Nernst7and M. Planck8enables us to calculate the diffusion constant of dissolved electrolytes. According to the molecular theory, diffusion is due to the motion of the molecules of the dissolved substance through the liquid. When the dissolved molecules are uniformly distributed, the osmotic pressure will be the same everywhere throughout the solution, but, if the concentration vary from point to point, the pressure will vary also. There must, then, be a relation between the rate of change of the concentration and the osmotic pressure gradient, and thus we may consider the osmotic pressure gradient as a force driving the solute through a viscous medium. In the case of non-electrolytes and of all non-ionized molecules this analogy completely represents the facts, and the phenomena of diffusion can be deduced from it alone. But the ions of an electrolytic solution can move independently through the liquid, even when no current flows, as the consequences of Ohm’s law indicate. The ions will therefore diffuse independently, and the faster ion will travel quicker into pure water in contact with a solution. The ions carry their charges with them, and, as a matter of fact, it is found that water in contact with a solution takes with respect to it a positive or negative potential, according as the positive or negative ion travels the faster. This process will go on until the simultaneous separation of electric charges produces an electrostatic force strong enough to prevent further separation of ions. We can therefore calculate the rate at which the salt as a whole will diffuse by examining the conditions for a steady transfer, in which the ions diffuse at an equal rate, the faster one being restrained and the slower one urged forward by the electric forces. In this manner the diffusion constant can be calculated in absolute units (HCl = 2.49, HNO3= 2.27, NaCl = 1.12), the unit of time being the day. By experiments on diffusion this constant has been found by Scheffer, and the numbers observed agree with those calculated (HCl = 2.30, HNO3= 2.22, NaCl = 1.11).

As we have seen above, when a solution is placed in contact with water the water will take a positive or negative potential with regard to the solution, according as the cation or anion has the greater specific velocity, and therefore the greater initial rate of diffusion. The difference of potential between two solutions of a substance at different concentrations can be calculated from the equations used to give the diffusion constants. The results give equations of the same logarithmic form as those obtained in a somewhat different manner in the theory of concentration cells described above, and have been verified by experiment.

The contact differences of potential at the interfaces of metals and electrolytes have been co-ordinated by Nernst with those at the surfaces of separation between different liquids. In contact with a solvent a metal is supposed to possess a definite solution pressure, analogous to the vapour pressure of a liquid. Metal goes into solution in the form of electrified ions. The liquid thus acquires a positive charge, and the metal a negative charge. The electric forces set up tend to prevent further separation, and finally a state of equilibrium is reached, when nomore ions can go into solution unless an equivalent number are removed by voltaic action. On the analogy between this case and that of the interface between two solutions, Nernst has arrived at similar logarithmic expressions for the difference of potential, which becomes proportional to log (P1/P2) where P2is taken to mean the osmotic pressure of the cations in the solution, and P1the osmotic pressure of the cations in the substance of the metal itself. On these lines the equations of concentration cells, deduced above on less hypothetical grounds, may be regained.

Theory of Electrons.—Our views of the nature of the ions of electrolytes have been extended by the application of the ideas of the relations between matter and electricity obtained by the study of electric conduction through gases. The interpretation of the phenomena of gaseous conduction was rendered possible by the knowledge previously acquired of conduction through liquids; the newer subject is now reaching a position whence it can repay its debt to the older.

Sir J.J. Thomson has shown (seeConduction, Electric, § III.) that the negative ions in certain cases of gaseous conduction are much more mobile than the corresponding positive ions, and possess a mass of about the one-thousandth part of that of a hydrogen atom. These negative particles or corpuscles seem to be the ultimate units of negative electricity, and may be identified with the electrons required by the theories of H.A. Lorentz and Sir J. Larmor. A body containing an excess of these particles is negatively electrified, and is positively electrified if it has parted with some of its normal number. An electric current consists of a moving stream of electrons. In gases the electrons sometimes travel alone, but in liquids they are always attached to matter, and their motion involves the movement of chemical atoms or groups of atoms. An atom with an extra corpuscle is a univalent negative ion, an atom with one corpuscle detached is a univalent positive ion. In metals the electrons can slip from one atom to the next, since a current can pass without chemical action. When a current passes from an electrolyte to a metal, the electron must be detached from the atom it was accompanying and chemical action be manifested at the electrode.

Bibliography.—Michael Faraday,Experimental Researches in Electricity(London, 1844 and 1855); W. Ostwald,Lehrbuch der allgemeinen Chemie, 2te Aufl. (Leipzig, 1891);Elektrochemie(Leipzig, 1896); W Nernst,Theoretische Chemie, 3te Aufl. (Stuttgart, 1900; English translation, London, 1904); F. Kohlrausch and L. Holborn,Das Leitvermögen der Elektrolyte(Leipzig, 1898); W.C.D. Whetham,The Theory of Solution and Electrolysis(Cambridge, 1902); M. Le Blanc,Elements of Electrochemistry(Eng. trans., London, 1896); S. Arrhenius,Text-Book of Electrochemistry(Eng. trans., London, 1902); H.C. Jones,The Theory of Electrolytic Dissociation(New York, 1900); N. Munroe Hopkins,Experimental Electrochemistry(London, 1905); Lüphe,Grundzüge der Elektrochemie(Berlin, 1896).Some of the more important papers on the subject have been reprinted for Harper’sSeries of Scientific Memoirs in Electrolytic Conduction(1899) and theModern Theory of Solution(1899). Several journals are published specially to deal with physical chemistry, of which electrochemistry forms an important part. Among them may be mentioned theZeitschrift für physikalische Chemie(Leipzig); and theJournal of Physical Chemistry(Cornell University). In these periodicals will be found new work on the subject and abstracts of papers which appear in other physical and chemical publications.

Bibliography.—Michael Faraday,Experimental Researches in Electricity(London, 1844 and 1855); W. Ostwald,Lehrbuch der allgemeinen Chemie, 2te Aufl. (Leipzig, 1891);Elektrochemie(Leipzig, 1896); W Nernst,Theoretische Chemie, 3te Aufl. (Stuttgart, 1900; English translation, London, 1904); F. Kohlrausch and L. Holborn,Das Leitvermögen der Elektrolyte(Leipzig, 1898); W.C.D. Whetham,The Theory of Solution and Electrolysis(Cambridge, 1902); M. Le Blanc,Elements of Electrochemistry(Eng. trans., London, 1896); S. Arrhenius,Text-Book of Electrochemistry(Eng. trans., London, 1902); H.C. Jones,The Theory of Electrolytic Dissociation(New York, 1900); N. Munroe Hopkins,Experimental Electrochemistry(London, 1905); Lüphe,Grundzüge der Elektrochemie(Berlin, 1896).

Some of the more important papers on the subject have been reprinted for Harper’sSeries of Scientific Memoirs in Electrolytic Conduction(1899) and theModern Theory of Solution(1899). Several journals are published specially to deal with physical chemistry, of which electrochemistry forms an important part. Among them may be mentioned theZeitschrift für physikalische Chemie(Leipzig); and theJournal of Physical Chemistry(Cornell University). In these periodicals will be found new work on the subject and abstracts of papers which appear in other physical and chemical publications.

(W. C. D. W.)

1See Hittorf,Pogg. Ann.cvi. 517 (1859).2Grundriss der Elektrochemie(1895), p. 292; see also F. Kaufler and C. Herzog,Ber., 1909, 42, p. 3858.3Brit. Ass. Rep., 1906, Section A, Presidential Address.4SeeTheory of Solution, by W.C.D. Whetham (1902), p. 328.5W. Ostwald,Zeits. physikal. Chemie, 1892, vol. IX. p. 579; T. Ewan,Phil. Mag.(5), 1892, vol. xxxiii. p. 317; G.D. Liveing,Cambridge Phil. Trans., 1900, vol. xviii. p. 298.6See W.B. Hardy,Journal of Physiology, 1899, vol. xxiv. p. 288; and W.C.D. Whetham,Phil. Mag., November 1899.7Zeits. physikal. Chem.2, p. 613.8Wied. Ann., 1890, 40, p. 561.

1See Hittorf,Pogg. Ann.cvi. 517 (1859).

2Grundriss der Elektrochemie(1895), p. 292; see also F. Kaufler and C. Herzog,Ber., 1909, 42, p. 3858.

3Brit. Ass. Rep., 1906, Section A, Presidential Address.

4SeeTheory of Solution, by W.C.D. Whetham (1902), p. 328.

5W. Ostwald,Zeits. physikal. Chemie, 1892, vol. IX. p. 579; T. Ewan,Phil. Mag.(5), 1892, vol. xxxiii. p. 317; G.D. Liveing,Cambridge Phil. Trans., 1900, vol. xviii. p. 298.

6See W.B. Hardy,Journal of Physiology, 1899, vol. xxiv. p. 288; and W.C.D. Whetham,Phil. Mag., November 1899.

7Zeits. physikal. Chem.2, p. 613.

8Wied. Ann., 1890, 40, p. 561.

ELECTROMAGNETISM, that branch of physical science which is concerned with the interconnexion of electricity and magnetism, and with the production of magnetism by means of electric currents by devices called electromagnets.

History.—The foundation was laid by the observation first made by Hans Christian Oersted (1777-1851), professor of natural philosophy in Copenhagen, who discovered in 1820 that a wire uniting the poles or terminal plates of a voltaic pile has the property of affecting a magnetic needle1(seeElectricity). Oersted carefully ascertained that the nature of the wire itself did not influence the result but saw that it was due to the electric conflict, as he called it, round the wire; or in modern language, to the magnetic force or magnetic flux round the conductor. If a straight wire through which an electric current is flowing is placed above and parallel to a magnetic compass needle, it is found that if the current is flowing in the conductor in a direction from south to north, the north pole of the needle under the conductor deviates to the left hand, whereas if the conductor is placed under the needle, the north pole deviates to the right hand; if the conductor is doubled back over the needle, the effects of the two sides of the loop are added together and the deflection is increased. These results are summed up in the mnemonic rule:Imagine yourself swimming in the conductor with the current, that is, moving in the direction of the positive electricity, with your face towards the magnetic needle; the north pole will then deviate to your left hand.The deflection of the magnetic needle can therefore reveal the existence of an electric current in a neighbouring circuit, and this fact was soon utilized in the construction of instruments called galvanometers (q.v.).

Immediately after Oersted’s discovery was announced, D.F.J. Arago and A.M. Ampère began investigations on the subject of electromagnetism. On the 18th of September 1820, Ampère read a paper before the Academy of Sciences in Paris, in which he announced that the voltaic pile itself affected a magnetic needle as did the uniting wire, and he showed that the effects in both cases were consistent with the theory that electric current was a circulation round a circuit, and equivalent in magnetic effect to a very short magnet with axis placed at right angles to the plane of the circuit. He then propounded his brilliant hypothesis that the magnetization of iron was due to molecular electric currents. This suggested to Arago that wire wound into a helix carrying electric current should magnetize a steel needle placed in the interior. In theAnn. Chim.(1820, 15, p. 94), Arago published a paper entitled “Expériences relatives à l’aimantation du fer et de l’acier par l’action du courant voltaïque,” announcing that the wire conveying the current, even though of copper, could magnetize steel needles placed across it, and if plunged into iron filings it attracted them. About the same time Sir Humphry Davy sent a communication to Dr W.H. Wollaston, read at the Royal Society on the 16th of November 1820 (reproduced in theAnnals of Philosophyfor August 1821, p. 81), “On the Magnetic Phenomena produced by Electricity,” in which he announced his independent discovery of the same fact. With a large battery of 100 pairs of plates at the Royal Institution, he found in October 1820 that the uniting wire became strongly magnetic and that iron filings clung to it; also that steel needles placed across the wire were permanently magnetized. He placed a sheet of glass over the wire and sprinkling iron filings on it saw that they arranged themselves in straight lines at right angles to the wire. He then proved that Leyden jar discharges could produce the same effects. Ampère and Arago then seem to have experimented together and magnetized a steel needle wrapped in paper which was enclosed in a helical wire conveying a current. All these facts were rendered intelligible when it was seen that a wire when conveying an electric current becomes surrounded by a magnetic field. If the wire is a long straight one, the lines of magnetic force are circular and concentric with centres on the wire axis, and if the wire is bent into a circle the lines of magnetic force are endless loops surrounding and linked with the electric circuit. Since a magnetic pole tends to move along a line of magnetic force it was obvious that it should revolve round a wire conveying a current. To exhibit this fact involved, however, much ingenuity. It was first accomplished by Faraday in October 1821 (Exper. Res.ii. p. 127). Since the action is reciprocal a current free to move tends to revolve round a magnetic pole. The fact is most easily shown by a small piece of apparatus made as follows: In a glass cylinder (see fig. 1) like a lamp chimney are fitted two corks. Through the bottom one is passed the north end of a bar magnet which projects up above a little mercury lying in the cork. Through the top cork is passed one end of a wire from abattery, and a piece of wire in the cylinder is flexibly connected to it, the lower end of this last piece just touching the mercury. When a current is passed in at the top wire and out at the lower end of the bar magnet, the loose wire revolves round the magnet pole. All text-books on physics contain in their chapters on electromagnetism full accounts of various forms of this experiment.

In 1825 another important step forward was taken when William Sturgeon (1783-1850) of London produced the electromagnet. It consisted of a horseshoe-shaped bar of soft iron, coated with varnish, on which was wrapped a spiral coil of bare copper wire, the turns not touching each other. When a voltaic current was passed through the wire the iron became a powerful magnet, but on severing the connexion with the battery, the soft iron lost immediately nearly all its magnetism.2

At that date Ohm had not announced his law of the electric circuit, and it was a matter of some surprise to investigators to find that Sturgeon’s electromagnet could not be operated at a distance through a long circuit of wire with such good results as when close to the battery. Peter Barlow, in January 1825, published in theEdinburgh Philosophical Journal, a description of such an experiment made with a view of applying Sturgeon’s electromagnet to telegraphy, with results which were unfavourable. Sturgeon’s experiments, however, stimulated Joseph Henry (q.v.) in the United States, and in 1831 he gave a description of a method of winding electromagnets which at once put a new face upon matters (Silliman’s Journal, 1831, 19, p. 400). Instead of insulating the iron core, he wrapped the copper wire round with silk and wound in numerous turns and many layers upon the iron horseshoe in such fashion that the current went round the iron always in the same direction. He then found that such an electromagnet wound with a long fine wire, if worked with a battery consisting of a large number of cells in series, could be operated at a considerable distance, and he thus produced what were called at that timeintensity electromagnets, and which subsequently rendered the electric telegraph a possibility. In fact, Henry established in 1831, in Albany, U.S.A., an electromagnetic telegraph, and in 1835 at Princeton even used an earth return, thereby anticipating the discovery (1838) of C.A. Steinheil (1801-1870) of Munich.

Inventors were then incited to construct powerful electromagnets as tested by the weight they could carry from their armatures. Joseph Henry made a magnet for Yale College, U.S.A., which lifted 3000 ℔ (Silliman’s Journal, 1831, 20, p. 201), and one for Princeton which lifted 3000 with a very small battery. Amongst others J.P. Joule, ever memorable for his investigations on the mechanical equivalent of heat, gave much attention about 1838-1840 to the construction of electromagnets and succeeded in devising some forms remarkable for their lifting power. One form was constructed by cutting a thick soft iron tube longitudinally into two equal parts. Insulated copper wire was then wound longitudinally over one of both parts (see fig. 2) and a current sent through the wire. In another form two iron disks with teeth at right angles to the disk had insulated wire wound zigzag between the teeth; when a current was sent through the wire, the teeth were so magnetized that they were alternately N. and S. poles. If two such similar disks were placed with teeth of opposite polarity in contact, a very large force was required to detach them, and with a magnet and armature weighing in all 11.575 ℔ Joule found that a weight of 2718 was supported. Joule’s papers on this subject will be found in hisCollected Paperspublished by the Physical Society of London, and inSturgeon’s Annals of Electricity, 1838-1841, vols. 2-6.


Back to IndexNext