Chapter 19

See, in addition to references already given, A. Gray,Absolute Measurements in Electricity and Magnetism(London, 1888), vol. i. p. 254; A. Winkelmann,Handbuch der Physik(Breslau, 1905), pp. 58-70, which contains a large number of references to original papers on electrometers.

See, in addition to references already given, A. Gray,Absolute Measurements in Electricity and Magnetism(London, 1888), vol. i. p. 254; A. Winkelmann,Handbuch der Physik(Breslau, 1905), pp. 58-70, which contains a large number of references to original papers on electrometers.

(J. A. F.)

1It is probable that an experiment of this kind had been made as far back as 1746 by Daniel Gralath, of Danzig, who has some claims to have suggested the word “electrometer” in connexion with it. See Park Benjamin,The Intellectual Rise in Electricity(London, 1895), p. 542.2See Maxwell,Treatise on Electricity and Magnetism(2nd ed.), i. 308.3See Maxwell,Electricity and Magnetism(2nd ed., Oxford, 1881), vol. i. p. 311.4See J.A. Fleming,Handbook for the Electrical Laboratory and Testing Room, vol. i. p. 448 (London, 1901).

1It is probable that an experiment of this kind had been made as far back as 1746 by Daniel Gralath, of Danzig, who has some claims to have suggested the word “electrometer” in connexion with it. See Park Benjamin,The Intellectual Rise in Electricity(London, 1895), p. 542.

2See Maxwell,Treatise on Electricity and Magnetism(2nd ed.), i. 308.

3See Maxwell,Electricity and Magnetism(2nd ed., Oxford, 1881), vol. i. p. 311.

4See J.A. Fleming,Handbook for the Electrical Laboratory and Testing Room, vol. i. p. 448 (London, 1901).

ELECTRON, the name suggested by Dr G. Johnstone Stoney in 1891 for the natural unit of electricity to which he had drawn attention in 1874, and subsequently applied to the ultra-atomic particles carrying negative charges of electricity, of which Professor Sir J.J. Thomson proved in 1897 that the cathode rays consisted. The electrons, which Thomson at first called corpuscles, are point charges of negative electricity, their inertia showing them to have a mass equal to about1⁄2000that of the hydrogen atom. They are apparently derivable from all kinds of matter, and are believed to be components at any rate of the chemical atom. The electronic theory of the chemical atom supposes, in fact, that atoms are congeries of electrons in rapid orbital motion. The size of the electron is to that of an atom roughly in the ratio of a pin’s head to the dome of St Paul’s cathedral. The electron is always associated with the unit charge of negative electricity, and it has been suggested that its inertia is wholly electrical. For further details see the articles onElectricity;Magnetism;Matter;Radioactivity;Conduction, Electric;The Electron Theory, E. Fournier d’Albe (London, 1907); and the original papers of Dr G. Johnstone Stoney,Proc. Brit. Ass.(Belfast, August 1874), “On the Physical Units of Nature,” andTrans. Royal Dublin Society(1891), 4, p. 583.

ELECTROPHORUS, an instrument invented by Alessandro Volta in 1775, by which mechanical work is transformed into electrostatic charge by the aid of a small initial charge of electricity. The operation depends on the facts of electrostatic induction discovered by John Canton in 1753, and, independently, by J.K. Wilcke in 1762 (seeElectricity). Volta, in a letter to J. Priestley on the 10th of June 1775 (seeCollezione dell’ opere, ed. 1816, vol. i. p. 118), described the invention of a device he called anelettroforo perpetuo, based on the fact that a conductor held near an electrified body and touched by the finger was found, when withdrawn, to possess an electric charge of opposite sign to that of the electrified body. His electrophorus in one form consisted of a disk of non-conducting material, such as pitch or resin, placed between two metal sheets, one being provided with an insulating handle. For the pitch or resin may be substituted a sheet of glass, ebonite, india-rubber or any other good dielectric placed upon a metallic sheet, called the sole-plate. To use the apparatus the surface of the dielectric is rubbed with a piece of warm flannel, silk or catskin, so as to electrify it, and the upper metal plate is then placed upon it. Owing to the irregularities in the surfaces of the dielectric and upper plate the two are only in contact at a few points, and owing to the insulating quality of the dielectric its surface electrical charge cannot move over it. It therefore acts inductively upon the upper plate and induces on the adjacent surface an electric charge of opposite sign. Suppose, for instance, that the dielectric is a plate of resin rubbed with catskin, it will then be negatively electrified and will act by induction on the upper plate across the film of air separating the upper resin surface and lower surface of the upper metal plate. If the upper plate is touched with the finger or connected to earth for a moment, a negative charge will escape from the metal plate to earth at that moment. The arrangement thus constitutes a condenser; the upper plate on its under surface carries a charge of positive electricity and the resin plate a charge of negative electricity on its upper surface, the air film between them being the dielectric of the condenser. If, therefore, the upper plate is elevated, mechanical work has to be done to separate the two electric charges. Accordingly on raising the upper plate, the charge on it, in old-fashioned nomenclature, becomesfreeand can be communicated to any other insulated conductor at a lower potential, the upper plate thereby becoming more or less discharged. On placing the upper plate again on the resin and touching it for a moment, the process can be repeated, and so at the expense of mechanical work done in lifting the upper plate against the mutual attraction of two electric charges of opposite sign, an indefinitely large electric charge can be accumulated and given to any other suitable conductor. In course of time, however, the surface charge of the resin becomes dissipated and it then has to be again excited. To avoid the necessity for touching the upper plate every time it is put down on the resin, a metal pin may be brought through the insulator from the sole-plate so that each time that the upper plate is put down on the resin it is automatically connected to earth. We are thus able by a process of merely lifting the upper plate repeatedly to convey a large electrical charge to some conductor starting from the small charge produced by friction on the resin. The above explanation does not take into account the function of the sole-plate, which is important. The sole-plate serves to increase the electrical capacity of the upper plate when placed down upon the resin or excited insulator. Hence when so placed it takes a larger charge. When touched by the finger the upper plate is brought to zero potential. If then the upper plate is lifted by its insulating handle its capacity becomes diminished. Since, however, it carries with it the charge it had when resting on the resin, its potential becomes increased as its capacity becomes less, and it therefore rises to a high potential, and will give a spark if the knuckle is approached to it when it is lifted after having been touched and raised.

The study of Volta’s electrophorus at once suggested the performance of these cyclical operations by some form of rotation instead of elevation, and led to the invention of various forms of doubler or multiplier. The instrument was thus the first of a long series of machines for converting mechanical work into electrostatic energy, and the predecessor of the modern type of influence machine (seeElectrical Machine). Volta himself devised a double and reciprocal electrophorus and also made mention of the subject of multiplying condensers in a paper published in thePhil. Trans.for 1782 (p. 237, and appendix, p. vii.). He states, however, that the use of a condenser in connexion with an electrophorus to make evident and multiply weak charges was due to T. Cavallo (Phil. Trans., 1788).

For further information see S.P. Thompson, “The Influence Machine from 1788 to 1888,”Journ. Inst. Tel. Eng., 1888, 17, p. 569. Many references to original papers connected with the electrophorus will be found in A. Winkelmann’sHandbuch der Physik(Breslau, 1905), vol. iv. p. 48.

For further information see S.P. Thompson, “The Influence Machine from 1788 to 1888,”Journ. Inst. Tel. Eng., 1888, 17, p. 569. Many references to original papers connected with the electrophorus will be found in A. Winkelmann’sHandbuch der Physik(Breslau, 1905), vol. iv. p. 48.

(J. A. F.)

ELECTROPLATING, the art of depositing metals by the electric current. In the articleElectrolysisit is shown how the passage of an electric current through a solution containing metallic ions involves the deposition of the metal on the cathode. Sometimes the metal is deposited in a pulverulent form, at others as a firm tenacious film, the nature of the deposit being dependent upon the particular metal, the concentration of the solution, the difference of potential between the electrodes, and other experimental conditions. As the durability of the electro-depositedcoat on plated wares of all kinds is of the utmost importance, the greatest care must be taken to ensure its complete adhesion. This can only be effected if the surface of the metal on which the deposit is to be made is chemically clean. Grease must be removed by potash, whiting or other means, and tarnish by an acid or potassium cyanide, washing in plenty of water being resorted to after each operation. The vats for depositing may be of enamelled iron, slate, glazed earthenware, glass, lead-lined wood, &c. The current densities and potential differences frequently used for some of the commoner metals are given in the following table, taken from M’Millan’sTreatise on Electrometallurgy. It must be remembered, however, that variations in conditions modify the electromotive force required for any given process. For example, a rise in temperature of the bath causes an increase in its conductivity, so that a lower E.M.F. will suffice to give the required current density; on the other hand, an abnormally great distance between the electrodes, or a diminution in acidity of an acid bath, or in the strength of the solution used, will increase the resistance, and so require the application of a higher E.M.F.

Large objects are suspended in the tanks by hooks or wires, care being taken to shift their position and so avoid wire-marks. Small objects are often heaped together in perforated trays or ladles, the cathode connecting-rod being buried in the midst of them. These require constant shifting because the objects are in contact at many points, and because the top ones shield those below from the depositing action of the current. Hence processes have been patented in which the objects to be plated are suspended in revolving drums between the anodes, the rotation of the drum causing the constant renewal of surfaces and affording a burnishing action at the same time. Care must be taken not to expose goods in the plating-bath to too high a current density, else they may be “burnt”; they must never be exposed one at a time to the full anode surface, with the current flowing in an empty bath, but either one piece at a time should be replaced, or some of the anodes should be transferred temporarily to the place of the cathodes, in order to distribute the current over a sufficient cathode-area. Burnt deposits are dark-coloured, or even pulverulent and useless. The strength of the current may also be regulated by introducing lengths of German silver or iron wire, carbon rod, or other inferior conductors in the path of the current, and a series of such resistances should always be provided close to the tanks. Ammeters to measure the volume, and voltmeters to determine the pressure of current supplied to the baths, should also be provided. Very irregular surfaces may require the use of specially shaped anodes in order that the distance between the electrodes may be fairly uniform, otherwise the portion of the cathode lying nearest to the anode may receive an undue share of the current, and therefore a greater thickness of coat. Supplementary anodes are sometimes used in difficult cases of this kind. Large metallic surfaces (especially external surfaces) are sometimes plated by means of a “doctor,” which, in its simplest form, is a brush constantly wetted with the electrolyte, with a wire anode buried amid the hairs or bristles; this brush is painted slowly over the surface of the metal to be coated, which must be connected to the negative terminal of the electrical generator. Under these conditions electrolysis of the solution in the brush takes place. Iron ships’ plates have recently been coated with copper in sections (to prevent the adhesion of barnacles), by building up a temporary trough against the side of the ship, making the thoroughly cleansed plate act both as cathode and as one side of the trough. Decorative plating-work in several colours (e.g.“parcel-gilding”) is effected by painting a portion of an object with a stopping-out (i.e.a non-conducting) varnish, such as copal varnish, so that this portion is not coated. The varnish is then removed, a different design stopped out, and another metal deposited. By varying this process, designs in metals of different colours may readily be obtained.

Reference must be made to the textbooks (seeElectrochemistry) for a fuller account of the very varied solutions and methods employed for electroplating with silver, gold, copper, iron and nickel. It should be mentioned here, however, that solutions which would deposit their metal on any object by simple immersion should not be generally used for electroplating that object, as the resulting deposit is usually non-adhesive. For this reason the acid copper-bath is not used for iron or zinc objects, a bath containing copper cyanide or oxide dissolved in potassium cyanide being substituted. This solution, being an inferior conductor of electricity, requires a much higher electromotive force to drive the current through it, and is therefore more costly in use. It is, however, commonly employed hot, whereby its resistance is reduced.Zincis commonly deposited by electrolysis on iron or steel goods which would ordinarily be “galvanized,” but which for any reason may not conveniently be treated by the method of immersion in fused zinc. The zinc cyanide bath may be used for small objects, but for heavy goods the sulphate bath is employed. Sherard Cowper-Coles patented a process in which, working with a high current density, a lead anode is used, and powdered zinc is kept suspended in the solution to maintain the proportion of zinc in the electrolyte, and so to guard against the gradual acidification of the bath.Cobaltis deposited by a method analogous to that used for its sister-metal nickel.Platinum,palladiumandtinare occasionally deposited for special purposes. In the deposition ofgoldthe colour of the deposit is influenced by the presence of impurities in the solution; when copper is present, some is deposited with the gold, imparting to it a reddish colour, whilst a little silver gives it a greenish shade. Thus so-called coloured-gold deposits may be produced by the judicious introduction of suitable impurities. Even pure gold, it may be noted, is darker or lighter in colour according as a stronger or a weaker current is used. The electro-deposition ofbrass—mainly on iron ware, such as bedstead tubes—is now very widely practised, the bath employed being a mixture of copper, zinc and potassium cyanides, the proportions of which vary according to the character of the brass required, and to the mode of treatment. The colour depends in part upon the proportion of copper and zinc, and in part upon the current density, weaker currents tending to produce a redder or yellower metal. Other alloys may be produced, such as bronze, or German silver, by selecting solutions (usually cyanides) from which the current is able to deposit the constituent metals simultaneously.

Electrolysis has in a few instances been applied to processes of manufacture. For example, Wilde produced copper printing surfaces for calico printing-rollers and the like by immersing rotating iron cylinders as cathodes in a copper bath. Elmore, Dumoulin, Cowper-Coles and others have prepared copper cylinders and plates by depositing copper on rotating mandrels with special arrangements. Others have arranged a means of obtaining high conductivity wire from cathode-copper without fusion, by depositing the metal in the form of a spiral strip on a cylinder, the strip being subsequently drawn down in the usual way; at present, however, the ordinary methods of wireproduction are found to be cheaper. J.W. Swan (Journ. Inst. Elec. Eng., 1898, vol. xxvii. p. 16) also worked out, but did not proceed with, a process in which a copper wire whilst receiving a deposit of copper was continuously passed through the draw-plate, and thus indefinitely extended in length. Cowper-Coles (Journ. Inst. Elec. Eng., 1898, 27, p. 99) very successfully produced true parabolic reflectors for projectors, by depositing copper upon carefully ground and polished glass surfaces rendered conductive by a film of deposited silver.

ELECTROSCOPE,an instrument for detecting differences of electric potential and hence electrification. The earliest form of scientific electroscope was theversoriumor electrical needle of William Gilbert (1544-1603), the celebrated author of the treatiseDe magnete(seeElectricity). It consisted simply of a light metallic needle balanced on a pivot like a compass needle. Gilbert employed it to prove that numerous other bodies besides amber are susceptible of being electrified by friction.1In this case the visible indication consisted in the attraction exerted between the electrified body and the light pivoted needle which was acted upon and electrified by induction. The next improvement was the invention of simple forms of repulsion electroscope. Two similarly electrified bodies repel each other. Benjamin Franklin employed the repulsion of two linen threads, C.F. de C. du Fay, J. Canton, W. Henley and others devised the pith ball, or double straw electroscope (fig. 1). T. Cavallo about 1770 employed two fine silver wires terminating in pith balls suspended in a glass vessel having strips of tin-foil pasted down the sides (fig. 2). The object of the thimble-shaped dome was to keep moisture from the stem from which the pith balls were supported, so that the apparatus could be used in the open air even in the rainy weather. Abraham Bennet (Phil. Trans., 1787, 77, p. 26) invented the modern form of gold-leaf electroscope. Inside a glass shade he fixed to an insulated wire a pair of strips of gold-leaf (fig. 3). The wire terminated in a plate or knob outside the vessel. When an electrified body was held near or in contact with the knob, repulsion of the gold leaves ensued. Volta added the condenser (Phil. Trans., 1782), which greatly increased the power of the instrument. M. Faraday, however, showed long subsequently that to bestow upon the indications of such an electroscope definite meaning it was necessary to place a cylinder of metallic gauze connected to the earth inside the vessel, or better still, to line the glass shade with tin-foil connected to the earth and observe through a hole the indications of the gold leaves (fig. 4). Leaves of aluminium foil may with advantage be substituted for gold-leaf, and a scale is sometimes added to indicate the angular divergence of the leaves.

The uses of an electroscope are, first, to ascertain if any body is in a state of electrification, and secondly, to indicate the sign of that charge. In connexion with the modern study of radioactivity, the electroscope has become an instrument of great usefulness, far outrivalling the spectroscope in sensibility. Radio-active bodies are chiefly recognized by the power they possess of rendering the air in their neighbourhood conductive; hence the electroscope detects the presence of a radioactive body by losing an electric charge given to it more quickly than it would otherwise do. A third great use of the electroscope is therefore to detect electric conductivity either in the air or in any other body.

To detect electrification it is best to charge the electroscope by induction. If an electrified body is held near the gold-leaf electroscope the leaves diverge with electricity of the same sign as that of the body being tested. If, without removing the electrified body, the plate or knob of the electroscope is touched, the leaves collapse. If the electroscope is insulated once more and the electrified body removed, the leaves again diverge with electricity of the opposite sign to that of the body being tested. The sign of charge is then determined by holding near the electroscope a glass rod rubbed with silk or a sealing-wax rod rubbed with flannel. If the approach of the glass rod causes the leaves in their final state to collapse, then the charge in the rod was positive, but if it causes them to expand still more the charge was negative, and vice versa for the sealing-wax rod. When employing a Volta condensing electroscope, the following is the method of procedure:—The top of the electroscope consists of a flat, smooth plate of lacquered brass on which another plate of brass rests, separated from it by three minute fragments of glass or shellac, or a film of shellac varnish. If the electrified body is touched against the upper plate whilst at the same time the lower plate is put to earth, the condenser formed of the two plates and the film of air or varnish becomes charged with positive electricity on the one plate and negative on the other. On insulating the lower plate and raising the upper plate by the glass handle, the capacity of the condenser formed by the plates is vastly decreased, but since the charge on the lower plate including the gold leaves attached to it remains the same, as the capacity of the system is reduced the potential is raised and therefore the gold leaves diverge widely. Volta made use of such an electroscope in his celebrated experiments (1790-1800) to prove that metals placed in contact with one another are brought to different potentials, in other words to prove the existence of so-called contact electricity. He was assisted to detect the small potential differences then in question by the use of a multiplying condenser or revolving doubler (seeElectrical Machine). To employ the electroscope as a means of detecting radioactivity, we have first to test the leakage quality of the electroscope itself. Formerly it was usual to insulate the rod of the electroscope by passing it through a hole in a cork or mass of sulphur fixed in the top of the glass vessel within which the gold leaves were suspended. A further improvement consisted in passing the metal wire to which the gold leaves were attached through a glass tube much wider than the rod, the latter being fixed concentrically in the glass tube by means of solid shellac melted and run in. This insulation, however, is not sufficiently good for an electroscope intended for the detection of radioactivity; for this purposeit must be such that the leaves will remain for hours or days in a state of steady divergence when an electrical charge has been given to them.

In their researches on radioactivity M. and Mme P. Curie employed an electroscope made as follows:—A metal case (fig. 5), having two holes in its sides, has a vertical brass strip B attached to the inside of the lid by a block of sulphur SS or any other good insulator. Joined to the strip is a transverse wire terminating at one end in a knob C, and at the other end in a condenser plate P′. The strip B carries also a strip of gold-leaf L, and the metal case is connected to earth. If a charge is given to the electroscope, and if any radioactive material is placed on a condenser plate P attached to the outer case, then this substance bestows conductivity on the air between the plates P and P′, and the charge of the electroscope begins to leak away. The collapse of the gold-leaf is observed through an aperture in the case by amicroscope, and the time taken by the gold-leaf to fall over a certain distance is proportional to the ionizing current, that is, to the intensity of the radioactivity of the substance.

A very similar form of electroscope was employed by J.P.L.J. Elster and H.F.K. Geitel (fig. 6), and also by C.T.R. Wilson (seeProc. Roy. Soc., 1901, 68, p. 152). A metal box has a metal strip B suspended from a block or insulator by means of a bit of sulphur or amber S, and to it is fastened a strip of gold-leaf L. The electroscope is provided with a charging rod C. In a dry atmosphere sulphur or amber is an early perfect insulator, and hence if the air in the interior of the box is kept dry by calcium chloride, the electroscope will hold its charge for a long time. Any divergence or collapse of the gold-leaf can be viewed by a microscope through an aperture in the side of the case.

Another type of sensitive electroscope is one devised by C.T.R. Wilson (Proc. Cam. Phil. Soc., 1903, 12, part 2). It consists of a metal box placed on a tilting stand (fig. 7). At one end is an insulated plate P kept at a potential of 200 volts or so above the earth by a battery. At the other end is an insulated metal wire having attached to it a thin strip of gold-leaf L. If the plate P is electrified it attracts the strip which stretches out towards it. Before use the strip is for one moment connected to the case, and the arrangement is then tilted until the strip extends at a certain angle. If then the strip of gold-leaf is raised or lowered in potential it moves to or from the plate P, and its movement can be observed by a microscope through a hole in the side of the box. There is a particular angle of tilt of the case which gives a maximum sensitiveness. Wilson found that with the plate electrified to 207 volts and with a tilt of the case of 30°, if the gold-leaf was raised one volt in potential above the case, it moved over 200 divisions of the micrometer scale in the eye-piece of the microscope, 54 divisions being equal to one millimetre. In using the instrument the insulated rod to which the gold-leaf is attached is connected to the conductor, the potential of which is being examined. In the use of all these electroscopic instruments it is essential to bear in mind (as first pointed out by Lord Kelvin) that what a gold-leaf electroscope really indicates is the difference of potential between the gold-leaf and the solid walls enclosing the air space in which they move.1If these enclosing walls are made of anything else than perfectly conducting material, then the indications of the instrument may be uncertain and meaningless. As already mentioned, Faraday remedied this defect by coating the inside of the glass vessel in which the gold-leaves were suspended to form an electroscope with tinfoil (see fig. 4). In spite of these admonitions all but a few instrument makers have continued to make the vicious type of instrument consisting of a pair of gold-leaves suspended within a glass shade or bottle, no means being provided for keeping the walls of the vessel continually at zero potential.

See J. Clerk Maxwell,Treatise on Electricity and Magnetism, vol. i. p. 300 (2nd ed., Oxford, 1881); H.M. Noad,A Manual of Electricity, vol. i. p. 25 (London, 1855); E. Rutherford,Radioactivity.

See J. Clerk Maxwell,Treatise on Electricity and Magnetism, vol. i. p. 300 (2nd ed., Oxford, 1881); H.M. Noad,A Manual of Electricity, vol. i. p. 25 (London, 1855); E. Rutherford,Radioactivity.

(J. A. F.)

1See the English translation by the Gilbert Club of Gilbert’sDe magnete, p. 49 (London, 1900).1See Lord Kelvin, "Report on Electrometers and Electrostatic Measurements,"Brit. Assoc. Reportfor 1867, or Lord Kelvin'sReprint of Papers on Electrostatics and Magnetism, p. 260.

1See the English translation by the Gilbert Club of Gilbert’sDe magnete, p. 49 (London, 1900).

1See Lord Kelvin, "Report on Electrometers and Electrostatic Measurements,"Brit. Assoc. Reportfor 1867, or Lord Kelvin'sReprint of Papers on Electrostatics and Magnetism, p. 260.


Back to IndexNext