See W.K. Loftus,Chaldaea and Susiana(1857); A. Billerbeck,Susa(1893); J. de Morgan,Mémoires de la Délégation en Perse(9 vols., 1899-1906).
See W.K. Loftus,Chaldaea and Susiana(1857); A. Billerbeck,Susa(1893); J. de Morgan,Mémoires de la Délégation en Perse(9 vols., 1899-1906).
(A. H. S.)
ELAND(= elk), the Dutch name for the largest of the South African antelopes (Taurotragus oryx), a species near akin to the kudu, but with horns present in both sexes, and their spiral much closer, being in fact screw-like instead of corkscrew-like. There is also a large dewlap, while old bulls have a thick forelock. In the typical southern form the body-colour is wholly pale fawn, but north of the Orange river the body is marked by narrow vertical white lines, this race being known asT. oryx livingstonei. In Senegambia the genus is represented byT. derbianus, a much larger animal, with a dark neck; while in the Bahr-el-Ghazal district there is a gigantic local race of this species (T. derbianus giganteus).
(R. L.*)
ELASTICITY.1. Elasticity is the property of recovery of an original size or shape. A body of which the size, or shape, or both size and shape, have been altered by the application of forces may, and generally does, tend to return to its previous size and shape when the forces cease to act. Bodies which exhibit this tendency are said to beelastic(from Greek,ἐλαύνειν, to drive). All bodies are more or less elastic as regards size; and all solid bodies are more or less elastic as regards shape. For example: gas contained in a vessel, which is closed by a piston, can be compressed by additional pressure applied to the piston; but, when the additional pressure is removed, the gas expands and drives the piston outwards. For a second example: a steel bar hanging vertically, and loaded with one ton for each square inch of its sectional area, will have its length increased by about seven one-hundred-thousandths of itself, and its sectional area diminished by about half as much; and it will spring back to its original length and sectional area when the load is gradually removed. Such changes of size and shape in bodies subjected to forces, and the recovery of the original size and shape when the forces cease to act, become conspicuous when the bodies have the forms of thin wires or planks; and these properties of bodies in such forms are utilized in the construction of spring balances, carriage springs, buffers and so on.
It is a familiar fact that the hair-spring of a watch can be coiled and uncoiled millions of times a year for several years without losing its elasticity; yet the same spring can have its shape permanently altered by forces which are much greater than those to which it is subjected in the motion of the watch. The incompleteness of the recovery from the effects of great forces is as important a fact as the practical completeness of the recovery from the effects of comparatively small forces.The fact is referred to in the distinction between “perfect” and “imperfect” elasticity; and the limitation which must be imposed upon the forces in order that the elasticity may be perfect leads to the investigation of “limits of elasticity” (see §§ 31, 32 below). Steel pianoforte wire is perfectly elastic within rather wide limits, glass within rather narrow limits; building stone, cement and cast iron appear not to be perfectly elastic within any limits, however narrow. When the limits of elasticity are not exceeded no injury is done to a material or structure by the action of the forces. The strength or weakness of a material, and the safety or insecurity of a structure, are thus closely related to the elasticity of the material and to the change of size or shape of the structure when subjected to forces. The “science of elasticity” is occupied with the more abstract side of this relation, viz. with the effects that are produced in a body of definite size, shape and constitution by definite forces; the “science of the strength of materials” is occupied with the more concrete side, viz. with the application of the results obtained in the science of elasticity to practical questions of strength and safety (seeStrength of Materials).
2.Stress.—Every body that we know anything about is always under the action of forces. Every body upon which we can experiment is subject to the force of gravity, and must, for the purpose of experiment, be supported by other forces. Such forces are usually applied by way of pressure upon a portion of the surface of the body; and such pressure is exerted by another body in contact with the first. The supported body exerts an equal and opposite pressure upon the supporting body across the portion of surface which is common to the two. The same thing is true of two portions of the same body. If, for example, we consider the two portions into which a body is divided by a (geometrical) horizontal plane, we conclude that the lower portion supports the upper portion by pressure across the plane, and the upper portion presses downwards upon the lower portion with an equal pressure. The pressure is still exerted when the plane is not horizontal, and its direction may be obliquely inclined to, or tangential to, the plane. A more precise meaning is given to “pressure” below. It is important to distinguish between the two classes of forces: forces such as the force of gravity, which act all through a body, and forces such as pressure applied over a surface. The former are named “body forces” or “volume forces,” and the latter “surface tractions.” The action between two portions of a body separated by a geometrical surface is of the nature of surface traction. Body forces are ultimately, when the volumes upon which they act are small enough, proportional to the volumes; surface tractions, on the other hand, are ultimately, when the surfaces across which they act are small enough, proportional to these surfaces. Surface tractions are always exerted by one body upon another, or by one part of a body upon another part, across a surface of contact; and a surface traction is always to be regarded as one aspect of a “stress,” that is to say of a pair of equal and opposite forces; for an equal traction is always exerted by the second body, or part, upon the first across the surface.
3. The proper method of estimating and specifying stress is a matter of importance, and its character is necessarily mathematical. The magnitudes of the surface tractions which compose a stress are estimated as so much force (in dynes or tons) per unit of area (per sq. cm. or per sq. in.). The traction across an assigned plane at an assigned point is measured by the mathematical limit of the fraction F/S, where F denotes the numerical measure of the force exerted across a small portion of the plane containing the point, and S denotes the numerical measure of the area of this portion, and the limit is taken by diminishing S indefinitely. The traction may act as “tension,” as it does in the case of a horizontal section of a bar supported at its upper end and hanging vertically, or as “pressure,” as it does in the case of a horizontal section of a block resting on a horizontal plane, or again it may act obliquely or even tangentially to the separating plane. Normal tractions are reckoned as positive when they are tensions, negative when they are pressures. Tangential tractions are often called “shears” (see § 7 below). Oblique tractions can always be resolved, by the vector law, into normal and tangential tractions. In a fluid at rest the traction across any plane at any point is normal to the plane, and acts as pressure. For the complete specification of the “state of stress” at any point of a body, we should require to know the normal and tangential components of the traction across every plane drawn through the point. Fortunately this requirement can be very much simplified (see §§ 6, 7 below).
4. In general let ν denote the direction of the normal drawn in a specified sense to a plane drawn through a point O of a body; and let Tνdenote the traction exerted across the plane, at the point O, by the portion of the body towards which ν is drawn upon the remaining portion. Then Tνis a vector quantity, which has a definite magnitude (estimated as above by the limit of a fraction of the form F/S) and a definite direction. It can be specified completely by its components Xν, Yν, Zν, referred to fixed rectangular axes of x, y, z. When the direction of ν is that of the axis of x, in the positive sense, the components are denoted by Xx, Yx, Zx; and a similar notation is used when the direction of ν is that of y or z, the suffix x being replaced by y or z.
4. In general let ν denote the direction of the normal drawn in a specified sense to a plane drawn through a point O of a body; and let Tνdenote the traction exerted across the plane, at the point O, by the portion of the body towards which ν is drawn upon the remaining portion. Then Tνis a vector quantity, which has a definite magnitude (estimated as above by the limit of a fraction of the form F/S) and a definite direction. It can be specified completely by its components Xν, Yν, Zν, referred to fixed rectangular axes of x, y, z. When the direction of ν is that of the axis of x, in the positive sense, the components are denoted by Xx, Yx, Zx; and a similar notation is used when the direction of ν is that of y or z, the suffix x being replaced by y or z.
5. Every body about which we know anything is always in a state of stress, that is to say there are always internal forces acting between the parts of the body, and these forces are exerted as surface tractions across geometrical surfaces drawn in the body. The body, and each part of the body, moves under the action of all the forces (body forces and surface tractions) which are exerted upon it; or remains at rest if these forces are in equilibrium. This result is expressed analytically by means of certain equations—the “equations of motion” or “equations of equilibrium” of the body.
Let ρ denote the density of the body at any point, X, Y, Z, the components parallel to the axes of x, y, z of the body forces, estimated as so much force per unit of mass; further let ƒx, ƒy, ƒzdenote the components, parallel to the same axes, of the acceleration of the particle which is momentarily at the point (x, y, z). The equations of motion express the result that the rates of change of the momentum, and of the moment of momentum, of any portion of the body are those due to the action of all the forces exerted upon the portion by other bodies, or by other portions of the same body. For the changes of momentum, we have three equations of the type∫ ∫ ∫ ρ Xdx dy dz + ∫ ∫ XνdS = ∫ ∫ ∫ ρ ƒxdx dy dz,(1)in which the volume integrations are taken through the volume of the portion of the body, the surface integration is taken over its surface, and the notation Xνis that of § 4, the direction of ν being that of the normal to this surface drawn outwards. For the changes of moment of momentum, we have three equations of the type∫ ∫ ∫ ρ (yZ − zY) dx dy dz + ∫ ∫ (yZν− zYν) dS = ∫ ∫ ∫ ρ (yƒz− zƒy) dx dy dz.(2)The equations (1) and (2) are the equations of motion of any kind of body. The equations of equilibrium are obtained by replacing the right-hand members of these equations by zero.6. These equations can be used to obtain relations between the values of Xν, Yν, ... for different directions ν. When the equations are applied to a very small volume, it appears that the terms expressed by surface integrals would, unless they tend to zero limits in a higher order than the areas of the surfaces, be very great compared with the terms expressed by volume integrals. We conclude that the surface tractions on the portion of the body which is bounded by any very small closed surface, are ultimately in equilibrium. When this result is interpreted for a small portion in the shape of a tetrahedron, having three of its faces at right angles to the co-ordinate axes, it leads to three equations of the typeXν= Xxcos(x, ν) + Xycos(y, ν) + Xzcos(z, ν),(1)where ν is the direction of the normal (drawn outwards) to the remaining face of the tetrahedron, and (x, ν) ... denote the angles which this normal makes with the axes. Hence Xν, ... for any direction ν are expressed in terms of Xx,.... When the above result is interpreted for a very small portion in the shape of a cube, having its edges parallel to the co-ordinate axes, it leads to the equationsYz= Zy, Zx= Xz, Xy= Yx.(2)When we substitute in the general equations the particular results which are thus obtained, we find that the equations of motion take such forms asρX +∂Xx+∂Xy+∂Zx= ρƒx,∂x∂y∂z(3)and the equations of moments are satisfied identically. The equations of equilibrium are obtained by replacing the right-hand members by zero.
Let ρ denote the density of the body at any point, X, Y, Z, the components parallel to the axes of x, y, z of the body forces, estimated as so much force per unit of mass; further let ƒx, ƒy, ƒzdenote the components, parallel to the same axes, of the acceleration of the particle which is momentarily at the point (x, y, z). The equations of motion express the result that the rates of change of the momentum, and of the moment of momentum, of any portion of the body are those due to the action of all the forces exerted upon the portion by other bodies, or by other portions of the same body. For the changes of momentum, we have three equations of the type
∫ ∫ ∫ ρ Xdx dy dz + ∫ ∫ XνdS = ∫ ∫ ∫ ρ ƒxdx dy dz,
(1)
in which the volume integrations are taken through the volume of the portion of the body, the surface integration is taken over its surface, and the notation Xνis that of § 4, the direction of ν being that of the normal to this surface drawn outwards. For the changes of moment of momentum, we have three equations of the type
∫ ∫ ∫ ρ (yZ − zY) dx dy dz + ∫ ∫ (yZν− zYν) dS = ∫ ∫ ∫ ρ (yƒz− zƒy) dx dy dz.
(2)
The equations (1) and (2) are the equations of motion of any kind of body. The equations of equilibrium are obtained by replacing the right-hand members of these equations by zero.
6. These equations can be used to obtain relations between the values of Xν, Yν, ... for different directions ν. When the equations are applied to a very small volume, it appears that the terms expressed by surface integrals would, unless they tend to zero limits in a higher order than the areas of the surfaces, be very great compared with the terms expressed by volume integrals. We conclude that the surface tractions on the portion of the body which is bounded by any very small closed surface, are ultimately in equilibrium. When this result is interpreted for a small portion in the shape of a tetrahedron, having three of its faces at right angles to the co-ordinate axes, it leads to three equations of the type
Xν= Xxcos(x, ν) + Xycos(y, ν) + Xzcos(z, ν),
(1)
where ν is the direction of the normal (drawn outwards) to the remaining face of the tetrahedron, and (x, ν) ... denote the angles which this normal makes with the axes. Hence Xν, ... for any direction ν are expressed in terms of Xx,.... When the above result is interpreted for a very small portion in the shape of a cube, having its edges parallel to the co-ordinate axes, it leads to the equations
Yz= Zy, Zx= Xz, Xy= Yx.
(2)
When we substitute in the general equations the particular results which are thus obtained, we find that the equations of motion take such forms as
(3)
and the equations of moments are satisfied identically. The equations of equilibrium are obtained by replacing the right-hand members by zero.
7. A state of stress in which the traction across any plane of a set of parallel planes is normal to the plane, and that across any perpendicular plane vanishes, is described as a state of “simple tension” (“simple pressure” if the traction is negative). A state of stress in which the traction across any plane is normal to the plane, and the traction is the same for all planes passing through any point, is described as a state of “uniform tension” (“uniform pressure” if the traction is negative). Sometimes the phrases “isotropic tension” and “hydrostatic pressure” are used instead of “uniform” tension or pressure. The distinction between the two states, simple tension and uniform tension, is illustrated in fig. 1.
A state of stress in which there is purely tangential traction on a plane, and no normal traction on any perpendicular plane, is described as a state of “shearing stress.” The result (2) of § 6 shows that tangential tractions occur in pairs. If, at any point, there is tangential traction, in any direction, on a plane parallel to this direction, and if we draw through the point a plane at right angles to the direction of this traction, and therefore containing the normal to the first plane, then there is equal tangential traction on this second plane in the direction of the normal to the first plane. The result is illustrated in fig. 2, where a rectangular block is subjected on two opposite faces to opposing tangential tractions, and is held in equilibrium by equal tangential tractions applied to two other faces.
Through any point there always pass three planes, at right angles to each other, across which there is no tangential traction. These planes are called the “principal planes of stress,” and the (normal) tractions across them the “principal stresses.” Lines, usually curved, which have at every point the direction of a principal stress at the point, are called “lines of stress.”
8. It appears that the stress at any point of a body is completely specified by six quantities, which can be taken to be the Xx, Yy, Zzand Yz, Zx, Xyof § 6. The first three are tensions (pressures if they are negative) across three planes parallel to fixed rectangular directions, and the remaining three are tangential tractions across the same three planes. These six quantities are called the “components of stress.” It appears also that the components of stress are connected with each other, and with the body forces and accelerations, by the three partial differential equations of the type (3) of § 6. These equations are available for the purpose of determining the state of stress which exists in a body of definite form subjected to definite forces, but they are not sufficient for the purpose (see § 38 below). In order to effect the determination it is necessary to have information concerning the constitution of the body, and to introduce subsidiary relations founded upon this information.
9. The definite mathematical relations which have been found to connect the components of stress with each other, and with other quantities, result necessarily from the formation of a clear conception of the nature of stress. They do not admit of experimental verification, because the stress within a body does not admit of direct measurement. Results which are deduced by the aid of these relations can be compared with experimental results. If any discrepancy were observed it would not be interpreted as requiring a modification of the concept of stress, but as affecting some one or other of the subsidiary relations which must be introduced for the purpose of obtaining the theoretical result.
10.Strain.—For the specification of the changes of size and shape which are produced in a body by any forces, we begin by defining the “average extension” of any linear element or “filament” of the body. Let l0be the length of the filament before the forces are applied, l its length when the body is subjected to the forces. The average extension of the filament is measured by the fraction (l − l0)/l0. If this fraction is negative there is “contraction.” The “extension at a point” of a body in any assigned direction is the mathematical limit of this fraction when one end of the filament is at the point, the filament has the assigned direction, and its length is diminished indefinitely. It is clear that all the changes of size and shape of the body are known when the extension at every point in every direction is known.
The relations between the extensions in different directions around the same point are most simply expressed by introducing the extensions in the directions of the co-ordinate axes and the angles between filaments of the body which are initially parallel to these axes. Let exx, eyy, ezzdenote the extensions parallel to the axes of x, y, z, and let eyz, ezx, exydenote the cosines of the angles between the pairs of filaments which are initially parallel to the axes of y and z, z and x, x and y. Also let e denote the extension in the direction of a line the direction cosines of which are l, m, n. Then, if the changes of size and shape are slight, we have the relatione = exxl² + eyym² + ezzn² + eyzmn + ezxnl + exylm.
The relations between the extensions in different directions around the same point are most simply expressed by introducing the extensions in the directions of the co-ordinate axes and the angles between filaments of the body which are initially parallel to these axes. Let exx, eyy, ezzdenote the extensions parallel to the axes of x, y, z, and let eyz, ezx, exydenote the cosines of the angles between the pairs of filaments which are initially parallel to the axes of y and z, z and x, x and y. Also let e denote the extension in the direction of a line the direction cosines of which are l, m, n. Then, if the changes of size and shape are slight, we have the relation
e = exxl² + eyym² + ezzn² + eyzmn + ezxnl + exylm.
The body which undergoes the change of size or shape is said to be “strained,” and the “strain” is determined when the quantities exx, eyy, ezzand eyz, ezx, exydefined above are known at every point of it. These quantities are called “components of strain.” The three of the type exxare extensions, and the three of the type eyzare called “shearing strains” (see § 12 below).
11. All the changes of relative position of particles of the body are known when the strain is known, and conversely the strain can be determined when the changes of relative position are given. These changes can be expressed most simply by the introduction of a vector quantity to represent the displacement of any particle.
When the body is deformed by the action of any forces its particles pass from the positions which they occupied before the action of the forces into new positions. If x, y, z are the co-ordinates of the position of a particle in the first state, its co-ordinates in the second state may be denoted by x + u, y + v, z + w. The quantities, u, v, w are the “components of displacement.” When these quantities are small, the strain is connected with them by the equationsexx= ∂u / ∂x, eyy= ∂v / ∂y, ezz= ∂w / ∂z,(1)eyz=∂w+∂v, ezx=∂u+∂w, exy=∂v+∂u.∂y∂z∂z∂x∂x∂y
When the body is deformed by the action of any forces its particles pass from the positions which they occupied before the action of the forces into new positions. If x, y, z are the co-ordinates of the position of a particle in the first state, its co-ordinates in the second state may be denoted by x + u, y + v, z + w. The quantities, u, v, w are the “components of displacement.” When these quantities are small, the strain is connected with them by the equations
exx= ∂u / ∂x, eyy= ∂v / ∂y, ezz= ∂w / ∂z,
(1)
12. These equations enable us to determine more exactly the nature of the “shearing strains” such as exy. Let u, for example, be of the form sy, where s is constant, and let v and w vanish. Then exy= s, and the remaining components of strain vanish. The nature of the strain (called “simple shear”) is simply appreciated by imagining the body to consist of a series of thin sheets, like the leaves of a book, which lie one over another and are all parallel to a plane (that of x, z); and the displacement is seen to consist in the shifting of each sheet relative to the sheet below in a direction (that of x) which is the same for all the sheets. The displacement of any sheet is proportional to its distance y from a particular sheet, which remains undisplaced. The shearing strain has the effect of distorting the shape of any portion of the body without altering its volume. This is shown in fig. 3, where a square ABCD is distorted by simple shear (each point moving parallel to the line marked xx) into a rhombus A′B′C′D′, as if by an extension of the diagonal BD and a contraction of the diagonal AC, which extension and contraction are adjusted so as to leave the area unaltered. In the general case, where u is not of the form sy and v and w do not vanish, the shearing strains such as exyresult from the composition of pairs of simple shears of the type which has just been explained.
13. Besides enabling us to express the extension in any direction and the changes of relative direction of any filaments of the body, the components of strain also express the changes of size of volumes and areas. In particular, the “cubical dilatation,” that is to say, the increase of volume per unit of volume, is expressed by the quantity exx+ eyy+ ezzor ∂u / ∂x + ∂v / ∂y + ∂w / ∂z. When this quantity is negative there is “compression.”
13. Besides enabling us to express the extension in any direction and the changes of relative direction of any filaments of the body, the components of strain also express the changes of size of volumes and areas. In particular, the “cubical dilatation,” that is to say, the increase of volume per unit of volume, is expressed by the quantity exx+ eyy+ ezzor ∂u / ∂x + ∂v / ∂y + ∂w / ∂z. When this quantity is negative there is “compression.”
14. It is important to distinguish between two types of strain: the “rotational” type and the “irrotational” type. The distinction is illustrated in fig. 3, where the figure A″B″C″D″ is obtained from the figure ABCD by contraction parallel to AC and extension parallel to BD, and the figure A′B′C′D′ can be obtained from ABCD by the same contraction and extension followed by a rotation through the angle A″OA′. In strains of the irrotational type there are at any point three filaments at right angles to each other, which are such that the particles which lie in them before strain continue to lie in them after strain. A small spherical element of the body with its centre at the point becomes a small ellipsoid with its axes in the directions of these three filaments. In the case illustrated in the figure, the lines of the filaments in question, when the figure ABCD is strained into the figure A″B″C″D″, are OA, OB and a line through O at right angles to their plane. In strains of the rotational type, on the other hand, the single existing set of three filaments (issuing from a point) which cut each other at right angles both before and after strain do not retain their directions after strain, though one of them may do so in certain cases. In the figure, the lines of the filaments in question, when the figure ABCD is strained into A′B′C′D′, are OA, OB and a line at right angles to their plane before strain, and after strain they are OA′, OB′, and the same third line. A rotational strain can always be analysed into an irrotational strain (or “pure” strain) followed by a rotation.
Analytically, a strain is irrotational if the three quantities∂w−∂v,∂u−∂w,∂v−∂u∂y∂z∂z∂x∂x∂yvanish, rotational if any one of them is different from zero. The halves of these three quantities are the components of a vector quantity called the “rotation.”15. Whether the strain is rotational or not, there is always one set of three linear elements issuing from any point which cut each other at right angles both before and after strain. If these directions are chosen as axes of x, y, z, the shearing strains eyz, ezx, exyvanish at this point. These directions are called the “principal axes of strain,” and the extensions in the directions of these axes the “principal extensions.”
Analytically, a strain is irrotational if the three quantities
vanish, rotational if any one of them is different from zero. The halves of these three quantities are the components of a vector quantity called the “rotation.”
15. Whether the strain is rotational or not, there is always one set of three linear elements issuing from any point which cut each other at right angles both before and after strain. If these directions are chosen as axes of x, y, z, the shearing strains eyz, ezx, exyvanish at this point. These directions are called the “principal axes of strain,” and the extensions in the directions of these axes the “principal extensions.”
16. It is very important to observe that the relations between components of strain and components of displacement imply relations between the components of strain themselves. If by any process of reasoning we arrive at the conclusion that the state of strain in a body is such and such a state, we have a test of the possibility or impossibility of our conclusion. The test is that, if the state of strain is a possible one, then there must be a displacement which can be associated with it in accordance with the equations (1) of § 11.
We may eliminate u, v, w from these equations. When this is done we find that the quantities exx, ... eyzare connected by the two sets of equations∂²eyy+∂²ezz=∂²eyz∂z²∂y²∂y∂z(1)∂²ezz+∂²exx=∂²ezx∂x²∂z²∂z∂x∂²exx+∂²eyy=∂²exy∂y²∂x²∂x∂yand2∂²exx=∂(−∂eyz+∂ezx+∂exy)∂y∂z∂x∂x∂y∂z(2)2∂²eyy=∂(∂eyz−∂ezx+∂exy)∂z∂x∂y∂x∂y∂z2∂²ezz=∂(∂eyz+∂ezx−∂exy)∂x∂y∂z∂x∂y∂z
We may eliminate u, v, w from these equations. When this is done we find that the quantities exx, ... eyzare connected by the two sets of equations
(1)
and
(2)
These equations are known as theconditions of compatibility of strain-components. The components of strain which specify any possible strain satisfy them. Quantities arrived at in any way, and intended to be components of strain, if they fail to satisfy these equations, are not the components of any possible strain; and the theory or speculation by which they are reached must be modified or abandoned.
When the components of strain have been found in accordance with these and other necessary equations, the displacement is to be found by solving the equations (1) of § 11, considered as differential equations to determine u, v, w. The most general possible solution will differ from any other solution by terms which contain arbitrary constants, and these terms represent a possible displacement. This “complementary displacement” involves no strain, and would be a possible displacement of an ideal perfectly rigid body.
When the components of strain have been found in accordance with these and other necessary equations, the displacement is to be found by solving the equations (1) of § 11, considered as differential equations to determine u, v, w. The most general possible solution will differ from any other solution by terms which contain arbitrary constants, and these terms represent a possible displacement. This “complementary displacement” involves no strain, and would be a possible displacement of an ideal perfectly rigid body.
17. The relations which connect the strains with each other and with the displacement are geometrical relations resulting from the definitions of the quantities and not requiring any experimental verification. They do not admit of such verification, because the strain within a body cannot be measured. The quantities (belonging to the same category) which can be measured are displacements of points on the surface of a body. For example, on the surface of a bar subjected to tension we may make two fine transverse scratches, and measure the distance between them before and after the bar is stretched. For such measurements very refined instruments are required. Instruments for this purpose are called barbarously “extensometers,” and many different kinds have been devised. From measurements of displacement by an extensometer we may deduce the average extension of a filament of the bar terminated by the two scratches. In general, when we attempt to measure a strain, we really measure some displacements, and deduce the values, not of the strain at a point, but of the average extensions of some particular linear filaments of a body containing the point; and these filaments are, from the nature of the case, nearly always superficial filaments.
18. In the case of transparent materials such as glass there is available a method of studying experimentally the state of strain within a body. This method is founded upon the result that a piece of glass when strained becomes doubly refracting, with its optical principal axes at any point in the directions of the principal axes of strain (§ 15) at the point. When the piece has two parallel plane faces, and two of the principal axes of strain at any point are parallel to these faces, polarized light transmitted through the piece in a direction normal to the faces can be used to determine the directions of the principal axes of the strain at any point. If the directions of these axes are known theoretically the comparison of the experimental and theoretical results yields a test of the theory.
19.Relations between Stresses and Strains.—The problem of the extension of a bar subjected to tension is the one which has been most studied experimentally, and as a result of this study it is found that for most materials, including all metals except cast metals, the measurable extension is proportionalto the applied tension, provided that this tension is not too great. In interpreting this result it is assumed that the tension is uniform over the cross-section of the bar, and that the extension of longitudinal filaments is uniform throughout the bar; and then the result takes the form of a law of proportionality connecting stress and strain: The tension is proportional to the extension. Similar results are found for the same materials when other methods of experimenting are adopted, for example, when a bar is supported at the ends and bent by an attached load and the deflexion is measured, or when a bar is twisted by an axial couple and the relative angular displacement of two sections is measured. We have thus very numerous experimental verifications of the famous law first enunciated by Robert Hooke in 1678 in the words “Ut Tensio sic vis”; that is, “the Power of any spring is in the same proportion as the Tension (—stretching) thereof.” The most general statement of Hooke’s Law in modern language would be:—Each of the six components of stress at any point of a body is a linear function of the six components of strain at the point.It is evident from what has been said above as to the nature of the measurement of stresses and strains that this law in all its generality does not admit of complete experimental verification, and that the evidence for it consists largely in the agreement of the results which are deduced from it in a theoretical fashion with the results of experiments. Of such results one of a general character may be noted here. If the law is assumed to be true, and the equations of motion of the body (§ 5) are transformed by means of it into differential equations for determining the components of displacement, these differential equations admit of solutions which represent periodic vibratory displacements (see § 85 below). The fact that solid bodies can be thrown into states of isochronous vibration has been emphasized by G.G. Stokes as a peremptory proof of the truth of Hooke’s Law.
20. According to the statement of the generalized Hooke’s Law the stress-components vanish when the strain-components vanish. The strain-components contemplated in experiments upon which the law is founded are measured from a zero of reckoning which corresponds to the state of the body subjected to experiment before the experiment is made, and the stress-components referred to in the statement of the law are those which are called into action by the forces applied to the body in the course of the experiment. No account is taken of the stress which must already exist in the body owing to the force of gravity and the forces by which the body is supported. When it is desired to take account of this stress it is usual to suppose that the strains which would be produced in the body if it could be freed from the action of gravity and from the pressures of supports are so small that the strains produced by the forces which are applied in the course of the experiment can be compounded with them by simple superposition. This supposition comes to the same thing as measuring the strain in the body, not from the state in which it was before the experiment, but from an ideal state (the “unstressed” state) in which it would be entirely free from internal stress, and allowing for the strain which would be produced by gravity and the supporting forces if these forces were applied to the body when free from stress. In most practical cases the initial strain to be allowed for is unimportant (see §§ 91-93 below).
21. Hooke’s law of proportionality of stress and strain leads to the introduction of important physical constants: themoduluses of elasticityof a body. Let a bar of uniform section (of area ω) be stretched with tension T, which is distributed uniformly over the section, so that the stretching force is Twω, and let the bar be unsupported at the sides. The bar will undergo a longitudinal extension of magnitude T/E, where E is a constant quantity depending upon the material. This constant is calledYoung’s modulusafter Thomas Young, who introduced it into the science in 1807. The quantity E is of the same nature as a traction, that is to say, it is measured as a force estimated per unit of area. For steel it is about 2.04 × 1012dynes per square centimetre, or about 13,000 tons per sq. in.
22. The longitudinal extension of the bar under tension is not the only strain in the bar. It is accompanied by a lateral contraction by which all the transverse filaments of the bar are shortened. The amount of this contraction is σT/E, where σ is a certain number calledPoisson’s ratio, because its importance was at first noted by S.D. Poisson in 1828. Poisson arrived at the existence of this contraction, and the corresponding number σ, from theoretical considerations, and his theory led him to assign to σ the value ¼. Many experiments have been made with the view of determining σ, with the result that it has been found to be different for different materials, although for very many it does not differ much from ¼. For steel the best value (Amagat’s) is 0.268. Poisson’s theory admits of being modified so as to agree with the results of experiment.
23. The behaviour of an elastic solid body, strained within the limits of its elasticity, is entirely determined by the constants E and σ if the body isisotropic, that is to say, if it has the same quality in all directions around any point. Nevertheless it is convenient to introduce other constants which are related to the action of particular sorts of forces. The most important of these are the “modulus of compression” (or “bulk modulus”) and the “rigidity” (or “modulus of shear”). To define themodulus of compression, we suppose that a solid body of any form is subjected to uniform hydrostatic pressure of amount p. The state of stress within it will be one of uniform pressure, the same at all points, and the same in all directions round any point. There will be compression, the same at all points, and proportional to the pressure; and the amount of the compression can be expressed as p/k. The quantity k is the modulus of compression. In this case the linear contraction in any direction is p/3k; but in general the linear extension (or contraction) is not one-third of the cubical dilatation (or compression).
24. To define therigidity, we suppose that a solid body is subjected to forces in such a way that there is shearing stress within it. For example, a cubical block may be subjected to opposing tractions on opposite faces acting in directions which are parallel to an edge of the cube and to both the faces. Let S be the amount of the traction, and let it be uniformly distributed over the faces. As we have seen (§ 7), equal tractions must act upon two other faces in suitable directions in order to maintain equilibrium (see fig. 2 of § 7). The two directions involved may be chosen as axes of x, y as in that figure. Then the state of stress will be one in which the stress-component denoted by Xyis equal to S, and the remaining stress-components vanish; and the strain produced in the body is shearing strain of the type denoted by exy. The amount of the shearing strain is S/μ, and the quantity μ is the “rigidity.”
25. The modulus of compression and the rigidity are quantities of the same kind as Young’s modulus. The modulus of compression of steel is about 1.43 × 1012dynes per square centimetre, the rigidity is about 8.19 × 1011dynes per square centimetre. It must be understood that the values for different specimens of nominally the same material may differ considerably.
The modulus of compression k and the rigidity μ of an isotropic material are connected with the Young’s modulus E and Poisson’s ratio σ of the material by the equationsk = E / 3(1 − 2σ), μ = E / 2(1 + σ).26. Whatever the forces acting upon an isotropic solid body may be, provided that the body is strained within its limits of elasticity, the strain-components are expressed in terms of the stress-components by the equationsexx= (Xx− σYy− σZz) / E, eyz= Yz/ μ,eyy= (Yy− σZz− σXx) / E, ezx= Zx/ μ,ezz= (Zz− σXx− σYy) / E, exy= Xy/ μ.(1)If we introduce a quantity λ, of the same nature as E or μ, by the equationλ = Eσ / (1 + σ)(1 − 2σ),(2)we may express the stress-components in terms of the strain-components by the equationsXx= λ(exx+ eyy+ ezz) + 2μexx, Yz= μeyz,Yy= λ(exx+ eyy+ ezz) + 2μeyy, Zx= μezx,Zz= λ(exx+ eyy+ ezz) + 2μezz, Xy= μexy;(3)and then the behaviour of the body under the action of any forcesdepends upon the two constants λ and μ. These two constants were introduced by G. Lamé in his treatise of 1852. The importance of the quantity μ had been previously emphasized by L.J. Vicat and G.G. Stokes.27. The potential energy per unit of volume (often called the “resilience”) stored up in the body by the strain is equal to½ (λ + 2μ) (exx+ eyy+ ezz)² + ½μ (e²yz+ e²zx+ e²xy− 4eyyezz− 4ezzexx− 4exxeyy),or the equivalent expression½ [(X²x+ Y²y+ Z²z) − 2σ (YyZz+ ZzXx+ XxYy) + 2 (1 + σ) (Y²z+ Z²x+ X²y)] / E.The former of these expressions is called the “strain-energy-function.”
The modulus of compression k and the rigidity μ of an isotropic material are connected with the Young’s modulus E and Poisson’s ratio σ of the material by the equations
k = E / 3(1 − 2σ), μ = E / 2(1 + σ).
26. Whatever the forces acting upon an isotropic solid body may be, provided that the body is strained within its limits of elasticity, the strain-components are expressed in terms of the stress-components by the equations
exx= (Xx− σYy− σZz) / E, eyz= Yz/ μ,
eyy= (Yy− σZz− σXx) / E, ezx= Zx/ μ,
ezz= (Zz− σXx− σYy) / E, exy= Xy/ μ.
(1)
If we introduce a quantity λ, of the same nature as E or μ, by the equation
λ = Eσ / (1 + σ)(1 − 2σ),
(2)
we may express the stress-components in terms of the strain-components by the equations
Xx= λ(exx+ eyy+ ezz) + 2μexx, Yz= μeyz,
Yy= λ(exx+ eyy+ ezz) + 2μeyy, Zx= μezx,
Zz= λ(exx+ eyy+ ezz) + 2μezz, Xy= μexy;
(3)
and then the behaviour of the body under the action of any forcesdepends upon the two constants λ and μ. These two constants were introduced by G. Lamé in his treatise of 1852. The importance of the quantity μ had been previously emphasized by L.J. Vicat and G.G. Stokes.
27. The potential energy per unit of volume (often called the “resilience”) stored up in the body by the strain is equal to
½ (λ + 2μ) (exx+ eyy+ ezz)² + ½μ (e²yz+ e²zx+ e²xy− 4eyyezz− 4ezzexx− 4exxeyy),
or the equivalent expression
½ [(X²x+ Y²y+ Z²z) − 2σ (YyZz+ ZzXx+ XxYy) + 2 (1 + σ) (Y²z+ Z²x+ X²y)] / E.
The former of these expressions is called the “strain-energy-function.”
28. The Young’s modulus E of a material is often determined experimentally by the direct method of the extensometer (§ 17), but more frequently it is determined indirectly by means of a result obtained in the theory of the flexure of a bar (see §§ 47, 53 below). The rigidity μ is usually determined indirectly by means of results obtained in the theory of the torsion of a bar (see §§ 41, 42 below). The modulus of compression k may be determined directly by means of the piezometer, as was done by E.H. Amagat, or it may be determined indirectly by means of a result obtained in the theory of a tube under pressure, as was done by A. Mallock (see § 78 below). The value of Poisson’s ratio σ is generally inferred from the relation connecting it with E and μ or with E and k, but it may also be determined indirectly by means of a result obtained in the theory of the flexure of a bar (§ 47 below), as was done by M.A. Cornu and A. Mallock, or directly by a modification of the extensometer method, as has been done recently by J. Morrow.
29. Theelasticity of a fluidis always expressed by means of a single quantity of the same kind as themodulus of compressionof a solid body. To any increment of pressure, which is not too great, there corresponds a proportional cubical compression, and the amount of this compression for an increment δp of pressure can be expressed as δp/k. The quantity that is usually tabulated is the reciprocal of k, and it is called thecoefficient of compressibility. It is the amount of compression per unit increase of pressure. As a physical quantity it is of the same dimensions as the reciprocal of a pressure (or of a force per unit of area). The pressures concerned are usually measured in atmospheres (1 atmosphere = 1.014 × 106dynes per sq. cm.). For water the coefficient of compressibility, or the compression per atmosphere, is about 4.5 × 10-5. This gives for k the value 2.22 × 1010dynes per sq. cm. The Young’s modulus and the rigidity of a fluid are always zero.
30. The relations between stress and strain in a material which is not isotropic are much more complicated. In such a material the Young’s modulus depends upon the direction of the tension, and its variations about a point are expressed by means of a surface of the fourth degree. The Poisson’s ratio depends upon the direction of the contracted lateral filaments as well as upon that of the longitudinal extended ones. The rigidity depends upon both the directions involved in the specification of the shearing stress. In general there is no simple relation between the Young’s moduluses and Poisson’s ratios and rigidities for assigned directions and the modulus of compression. Many materials in common use, all fibrous woods for example, are actuallyaeolotropic(that is to say, are not isotropic), but the materials which are aeolotropic in the most regular fashion are natural crystals. The elastic behaviour of crystals has been studied exhaustively by many physicists, and in particular by W. Voigt. The strain-energy-function is a homogeneous quadratic function of the six strain-components, and this function may have as many as 21 independent coefficients, taking the place in the general case of the 2 coefficients λ, μ which occur when the material is isotropic—a result first obtained by George Green in 1837. The best experimental determinations of the coefficients have been made indirectly by Voigt by means of results obtained in the theories of the torsion and flexure of aeolotropic bars.
31.Limits of Elasticity.—A solid body which has been strained by considerable forces does not in general recover its original size and shape completely after the forces cease to act. The strain that is left is calledset. If set occurs the elasticity is said to be “imperfect,” and the greatest strain (or the greatest load) of any specified type, for which no set occurs, defines the “limit of perfect elasticity” corresponding to the specified type of strain, or of stress. All fluids and many solid bodies, such as glasses and crystals, as well as some metals (copper, lead, silver) appear to be perfectly elastic as regards change of volume within wide limits; but malleable metals and alloys can have their densities permanently increased by considerable pressures. The limits of perfect elasticity as regards change of shape, on the other hand, are very low, if they exist at all, for glasses and other hard, brittle solids; but a class of metals including copper, brass, steel,andplatinum are very perfectly elastic as regards distortion, provided that the distortion is not too great. The question can be tested by observation of the torsional elasticity of thin fibres or wires. The limits of perfect elasticity are somewhat ill-defined, because an experiment cannot warrant us in asserting that there is no set, but only that, if there is any set, it is too small to be observed.
32. A different meaning may be, and often is, attached to the phrase “limits of elasticity” in consequence of the following experimental result:—Let a bar be held stretched under a moderate tension, and let the extension be measured; let the tension be slightly increased and the extension again measured; let this process be continued, the tension being increased by equal increments. It is found that when the tension is not too great the extension increases by equal increments (as nearly as experiment can decide), but that, as the tension increases, a stage is reached in which the extension increases faster than it would do if it continued to be proportional to the tension. The beginning of this stage is tolerably well marked. Some time before this stage is reached the limit of perfect elasticity is passed; that is to say, if the load is removed it is found that there is some permanent set. The limiting tension beyond which the above law of proportionality fails is often called the “limit oflinearelasticity.” It is higher than the limit of perfect elasticity. For steel bars of various qualities J. Bauschinger found for this limit values varying from 10 to 17 tons per square inch. The result indicates that, when forces which produce any kind of strain are applied to a solid body and are gradually increased, the strain at any instant increases proportionally to the forces up to a stage beyond that at which, if the forces were removed, the body would completely recover its original size and shape, but that the increase of strain ceases to be proportional to the increase of load when the load surpasses a certain limit. There would thus be, for any type of strain, alimit of linear elasticity, which exceeds the limit of perfect elasticity.
33. A body which has been strained beyond the limit of linear elasticity is often said to have suffered an “over-strain.” When the load is removed, thesetwhich can be observed is not entirely permanent; but it gradually diminishes with lapse of time. This phenomenon is named “elastic after-working.” If, on the other hand, the load is maintained constant, the strain is gradually increased. This effect indicates a gradual flowing of solid bodies under great stress; and a similar effect was observed in the experiments of H. Tresca on the punching and crushing of metals. It appears that all solid bodies under sufficiently great loads become “plastic,” that is to say, they take a set which gradually increases with the lapse of time. No plasticity is observed when the limit of linear elasticity is not exceeded.
34. The values of the elastic limits are affected by overstrain. If the load is maintained for some time, and then removed, the limit of linear elasticity is found to be higher than before. If the load is not maintained, but is removed and then reapplied, the limit is found to be lower than before. During a period of rest a test piece recovers its elasticity after overstrain.
35. The effects of repeated loading have been studied by A. Wöhler, J. Bauschinger, O. Reynolds and others. It has been found that, after many repetitions of rather rapidly alternating stress, pieces are fractured by loads which they have many times withstood. It is not certain whether the fractureis in every case caused by the gradual growth of minute flaws from the beginning of the series of tests, or whether the elastic quality of the material suffers deterioration apart from such flaws. It appears, however, to be an ascertained result that, so long as the limit of linear elasticity is not exceeded, repeated loads and rapidly alternating loads do not produce failure of the material.
36. The question of the conditions of safety, or of the conditions in which rupture is produced, is one upon which there has been much speculation, but no completely satisfactory result has been obtained. It has been variously held that rupture occurs when the numerically greatest principal stress exceeds a certain limit, or when this stress is tension and exceeds a certain limit, or when the greatest difference of two principal stresses (called the “stress-difference”) exceeds a certain limit, or when the greatest extension or the greatest shearing strain or the greatest strain of any type exceeds a certain limit. Some of these hypotheses appear to have been disproved. It was held by G.F. Fitzgerald (Nature, Nov. 5, 1896) that rupture is not produced by pressure symmetrically applied all round a body, and this opinion has been confirmed by the recent experiments of A. Föppl. This result disposes of the greatest stress hypothesis and also of the greatest strain hypothesis. The fact that short pillars can be crushed by longitudinal pressure disposes of the greatest tension hypothesis, for there is no tension in the pillar. The greatest extension hypothesis failed to satisfy some tests imposed by H. Wehage, who experimented with blocks of wrought iron subjected to equal pressures in two directions at right angles to each other. The greatest stress-difference hypothesis and the greatest shearing strain hypothesis would lead to practically identical results, and these results have been held by J.J. Guest to accord well with his experiments on metal tubes subjected to various systems of combined stress; but these experiments and Guest’s conclusion have been criticized adversely by O. Mohr, and the question cannot be regarded as settled. The fact seems to be that the conditions of rupture depend largely upon the nature of the test (tensional, torsional, flexural, or whatever it may be) that is applied to a specimen, and that no general formula holds for all kinds of tests. The best modern technical writings emphasize the importance of the limits of linear elasticity and of tests of dynamical resistance (§ 87 below) as well as of statical resistance.
37. The question of the conditions of rupture belongs rather to the science of the strength of materials than to the science of elasticity (§ 1); but it has been necessary to refer to it briefly here, because there is no method except the methods of the theory of elasticity for determining the state of stress or strain in a body subjected to forces. Whatever view may ultimately be adopted as to the relation between the conditions of safety of a structure and the state of stress or strain in it, the calculation of this state by means of the theory or by experimental means (as in § 18) cannot be dispensed with.