It has frequently been asserted that the reproductive cells are marked off at a very early stage of the development (Sagitta, certain Crustacea,Scorpio). Recently it has been asserted that inAscaris(T. Boveri,Kuppfer’s Festschrift, 1899, p. 383) the reproductive cells are set apart after the first cleavage, and that they can be traced by certain peculiarities of their nuclei into the adult reproductive glands.It has been already stated that the mesoderm is a composite tissue. This fact is frequently conspicuous at its first establishment. In many Coelomata it is present under two forms from the beginning. One of these is epithelial in character,Mesenchyme.while the other has the form of a network of protoplasm, with nuclei at the nodes. The former is called simply epithelial mesoderm, the latter mesenchyme. Sometimes the epithelial mesoderm is the first formed, and what little mesenchyme there is is developed from it (Amphioxus, Balanoglossus, &c.) Sometimes the mesenchyme is the first to arise, the epithelial mesoderm developing from it (most, if not all, Vertebrates). Finally, it sometimes happens that these two kinds of tissue arise separately from one or other of the primary layers (Echinodermata). As already hinted, inBalanoglossusandAmphioxusthe whole of the mesoderm of the body is at first in an epithelial condition, being developed as an outgrowth of the gut-wall. InPeripatus capensisalso, and possibly in other Arthropods, it has at first an intermediate form, being derived from a primitive streak and not from the gut-wall, but it rapidly assumes an epithelial structure, from which all the mesodermal tissues are developed. In Annelids the bulk of the mesoderm has at first a modified epithelial form similar to that of Arthropods, but it is formed, not from a primitive streak, but from some peculiar cells produced in cleavage, called pole-cells. In Annelids with trochosphere larvae a certain amount of mesenchyme is formed at an earlierstage and gives rise to the muscular bands of the young larva. In Echinodermata a certain amount of mesenchyme appears before the epithelial mesoderm, which is formed later as gut-diverticula. In these forms the mesenchyme is said to arise as wandering amoeboid cells, which are budded into the blastocoel by the endoderm just before and during its invagination, but the writer has reason to believe that this account of it does not quite describe what happens. It would seem to be more probable that the mesenchyme arises in these forms, as it certainly does in the case of the later-formed mesenchyme of the Vertebrate embryo, as a protoplasmic outflow from its tissue of origin, passing at first along the line of pre-existent protoplasmic strands which traverse the blastocoel, and sending out at the same time processes which branch and anastomose with neighbouring processes (see E.W. MacBride,Proc. Camb. Phil. Soc., 1896, p. 153). In the Vertebrata the whole of the mesoderm has at first the mesenchyme form. Afterwards, when the body-cavity split appears, the bulk of it assumes a kind of modified epithelial condition, which later on yields, by a process of outflow very similar in its character to what has been supposed to occur in the Echinoderm blastula, a considerable mesenchyme of the reticulate character. Mesenchyme is the tissue which in Vertebrate embryology has frequently been called embryonic connective tissue. This name is no doubt due to the fact that it was supposed to consist of isolated stellate cells. It is, however, in no sense of the word connective tissue, because it gives rise to many organs having nothing whatever to do with connective tissue. For instance, in Vertebrata this tissue givesriseto nervous tissue, blood-vessels, renal tubules, smooth muscular fibres, and other structures, as well as to connective and skeletal tissues. The Vertebrata, indeed, are remarkable for the fact that the epithelial tissues of the so-called mesoderm,e.g.the epithelial lining of the body-cavity, and of the renal tubules and urogenital tracts, all pass through the mesenchymatous condition, whereas inAmphioxus,Balanoglossusand presumablySagittaand the Brachiopoda, all the mesodermal tissues pass through the epithelial condition, most of the mesodermal tissues of the adult retaining this condition permanently. As has been implied in the above account, mesenchyme is usually formed from epithelial mesoderm or from endoderm, or from tissue destined to form endoderm. It is also sometimes formed from ectoderm, as in the Vertebrata at the nerve crest and other places. In some Coelenterata also it appears certain that the ectoderm does furnish tissue of a mesenchymatous nature which passes into the jelly, but this phenomenon takes place comparatively late in life, at any rate after the embryonic period. In this connexion it may be interesting to point out that in many Coelenterates all the tissues of the body retain throughout life the epithelial condition, nothing comparable to mesenchyme ever being formed.
It has frequently been asserted that the reproductive cells are marked off at a very early stage of the development (Sagitta, certain Crustacea,Scorpio). Recently it has been asserted that inAscaris(T. Boveri,Kuppfer’s Festschrift, 1899, p. 383) the reproductive cells are set apart after the first cleavage, and that they can be traced by certain peculiarities of their nuclei into the adult reproductive glands.
It has been already stated that the mesoderm is a composite tissue. This fact is frequently conspicuous at its first establishment. In many Coelomata it is present under two forms from the beginning. One of these is epithelial in character,Mesenchyme.while the other has the form of a network of protoplasm, with nuclei at the nodes. The former is called simply epithelial mesoderm, the latter mesenchyme. Sometimes the epithelial mesoderm is the first formed, and what little mesenchyme there is is developed from it (Amphioxus, Balanoglossus, &c.) Sometimes the mesenchyme is the first to arise, the epithelial mesoderm developing from it (most, if not all, Vertebrates). Finally, it sometimes happens that these two kinds of tissue arise separately from one or other of the primary layers (Echinodermata). As already hinted, inBalanoglossusandAmphioxusthe whole of the mesoderm of the body is at first in an epithelial condition, being developed as an outgrowth of the gut-wall. InPeripatus capensisalso, and possibly in other Arthropods, it has at first an intermediate form, being derived from a primitive streak and not from the gut-wall, but it rapidly assumes an epithelial structure, from which all the mesodermal tissues are developed. In Annelids the bulk of the mesoderm has at first a modified epithelial form similar to that of Arthropods, but it is formed, not from a primitive streak, but from some peculiar cells produced in cleavage, called pole-cells. In Annelids with trochosphere larvae a certain amount of mesenchyme is formed at an earlierstage and gives rise to the muscular bands of the young larva. In Echinodermata a certain amount of mesenchyme appears before the epithelial mesoderm, which is formed later as gut-diverticula. In these forms the mesenchyme is said to arise as wandering amoeboid cells, which are budded into the blastocoel by the endoderm just before and during its invagination, but the writer has reason to believe that this account of it does not quite describe what happens. It would seem to be more probable that the mesenchyme arises in these forms, as it certainly does in the case of the later-formed mesenchyme of the Vertebrate embryo, as a protoplasmic outflow from its tissue of origin, passing at first along the line of pre-existent protoplasmic strands which traverse the blastocoel, and sending out at the same time processes which branch and anastomose with neighbouring processes (see E.W. MacBride,Proc. Camb. Phil. Soc., 1896, p. 153). In the Vertebrata the whole of the mesoderm has at first the mesenchyme form. Afterwards, when the body-cavity split appears, the bulk of it assumes a kind of modified epithelial condition, which later on yields, by a process of outflow very similar in its character to what has been supposed to occur in the Echinoderm blastula, a considerable mesenchyme of the reticulate character. Mesenchyme is the tissue which in Vertebrate embryology has frequently been called embryonic connective tissue. This name is no doubt due to the fact that it was supposed to consist of isolated stellate cells. It is, however, in no sense of the word connective tissue, because it gives rise to many organs having nothing whatever to do with connective tissue. For instance, in Vertebrata this tissue givesriseto nervous tissue, blood-vessels, renal tubules, smooth muscular fibres, and other structures, as well as to connective and skeletal tissues. The Vertebrata, indeed, are remarkable for the fact that the epithelial tissues of the so-called mesoderm,e.g.the epithelial lining of the body-cavity, and of the renal tubules and urogenital tracts, all pass through the mesenchymatous condition, whereas inAmphioxus,Balanoglossusand presumablySagittaand the Brachiopoda, all the mesodermal tissues pass through the epithelial condition, most of the mesodermal tissues of the adult retaining this condition permanently. As has been implied in the above account, mesenchyme is usually formed from epithelial mesoderm or from endoderm, or from tissue destined to form endoderm. It is also sometimes formed from ectoderm, as in the Vertebrata at the nerve crest and other places. In some Coelenterata also it appears certain that the ectoderm does furnish tissue of a mesenchymatous nature which passes into the jelly, but this phenomenon takes place comparatively late in life, at any rate after the embryonic period. In this connexion it may be interesting to point out that in many Coelenterates all the tissues of the body retain throughout life the epithelial condition, nothing comparable to mesenchyme ever being formed.
Finally, before leaving this branch of the subject, the fact that the three germinal layers are continuous with one another, and not isolated masses of tissue, may be emphasized. Indeed, an embryo may be defined as a multinucleatedContinuity of the layers.protoplasmic mass, in which the protoplasm at any surface—whether internal or external—is in the form of a relatively dense layer, while that in the interior is much vacuolated and reduced to a more or less sparse reticulum, the nuclei either being exclusively found in the surface protoplasm, or if the embryo has any bulk and the internal reticulum is at all well developed, at the nodes of the internal reticulum as well.
The origin of some of the more important organs may now be considered. It is a remarkable fact that the mouth and anus develop in the most diverse ways in different groups, but as a rule either one or both of them can be tracedMouth and anus.into relation with the blastopore, the history of which must therefore be examined. In most, if not all, the great groups of the animal kingdom,e.g.in Coelenterata, Annelida, Mollusca, Vertebrata, and in Arthropoda, the blastopore or its representative is placed on the neural surface of the body, and, as will be shown later on, within the limits of the central nerve rudiment. Here it undergoes the most diverse fate, even in members of the same group. For instance, inPeripatus capensisit extends as a slit along the ventral surface, which closes up in the middle, but remains open at the two ends as the permanent mouth and anus. In other Arthropods, though full details have not yet in all cases been worked out, the following general statement may be made:—A blastopore (certain Crustacea) or its representative is formed on the neural surface of the embryo and always becomes closed, the mouth and anus arising as independent perforations later. Here no one would doubt the homology of the mouth and anus throughout the group; yet within the limits of a single genus—Peripatus—they show the most diverse modes of development. In Annelids the blastopore sometimes becomes the mouth (most Chaetopoda); sometimes it becomes the anus (Serpula); sometimes it closes up, giving rise to neither, though in this case it may assume the form of a long slit along the ventral surface before disappearing. In Mollusca its fate presents the same variations as in Annelida. Now in these groups no zoologist would deny the homology of the mouth and anus in the different forms, and yet how very different is their history even in closely allied animals. How are these apparently diverse facts to be reconciled? The only satisfactory explanation which has been offered (Sedgwick,Quart. J. Mic. Science, xxiv., 1884, p. 43) is that the blastopore is homologous in all the groups mentioned, and is the representative of the original single opening into the enteric cavity, such as at present characterizes the Coelenterata. From it the mouth and anus have been derived, as is indicated by its history inPeripatus capensis, and by the variability in its behaviour in closely allied forms; such variability in its subsequent history is due to its specialization as a larval organ, as a result of which it has lost its capacity to give rise to both mouth and anus, and sometimes to either.
That the blastopore does become specialized as a larval organ is obvious in those cases in which it becomes transformed into the single opening with which some larvae are, for a time at least, alone provided,e.g.Pilidium, Echinoderm larvae, &c., and that larval characters have been the principal causes of the form of embryonic characters, strong reason to believe will be adduced later on. In the Vertebrata the behaviour of the blastopore (anus of Rusconi) is also variable in a very remarkable manner. As a rule it is slit-like in form and closes completely, but in most cases one portion of it remains open longer than the rest, as the neurenteric canal. In a few forms (e.g.Newt,Lepidosiren, &c.) the very hindermost portion of the slit-like blastopore remains permanently open as the anus, and from such cases it can be shown that the neurenteric aperture (when present) is derived from a portion of the blastopore just anterior to its hindermost end. The words “hindermost” and “anterior” are used on the assumption that the whole blastopore has retained its dorsal position; as a matter of fact the hindermost part of it—the part which persists or reopens as the anus—loses this position in the course of development and becomes shifted on to the ventral surface. This is clearly seen inLepidosiren(Kerr,Phil. Trans.cxcii., 1900), in Elasmobranchii, and in Amniota (primitive streak). Moreover, inLepidosiren, and possibly in some other forms, the anus,i.e.the hind end of the blastopore, is at first contained within the medullary plate and bounded behind by the medullary folds. Later the portions of the medullary plate in the neighbourhood of the anus completely atrophy, and this relation is lost. This extension of the hind end of the blastopore on to the ventral surface, and atrophy of the portion of the medullary plate in relation with it, is a highly important phenomenon, and one to which attention will be again called when the relation of the mouth to the blastopore is being considered. The remarkable fact about the Vertebrata, a feature which that group shares in common with all other Chordata (Amphioxus, Tunicata, Enteropneusta) and with the Echinodermata, is that the mouth has never been traced into relation with the blastopore. For this reason, among others, it has been held by some zoologists that the mouth of the Vertebrata is not homologous with the mouth of such groups as the Annelida, Arthropoda and Mollusca. But, as has been explained above, in face of the extraordinary variability in the history of the mouth and anus in these groups, this view cannot be regarded as in any way established. On the contrary, there are distinct reasons for thinking that the Vertebrate mouth is a derivate of the blastopore. In the first place, in Elasmobranchii (Sedgwick,Quart. Journ. Mic. Sci.xxxiii., 1892, p. 559), and in a less conspicuous form in other vertebrate groups, the mouth has at first a slit-like form, extending from the anterior end of the central nerve-tube backwards along the ventral surface of the anterior part of the embryo. This slit-like rudiment, recalling as it does the form which the blastopore assumes in so many groups and in many Vertebrata, does suggest the view that possibly the mouth of the Vertebrata may in reality be derived from a portion of an originally long slit-like neural blastopore, which has become extended anteriorly on to the ventral surface and has lost its original relation to the nerve rudiment, as has undoubtedly happened with the posterior part, which persists as the anus.
That the blastopore does become specialized as a larval organ is obvious in those cases in which it becomes transformed into the single opening with which some larvae are, for a time at least, alone provided,e.g.Pilidium, Echinoderm larvae, &c., and that larval characters have been the principal causes of the form of embryonic characters, strong reason to believe will be adduced later on. In the Vertebrata the behaviour of the blastopore (anus of Rusconi) is also variable in a very remarkable manner. As a rule it is slit-like in form and closes completely, but in most cases one portion of it remains open longer than the rest, as the neurenteric canal. In a few forms (e.g.Newt,Lepidosiren, &c.) the very hindermost portion of the slit-like blastopore remains permanently open as the anus, and from such cases it can be shown that the neurenteric aperture (when present) is derived from a portion of the blastopore just anterior to its hindermost end. The words “hindermost” and “anterior” are used on the assumption that the whole blastopore has retained its dorsal position; as a matter of fact the hindermost part of it—the part which persists or reopens as the anus—loses this position in the course of development and becomes shifted on to the ventral surface. This is clearly seen inLepidosiren(Kerr,Phil. Trans.cxcii., 1900), in Elasmobranchii, and in Amniota (primitive streak). Moreover, inLepidosiren, and possibly in some other forms, the anus,i.e.the hind end of the blastopore, is at first contained within the medullary plate and bounded behind by the medullary folds. Later the portions of the medullary plate in the neighbourhood of the anus completely atrophy, and this relation is lost. This extension of the hind end of the blastopore on to the ventral surface, and atrophy of the portion of the medullary plate in relation with it, is a highly important phenomenon, and one to which attention will be again called when the relation of the mouth to the blastopore is being considered. The remarkable fact about the Vertebrata, a feature which that group shares in common with all other Chordata (Amphioxus, Tunicata, Enteropneusta) and with the Echinodermata, is that the mouth has never been traced into relation with the blastopore. For this reason, among others, it has been held by some zoologists that the mouth of the Vertebrata is not homologous with the mouth of such groups as the Annelida, Arthropoda and Mollusca. But, as has been explained above, in face of the extraordinary variability in the history of the mouth and anus in these groups, this view cannot be regarded as in any way established. On the contrary, there are distinct reasons for thinking that the Vertebrate mouth is a derivate of the blastopore. In the first place, in Elasmobranchii (Sedgwick,Quart. Journ. Mic. Sci.xxxiii., 1892, p. 559), and in a less conspicuous form in other vertebrate groups, the mouth has at first a slit-like form, extending from the anterior end of the central nerve-tube backwards along the ventral surface of the anterior part of the embryo. This slit-like rudiment, recalling as it does the form which the blastopore assumes in so many groups and in many Vertebrata, does suggest the view that possibly the mouth of the Vertebrata may in reality be derived from a portion of an originally long slit-like neural blastopore, which has become extended anteriorly on to the ventral surface and has lost its original relation to the nerve rudiment, as has undoubtedly happened with the posterior part, which persists as the anus.
Of the other organs which develop from the two primary layers it is only possible to notice here the central nervous system. This in almost all animals develops from the ectoderm. In Cephalopods among Mollusca—theCentral nervous system.development of which is remarkable from the almost complete absence of features which are supposed to have an ancestral significance—and in one or two other forms, it has been said to develop from the mesoderm; but apart fromthese exceptional and perhaps doubtful cases, the central nervous system of all embryos arises as thickenings of the ectoderm, and in the groups above mentioned, namely, Annelida, Mollusca, Arthropoda and Vertebrata, and probably others, from the ectoderm of the blastoporal surface of the body. This surface generally becomes the ventral surface, but in Vertebrata it becomes the dorsal. These thickened tracts of ectoderm inPeripatusand a few other forms can be clearly seen to surround the blastopore. This relation is retained in the adult inPeripatus, some Mollusca and some Nemertines, in which the main lateral nerve cords are united behind the anus as well as in front of the mouth; in other forms it cannot always be demonstrated, but it can, as in the case of the Vertebrata just referred to, always be inferred; only, in the Invertebrate groups the part of the nerve rudiment which has to be inferred is the posterior part behind the blastopore, whereas in Vertebrata it is the anterior part, namely, that in front of the blastopore, assuming that the mouth is a blastoporal derivate.
In the Echinodermata, Enteropneusta and one or two other groups, it is not possible, in the present state of knowledge, to bring the mouth into relation with the blastopore, nor can the blastopore be shown to be a perforation of the neural surface. For the Echinoderms, at any rate, this fact loses some of the importance which might at first sight be attributed to it when the remarkable organization of the adult and the sharp contrast which exists between it and the larva is remembered. In some Annelids the central nervous system remains throughout life as part of the outer epidermis, but as a general rule it becomes separated from the epidermis and embedded in the mesodermal tissues. The mode in which this separation is effected varies according to the form and structure of the central nervous system. In the Vertebrata, in which this organ has the form of a tube extending along the dorsal surface of the body, it arises as a groove of the medullary plate, which becomes constricted into a canal. The wall of this canal consists of ectoderm, which at an earlier stage formed part of the outer surface of the body, but which after invagination thickens, to give rise to the epithelial lining of the canal and to the nervous tissue which forms the bulk of the canal wall. The fact that the blastopore remains open at the hind end of the medullary plate explains to a certain extent the peculiar relation which always exists in the embryo between the hind end of the neural and alimentary canals. This communication between the hind end of the neural tube and the gut is one of the most remarkable and constant features of the Vertebrate embryo. As has been pointed out, it is not altogether unintelligible when we remember the relation of the blastopore to the medullary plate of the earlier stage, but to give a complete explanation of it is, and probably always will be, impossible. It is no doubt the impress of some remarkable larval condition of the blastopore of a stage of evolution now long past.InCeratodusthe open part of the blastopore is enclosed by the medullary folds, as inLepidosiren, and probably persists as the anus, the portion of the folds around the anus undergoing atrophy (Semon,Zool. Forschungsreisen in Australien, 1893, Bd. i. p. 39). In Urodeles the blastopore persists as anus, so far as is known, but the relation to the medullary folds has not been noticed. The same may be said ofPetromyzon(A.E. Shipley,Quart. Journ. Mic. Sci.xxviii., 1887).The nerve tube of the Vertebrata at a certain early stage of the embryo becomes bent ventralwards in its anterior portion, in such a manner that the anterior end, which is represented in the adult by the infundibulum, comes to projectCranial flexure.backwards beneath the mid-brain. This bend, which is called the cranial flexure, takes place through the mid-brain, so that the hind-brain is unaffected by it. The cranial flexure is not, however, confined to the brain: the anterior end of the notochord, which at first extends almost to the front end of the nerve tube (this extension, which is quite obvious in the young embryo of Elasmobranchs, becomes masked in the later stages by the extraordinary modifications which the parts undergo), is also affected by it. Moreover, it affects even other parts, as may be seen by the oblique, almost antero-posterior, direction of the anterior gill slits as compared with the transverse direction of those behind. No satisfactory explanation has ever been offered of the cranial flexure. It is found in all Vertebrates, and is effected at an early stage of the development. In the later stages and in the adult it ceases to be noticeable, on account of an alteration of the relative sizes of parts of the brain. This is due almost entirely to the enormous growth of the cerebral vesicle, which is an outgrowth of the dorsal wall of the fore-brain just short of its anterior end. The anterior end of the fore-brain remains relatively small throughout life as the infundibulum, and the junction of this part of the fore-brain with the part which is so largely developed, as the rudiment of the cerebrum, is marked by the attachment of the optic chiasma. The optic nerve, indeed, is morphologically the first cranial nerve, the olfactory being the second; both are attached to what is morphologically the dorsal side of the nerve tube. The morphological anterior end of the central nerve tube is the point of the infundibulum which is in contact with the pituitary body. While on the subject of the cranial flexure, it may be pointed out that there is a similar downward curve of the hind end of the nervous axis, which leads into the hind end of the enteron. If it be supposed that originally there was a communication between the infundibulum and pituitary body, then the ventral flexure found at both ends of the nerve axis would originally have had the same result, namely, of placing the neural and alimentary canals in communication. Moreover, the mouth would have had much the same relation to this imaginary anterior neurenteric canal that the anus has to the actual posterior one.InAmphioxusand the Tunicata the early development of the central nervous system is very much like that of the Vertebrata, but the later stages are simpler, being without the cranial flexure. The Tunicata are remarkable for the fact that the nervous system, though at first hollow, becomes quite solid in the adult. InBalanoglossusthe central nervous system is in part tubular, the canal being open at each end. It arises, however, by delamination from the ectoderm, the tube being a secondary acquisition. This is probably due to a shortening of development, for the same feature is found in some Vertebrata (Teleostei,Lepidosteus, &c.), where the central canal is secondarily hollowed out in the solid keel-like mass which is separated from the ectoderm. Parts of the central nervous system arise by invagination in other groups; for instance, the cerebral ganglia ofDentaliumare formed from the walls of two invaginations of ectoderm, which eventually disappear at the anterior end of the body (A. Kowalevsky,Ann. Mus. Hist. Nat. Marseilles, “Zoology,” vol. i.). InPeripatusthe cerebral ganglia arise in a similar way, but in this case the cavities of the invagination become separated from the skin and persist as two hollow appendages on the lower side of the cerebral ganglia. In other Arthropods the cerebral ganglia arise in a similar way, but the invaginations disappear in the adult. In Nemertines the cerebral ganglia contain a cavity which communicates with the exterior by a narrow canal. Finally, in certain Echinodermata the ventral part of the central nervous system arises by the invagination of a linear streak of ectoderm, the cavity of the invagination persisting as the epineural canal.
In the Echinodermata, Enteropneusta and one or two other groups, it is not possible, in the present state of knowledge, to bring the mouth into relation with the blastopore, nor can the blastopore be shown to be a perforation of the neural surface. For the Echinoderms, at any rate, this fact loses some of the importance which might at first sight be attributed to it when the remarkable organization of the adult and the sharp contrast which exists between it and the larva is remembered. In some Annelids the central nervous system remains throughout life as part of the outer epidermis, but as a general rule it becomes separated from the epidermis and embedded in the mesodermal tissues. The mode in which this separation is effected varies according to the form and structure of the central nervous system. In the Vertebrata, in which this organ has the form of a tube extending along the dorsal surface of the body, it arises as a groove of the medullary plate, which becomes constricted into a canal. The wall of this canal consists of ectoderm, which at an earlier stage formed part of the outer surface of the body, but which after invagination thickens, to give rise to the epithelial lining of the canal and to the nervous tissue which forms the bulk of the canal wall. The fact that the blastopore remains open at the hind end of the medullary plate explains to a certain extent the peculiar relation which always exists in the embryo between the hind end of the neural and alimentary canals. This communication between the hind end of the neural tube and the gut is one of the most remarkable and constant features of the Vertebrate embryo. As has been pointed out, it is not altogether unintelligible when we remember the relation of the blastopore to the medullary plate of the earlier stage, but to give a complete explanation of it is, and probably always will be, impossible. It is no doubt the impress of some remarkable larval condition of the blastopore of a stage of evolution now long past.
InCeratodusthe open part of the blastopore is enclosed by the medullary folds, as inLepidosiren, and probably persists as the anus, the portion of the folds around the anus undergoing atrophy (Semon,Zool. Forschungsreisen in Australien, 1893, Bd. i. p. 39). In Urodeles the blastopore persists as anus, so far as is known, but the relation to the medullary folds has not been noticed. The same may be said ofPetromyzon(A.E. Shipley,Quart. Journ. Mic. Sci.xxviii., 1887).
The nerve tube of the Vertebrata at a certain early stage of the embryo becomes bent ventralwards in its anterior portion, in such a manner that the anterior end, which is represented in the adult by the infundibulum, comes to projectCranial flexure.backwards beneath the mid-brain. This bend, which is called the cranial flexure, takes place through the mid-brain, so that the hind-brain is unaffected by it. The cranial flexure is not, however, confined to the brain: the anterior end of the notochord, which at first extends almost to the front end of the nerve tube (this extension, which is quite obvious in the young embryo of Elasmobranchs, becomes masked in the later stages by the extraordinary modifications which the parts undergo), is also affected by it. Moreover, it affects even other parts, as may be seen by the oblique, almost antero-posterior, direction of the anterior gill slits as compared with the transverse direction of those behind. No satisfactory explanation has ever been offered of the cranial flexure. It is found in all Vertebrates, and is effected at an early stage of the development. In the later stages and in the adult it ceases to be noticeable, on account of an alteration of the relative sizes of parts of the brain. This is due almost entirely to the enormous growth of the cerebral vesicle, which is an outgrowth of the dorsal wall of the fore-brain just short of its anterior end. The anterior end of the fore-brain remains relatively small throughout life as the infundibulum, and the junction of this part of the fore-brain with the part which is so largely developed, as the rudiment of the cerebrum, is marked by the attachment of the optic chiasma. The optic nerve, indeed, is morphologically the first cranial nerve, the olfactory being the second; both are attached to what is morphologically the dorsal side of the nerve tube. The morphological anterior end of the central nerve tube is the point of the infundibulum which is in contact with the pituitary body. While on the subject of the cranial flexure, it may be pointed out that there is a similar downward curve of the hind end of the nervous axis, which leads into the hind end of the enteron. If it be supposed that originally there was a communication between the infundibulum and pituitary body, then the ventral flexure found at both ends of the nerve axis would originally have had the same result, namely, of placing the neural and alimentary canals in communication. Moreover, the mouth would have had much the same relation to this imaginary anterior neurenteric canal that the anus has to the actual posterior one.
InAmphioxusand the Tunicata the early development of the central nervous system is very much like that of the Vertebrata, but the later stages are simpler, being without the cranial flexure. The Tunicata are remarkable for the fact that the nervous system, though at first hollow, becomes quite solid in the adult. InBalanoglossusthe central nervous system is in part tubular, the canal being open at each end. It arises, however, by delamination from the ectoderm, the tube being a secondary acquisition. This is probably due to a shortening of development, for the same feature is found in some Vertebrata (Teleostei,Lepidosteus, &c.), where the central canal is secondarily hollowed out in the solid keel-like mass which is separated from the ectoderm. Parts of the central nervous system arise by invagination in other groups; for instance, the cerebral ganglia ofDentaliumare formed from the walls of two invaginations of ectoderm, which eventually disappear at the anterior end of the body (A. Kowalevsky,Ann. Mus. Hist. Nat. Marseilles, “Zoology,” vol. i.). InPeripatusthe cerebral ganglia arise in a similar way, but in this case the cavities of the invagination become separated from the skin and persist as two hollow appendages on the lower side of the cerebral ganglia. In other Arthropods the cerebral ganglia arise in a similar way, but the invaginations disappear in the adult. In Nemertines the cerebral ganglia contain a cavity which communicates with the exterior by a narrow canal. Finally, in certain Echinodermata the ventral part of the central nervous system arises by the invagination of a linear streak of ectoderm, the cavity of the invagination persisting as the epineural canal.
Although the central nervous system is almost always developed from the ectoderm of the embryo, the same cannot be said of the peripheral nerve trunks. These structures arise from the mesoblastic reticulum already describedPeripheral nervous system.(Sedgwick,Quart. Journ. Mic. Sci.xxxvii. 92). Inasmuch as this reticulum is perfectly continuous with the precisely similar though denser tissue in the ectoderm and endoderm, it may well be that a portion of the nerve trunks should be described as being ectodermal and endodermal in origin, though the bulk of them are undoubtedly formed from that portion of the reticulum commonly described as mesoblastic. But, however that may be, the tissue from which the great nerve trunks are developed is continuous on all sides with a similar tissue which pervades all the organs of the body, and in which the nuclei of these organs are contained.
In the early stages of development this tissue is very sparse and not easily seen. It would appear, indeed, that it is of a very delicate texture and readily destroyed by reagents. It is for this reason that the layers of the Vertebrate embryo are commonly represented as being quite isolated from one another, and that the medullary canal is nearly always represented as being completely isolated at certain stages from the surrounding tissues. In reality the layers are all connected together by this delicate tissue—in a sparse form, it is true—which not only extends between them, but also in a denser and more distinct form pervades them. In the germinal layers themselves, and in the organs developing from them, this tissue is in the young stages almost entirely obscured by the densely packed nuclei which it contains. For instance, in the wall of the medullary canal in the Vertebrate embryo, in the splanchnic and somatic layers of mesoderm of the same embryo, and in the developing nerve cords of thePeripatusembryo, the nuclei are at first so densely crowded together that it is almost impossible to see the protoplasmic framework in which they rest, but as development proceeds this extra-nuclear tissue becomes more largely developed, and the nuclei are forced apart, so that it becomes visible and receives various names according to its position. In the wall of the medullary canal of the Vertebrate embryo, on the outside of which it becomes especially conspicuous in certain places, and on the dorsal side of the developing nerve cords of thePeripatusembryo, it constitutes the white matter of the developing nerve cord; in the mesoblastic tissue outside, where it at the same time becomes more conspicuous (Sedgwick, “Monograph of the Development ofPeripatus capensis,”Studies from the Morph. Lab. of the University of Cambridge, iv., 1889, p. 131), it forms the looser network of the mesoblastic reticulum; and connecting the two, in place of the few and delicate strands of this tissue of the former stage, there are at certain places well-marked cords of a relatively dense texture, with the meshes of the reticulum elongatedin the direction of the cord. This latter structure is an incipient nerve trunk. It can be traced outwards into the mesoblastic reticulum, from the strands of which it is indeed developed, and with which it is continuous not only at its free end, but also along its whole course. In this way the nerve trunks are developed—by a gathering up, so to speak, of the fibres of the reticulum into bundles. These bundles are generally marked by the possession of nuclei, especially in their cortical parts, which become no doubt the nuclei of the nerve sheath, and, in the neighbourhood of the ganglia, of nerve cells. From this account of the early development of the nerves, it is apparent that they are in their origin continuous with all the other tissues of the body, with that of the central nervous system and with that which becomes transformed into muscular tissue and connective and epithelial tissues. All these tissues are developed from the general reticulum, which in the young embryo can be seen to pervade the whole body, not being confined to the mesoderm, but extending between the nuclei of the ectoderm and endoderm, and forming the extra-nuclear, so-called cellular, protoplasm of those layers. Moreover, it must be remarked that in the stages of the embryo with which we are here concerned the so-called cellular constitution of the tissues, which is such a marked feature of the older embryo and adult, has not been arrived at. It is true, indications of it may be seen in some of the earlier-formed epithelia, but of nerve cells, muscular cells, and many kinds of gland cells no distinct signs are yet visible. This remark particularly applies to nerve cells, which do not make their appearance until a much later stage—not, indeed, until some time after the principal nerve trunks and ganglia are indicated as tracts of pale fibrous substance and aggregations of nuclei respectively.The embryos of Elasmobranchs—particularly ofScyllium—are the best objects in which to study the development of nerves. In many embryos it is difficult to make out what happens, because the various parts of the body remain so close together that the process is obscured, and the loosening of the mesoblastic nuclei is deferred until after the nerves have begun to be differentiated. The process may also be traced in the embryos ofPeripatus, where the main features are essentially similar to those above described (op. cit.p. 131). The development of the motor nerves has been worked out inLepidosirenby J. Graham Kerr (Trans. Roy. Soc. of Edinburgh, 41, 1904. p. 119).
In the early stages of development this tissue is very sparse and not easily seen. It would appear, indeed, that it is of a very delicate texture and readily destroyed by reagents. It is for this reason that the layers of the Vertebrate embryo are commonly represented as being quite isolated from one another, and that the medullary canal is nearly always represented as being completely isolated at certain stages from the surrounding tissues. In reality the layers are all connected together by this delicate tissue—in a sparse form, it is true—which not only extends between them, but also in a denser and more distinct form pervades them. In the germinal layers themselves, and in the organs developing from them, this tissue is in the young stages almost entirely obscured by the densely packed nuclei which it contains. For instance, in the wall of the medullary canal in the Vertebrate embryo, in the splanchnic and somatic layers of mesoderm of the same embryo, and in the developing nerve cords of thePeripatusembryo, the nuclei are at first so densely crowded together that it is almost impossible to see the protoplasmic framework in which they rest, but as development proceeds this extra-nuclear tissue becomes more largely developed, and the nuclei are forced apart, so that it becomes visible and receives various names according to its position. In the wall of the medullary canal of the Vertebrate embryo, on the outside of which it becomes especially conspicuous in certain places, and on the dorsal side of the developing nerve cords of thePeripatusembryo, it constitutes the white matter of the developing nerve cord; in the mesoblastic tissue outside, where it at the same time becomes more conspicuous (Sedgwick, “Monograph of the Development ofPeripatus capensis,”Studies from the Morph. Lab. of the University of Cambridge, iv., 1889, p. 131), it forms the looser network of the mesoblastic reticulum; and connecting the two, in place of the few and delicate strands of this tissue of the former stage, there are at certain places well-marked cords of a relatively dense texture, with the meshes of the reticulum elongatedin the direction of the cord. This latter structure is an incipient nerve trunk. It can be traced outwards into the mesoblastic reticulum, from the strands of which it is indeed developed, and with which it is continuous not only at its free end, but also along its whole course. In this way the nerve trunks are developed—by a gathering up, so to speak, of the fibres of the reticulum into bundles. These bundles are generally marked by the possession of nuclei, especially in their cortical parts, which become no doubt the nuclei of the nerve sheath, and, in the neighbourhood of the ganglia, of nerve cells. From this account of the early development of the nerves, it is apparent that they are in their origin continuous with all the other tissues of the body, with that of the central nervous system and with that which becomes transformed into muscular tissue and connective and epithelial tissues. All these tissues are developed from the general reticulum, which in the young embryo can be seen to pervade the whole body, not being confined to the mesoderm, but extending between the nuclei of the ectoderm and endoderm, and forming the extra-nuclear, so-called cellular, protoplasm of those layers. Moreover, it must be remarked that in the stages of the embryo with which we are here concerned the so-called cellular constitution of the tissues, which is such a marked feature of the older embryo and adult, has not been arrived at. It is true, indications of it may be seen in some of the earlier-formed epithelia, but of nerve cells, muscular cells, and many kinds of gland cells no distinct signs are yet visible. This remark particularly applies to nerve cells, which do not make their appearance until a much later stage—not, indeed, until some time after the principal nerve trunks and ganglia are indicated as tracts of pale fibrous substance and aggregations of nuclei respectively.
The embryos of Elasmobranchs—particularly ofScyllium—are the best objects in which to study the development of nerves. In many embryos it is difficult to make out what happens, because the various parts of the body remain so close together that the process is obscured, and the loosening of the mesoblastic nuclei is deferred until after the nerves have begun to be differentiated. The process may also be traced in the embryos ofPeripatus, where the main features are essentially similar to those above described (op. cit.p. 131). The development of the motor nerves has been worked out inLepidosirenby J. Graham Kerr (Trans. Roy. Soc. of Edinburgh, 41, 1904. p. 119).
To sum up, the development of nerves is not, as has been recently urged, an outgrowth of cell processes from certain cells, but is a differentiation of a substance which was already in position, and from which all other organs of the body have been and are developed. It frequently happens that the young nerve tracts can be seen sooner near the central organ than elsewhere, but it is doubtful if any importance can be attached to this fact, since it is not constantly observed. For instance, in the case of the third nerve ofScylliumthe differentiation appears to take place earliest near the ciliary ganglion, and to proceed from that point to the base of the mid-brain.
There are two main methods in which new organs are developed. In the one, which indicates the possibility of physiological continuity, the organ arises by the direct modification of a portion of a pre-existing organ;Coelom.the development of the central nervous system of the Vertebrata from a groove in the embryonic ectoderm may be taken as an example of this method. In the other method there is no continuity which can be in any way interpreted as physiological; a centre of growth appears in one of the parts of the embryo, and gives rise to a mass of tissue which gradually shapes itself into the required organ. The development of the central nervous system in Teleosteans and in other similar exceptional cases may be mentioned as an example of the second plan. Such a centre of growth is frequently called a blastema, and consists of a mass of closely packed nuclei which have arisen by the growth-activity of the nuclei in the neighbourhood. The coelom, an organ which is found in the so-called coelomate animals, and which in the adult is usually divided up more or less completely into three parts, namely, body-cavity, renal organs, generative glands, presents in different animals both these methods of development. In certain animals it develops by the direct modification of a part of the primitive enteron, while in others it arises by the gradual shaping of a mass of tissue which consists of a compact mass of nuclei derived by nuclear proliferation from one or more of the pre-existing tissues of the body. Inasmuch as the first rudiment of the coelom nearly always makes its appearance at an early stage, when the ectoderm and endoderm are almost the only tissues present, and as it then bulks relatively very large and frequently contains within itself the potential centres of growth of other organs,e.g.mesenchymal organs (see above), it has come to be regarded by embryologists as being the forerunner of all the so-called mesodermal organs of the body, and has been dignified with the somewhat mysterious rank which attaches to the conception of a germinal layer. Its prominence and importance at an early stage led embryologists, as has already been explained, to overlook the fact that although some of the centres of growth for the formation of other non-coelomic mesodermal organs and tissues may be contained within it, all are not so contained, and that there are centres of mesodermal growth still left in the ectoderm and endoderm after its establishment. If these considerations, and others like them, are correct, it would seem to follow that the conception implied by the word mesoderm has no objective existence, that the tissue of the embryo called mesoderm, though sometimes mainly the rudiment of the coelom, is often much more than this, and contains within itself the rudiment of many, sometimes of all, of the organs appertaining to the mesenchyme. In thus containing within itself the potential centres of growth of other organs and tissues which are commonly ranked as mesodermal, it is not different from the rudiments of the two other organs already formed, namely, the ectoderm and endoderm; for these contain within themselves centres of growth for the production of so-called mesodermal tissues, as witness the nerve-crest of Vertebrata, the growing-point of the pronephric duct, and the formation of blood-vessels from the hypoblast described for some members of the same group.
In Echinodermata,Amphioxus, Enteropneusta, and a few other groups, the coelom develops from a portion or portions of the primitive enteron, which eventually becomes separated from the rest and forms a variable number of closed sacs lying between the gut and the ectoderm. The number of these sacs varies in different animals, but the evidence at present available seems to show that the maximum number is five—an unpaired one in front and two pairs behind—and, further, that if a less number of sacs is actually separated from the enteron, the rule is for these sacs so to divide up that they give rise to five sacs arranged in the manner indicated. The Enteropneusta present us with the clearest case of the separation of five sacs from the primitive enteron (W. Bateson,Quart. Journ. Mic. Sci.xxiv., 1884). InAmphioxus, according to the important researches of E.W. MacBride (Quart. Journ. Mic. Sci.xl. 589), it appears that a similar process occurs, though it is complicated by the fact that the sacs of the posterior pair become divided up at an early stage into many pairs. InPhoronisthere are indications of the same phenomenon (A.T. Masterman,Quart. Journ. Mic. Sci.xliii. 375). In the Chaetognatha a single sac only is separated from the enteron, but soon becomes divided up. In the Brachiopoda one pair of sacs is separated from the enteron, but our knowledge of their later history is not sufficient to enable us to say whether they divide up into the typically arranged five sacs. In Echinodermata the number of sacs separated from the enteron varies from one to three; but though the history of these shows considerable differences, there are reasons to believe that the typical final arrangement is one unpaired and two paired sacs. But however many sacs may arise from the primitive enteron, and however these sacs may ultimately divide up and arrange themselves, the important point of development common to all these animals, about which there can be no dispute, is that the coelom is a direct differentiation of a portion of the enteron.
In the majority of the Coelomata the coelomic rudiment does not arise by the simple differentiation of a pre-existing organ, and there is considerable variation in its method of formation. Speaking generally, it may be said to arise by the differentiation of a blastema (see above), which develops at an early stage as a nuclear proliferation from one or more growth-centres in one or both of the primary layers. It appears in this tissue as a sac or as a series of sacs, which become transformed into the body-cavity (except in the Arthropoda), into the renal organs (with the possible exception, again, of some Arthropoda), and into the reproductive glands. In metamerically segmented animals theappearance of the cavities of these sacs is synchronous with, and indeed determines, the appearance of metameric segmentation. In all segmented animals in which the mesoderm (coelomic rudiment) appears as a continuous sheet or band of tissue on each side of the body, the coelomic cavity makes its first appearance not as a continuous space on each side, which later becomes divided up into the structures called mesoblastic somites, but as a series of paired spaces round which the coelomic tissue arranges itself in an epithelial manner. In the Vertebrata, it is true, the ventral portion of the coelom appears at first as a continuous space, at any rate behind the region of the two anterior pairs of somites, but in the dorsal portion the coelomic cavity is developed in the usual way, the coelomic tissue becoming transformed into the muscle plates and rudimentary renal tubules of the later stages. With regard to this ventral portion of the coelom in Vertebrata, it is to be noticed that the cavity in it never becomes divided up, but always remains continuous, forming the perivisceral portion of the coelom. The probable explanation of this peculiarity in the development of the Vertebrate coelom, as compared with that ofAmphioxusand other segmented animals, is that the segmented stage of the ventral portion of the coelom is omitted. This explanation derives some support from the fact that even in animals in which the coelom is at its first appearance wholly segmented, it frequently happens that in the adult the perivisceral portion of it is unsegmented,i.e.it loses during development the segmentation which it at first possesses. This happens in many Annelida and inAmphioxus. The lesson, then, which the early history of the coelom in segmented animals teaches is, that however the coelomic cavity first makes its appearance, whether by evaginations from the primitive enteron, or by the hollowing out of a solid blastema-like tissue which has developed from one or both of the primary layers, it is in its first origin segmented, and forms the basis on which the segments of the adult are moulded. In Arthropoda the origin of the coelom is similar to that of Annelids, but its history is not completely known in any group, with the exception ofPeripatus. In this genus it develops no perivisceral portion, as in other groups, but gives rise solely to the nephridia and to the reproductive organs. It is probable, though not certainly proved, that the history of the coelom in other Arthropods is essentially similar to that ofPeripatus, allowance being made for the fact that the nephridial portion does not attain full development in those forms which are without nephridia in the adult.
With regard to the development of the vascular system, little can be said here, except that it appears to arise from the spaces of the mesoblastic reticulum. When this reticulum is sparse or so delicate as to give way in manipulation, these spaces appear to be represented by a continuous space which in the earliest stages of development is frequently spoken of as the blastocoel or segmentation cavity. They acquire special epithelial walls, and form the main trunks and network of smaller vessels found in animals with a canalicular vascular system, or the large sinus-like spaces characteristic of animals with a haemocoelic body-cavity.
The existence of a phase at the beginning of life during which a young animal acquires its equipment by a process of growth of the germ is of course intelligible enough; such a phase is seen in the formation of buds, and in theTransient embryonic organs.sexual reproduction of both animals and plants. The remarkable point is that while in most cases this embryonic growth is a direct and simple process—e.g.animal and plant buds, embryonic development of plant seeds—in many cases of sexual reproduction of animals it is not direct, and the embryonic phase shows stages of structure which seem to possess a meaning other than that of being merely phases of growth. The fact that these stages of structure through which the embryo passes sometimes present for a short time features which are permanent in other members of the same group, adds very largely to the interest of the phenomenon and necessitates its careful examination. This may be divided into two heads: (1) in relation to embryos, (2) in relation to larvae. So far as embryos are concerned, we shall limit ourselves mainly to a consideration of the Vertebrata, because in them are found most instances of that remarkable phenomenon, the temporary assumption by certain organs of the embryo of stages of structure which are permanent in other members of the same group. As is well known, the embryos of the higher Vertebrata possess in the structure of the pharynx and of the heart and vascular system certain features—namely, paired pharyngeal apertures, a simple tubular heart, and a single ventral aorta giving off right and left a number of branches which pass between the pharyngeal apertures—which permanently characterize those organs in fishes. The skeleton, largely bony in the adult, passes through a stage in which it is entirely without bone, and consists mainly of cartilage—the form which it permanently possesses in certain fishes. Further, the Vertebrate embryo possesses for a time a notochord, a segmented muscular system, a continuity between the pericardium and the posterior part of the perivisceral cavity—all features which characterize certain groups of Pisces in the adult state. Instances of this kind might be multiplied, for the work of anatomists and embryologists has of late years been largely devoted to adding to them. Examples of embryonic characters which are not found in the adults of other Vertebrates are the following:—At a certain stage of development the central nervous system has the form of a groove in the skin, there is a communication at the hind end of the body between the neural and alimentary canals, the mouth aperture has at first the form of an elongated slit, the growing end of the Wolffian duct is in some groups continuous with the ectoderm, and the retina is at one stage a portion of the wall of the medullary canal. In the embryos of the lower Vertebrates many other instances of the same interesting character might be mentioned; for instance, the presence of a coelomic sac close to the eye, of another in the jaw, and of a third near the ear (Elasmobranchs), the opening of the Müllerian duct into the front end of the Wolffian duct, and the presence of an aperture of communication between the muscle-plate coelom and the nephridial coelom.
The interest attaching to these remarkable facts is much increased by the explanation which has been given of them. That explanation, which is a deduction from the theory of evolution, is to the effect that the peculiar embryonic structures and relations just mentioned are due to the retention by the embryo of features which, once possessed by the adult ancestor, have been lost in the course of evolution. This explanation, which at once suggests itself when we are dealing with structuresRecapitulation theory.actually present in adult members of other groups, does not so obviously apply to those features which are found in no adult animal whatsoever. Nevertheless it has been extended to them, because they are of a nature which it is not impossible to suppose might have existed in a working animal. Now this explanation, which, it will be observed, can only be entertained on the assumption that the evolution theory is true, has been still further extended by embryologists in a remarkable and frequently unjustifiable manner, and has been applied to all embryonic processes, finally leading to the so-called recapitulation theory, which asserts that embryonic history is a shortened recapitulation of ancestral history, or, to use the language of modern zoology, that theontogenyor development of the individual contains an abbreviated record of thephylogenyor development of the race. A theory so important and far-reaching as this requires very careful examination. When we come to look for the facts upon which it is based, we find that they are non-existent, for the ancestors of all living animals are dead, and we have no means of knowing what they were like. It is true there are fossil remains of animals which have lived, but these are so imperfect as to be practically useless for the present requirements. Moreover, if they were perfectly preserved, there would be no evidence to show that they were ancestors of the animals now living. They might have been animals which have become extinct and left no descendants. Thus the explanation ordinarily given of the embryonic structures referred to is purely a deduction from the evolution theory. Indeed, it is even less than this, for all that can be said issomething of this kind: if the evolution theory is true, then it in conceivable that the reason why the embryo of a bird passes through a stage in which its pharynx presents some resemblance to that of a fish is that a remote ancestor of the bird possessed a pharynx with lateral apertures such as are at present found in fishes.
But the explanation is sometimes pushed even further, and it is said that these pharyngeal apertures of the ancestral bird had the same respiratory function as the corresponding structures in modern fishes. That this is going too far a little reflection will show. For if it be admitted that all so-called vestigial structures had once the same function as the homologous structures when fully developed in other animals, it becomes necessary to admit that male mammals must once have had fully developed mammary glands and suckled the young, that female mammals formerly were provided with a functional penis, and that in species in which the females have a trace of the secondary sexual characters of the male the latter were once common to both sexes. The second and more extended form of the explanation plainly introduces a considerable amount of contentious matter, and it will be advisable, in the first instance, at any rate, to confine ourselves to a critical examination of the less ambitious conception. This explanation obviously implies the view that in the course of evolution the tendency has been for structures to persist in the embryo after they have been lost in the adult. Is there any justification for this view? It is clearly impossible to get any direct evidence, because, as explained above, we have no knowledge of the ancestors of living animals; but if we assume the evolution theory to be true, there is a certain amount of indirect evidence which is distinctly opposed to the view. As is well known, living birds are without teeth, but it is generally assumed that their edentulous condition has been comparatively recently acquired, and that they are descended from animals which, at a time not very remote from the present, possessed teeth. Considering the resemblance of birds to other terrestrial vertebrates, and the fact that extinct birds, not greatly differing from birds now living, are known to have had teeth, it must be allowed that there is some warrant for the assumption. Yet in no single case has it been certainly shown that any trace of teeth has been developed in the embryo. The same remark applies to a large number of similar cases; for instance, the reduced digits of the bird’s hand and foot and the limbs of snakes. Moreover, organs which are supposed to have become recently reduced and functionless in the adult are also reduced in the embryo; for instance, digits 3 and 4 of the horse’s foot, the hind limbs of whales (G.A. Guldberg and F. Nansen, “On the Development and Structure of Whales,”Bergen Museum, 1894), the spiracle of Elasmobranchii. In fact, considerations of this kind distinctly point to the view that any tendency to the reduction or enlargement of an organ in the adult is shared approximately to the same extent by the embryo. But there are undoubtedly some, though not many, cases in which organs which were presumably present in an ancestral adult have persisted in the embryo of the modern form. As an instance may be mentioned the presence in whale-bone whales of imperfectly formed teeth, which are absorbed comparatively early in foetal life (Julin,Arch. biologie, i., 1880, p. 75).
It therefore becomes necessary to inquire why in some cases an organ is retained by the embryo after its loss by the adult, whereas in other cases it dwindles and presumably disappears simultaneously in the embryo and the adult. The whole question is examined and discussed by the present writer in theQuarterly Journal of Microscopical Science, xxxvi., 1894, p. 35, and the conclusions there reached are as follows:—A disappearing adult organ is not retained in a relatively greater development by an organism in the earlier stages of its individual growth unless it is of functional importance to the young form. In cases in which the whole development is embryonic this rarely happens, because the conditions of embryonic life are so different from free life that functional embryonic organs are usually organssui generis, e.g.the placenta, amnion, &c., which cannot be traced to a modification of organs previously present in the adult. It does, however, appear to have happened sometimes, and as an instance of it may be mentioned theductus arteriosusof the Sauropsidan and Mammalian embryo. On the other hand, when there is a considerable period of larval life, it does appear that there is a strong case for thinking that organs which have been lost by the adult may be retained and made use of by the larva. The best-known example that can be given of this is the tadpole of the frog. Here we find organs, viz. gills and gill-slits, which are universally regarded as having been attributes of all terrestrial Vertebrata in an earlier and aquatic condition, and we also notice that their retention is due to their being useful on account of the supposed ancient conditions of life having been retained. Many other instances, more or less plausible, of a like retention of ancestral features by larvae might be mentioned, and it must be conceded that there are strong reasons for supposing that larvae often retain traces, more or less complete, of ancestral stages of structure. But this admission does not carry with it any obligation to accept the widely prevalent view that larval history can in any way be regarded as a recapitulation of ancestral history. Far from it, for larvae in retaining some ancestral features are in no way different from adults; they only differ from adults in the features which they have retained. Both larvae and adults retain ancestral features, and both have been modified by an adaptation to their respective conditions of life which has ever been becoming more perfect.
The conclusion, then, has been reached, that whereas larvae frequently retain traces of ancestral stages of adult structure, embryos will rarely do so; and we are confronted again with the question, How are we to account for the presence in the embryo of numerous functionless organs which cannot be explained otherwise than as having been inherited from a previous condition in which they were functional? The answer is that the only organs of this kind which have been retained are organs which have been retained by the larvae of the ancestors after they have been lost by the adult, and have become in this way impressed upon the development. As an illustration taken from current natural history of the manner in which larval characters are in actual process of becoming embryonic may be mentioned the case of the viviparous salamander (Salamander atra), in which the gills, &c., are all developed but never used, the animal being born without them. In other and closely allied species of salamander there is a considerable period of larval life in which the gills and gill-slits are functional, but in this species the larval stage, for the existence of which there was a distinct reason, viz. the entirely aquatic habits of life in the young state, has become at one stroke embryonic by its simple absorption into the embryonic period. The view, then, that embryonic development is essentially a recapitulation of ancestral history must be given up; it contains only a few references to ancestral history, namely, those which have been preserved probably in a much modified form by previous larvae.
We must now pass to the consideration of another supposed law of embryology—the so-called law of v. Baer. This generalization is usually stated as follows:—Embryos of different species of the same group are more alike thanLaw of v. Baer.adults, and the resemblances are greater the younger the embryo examined. Great importance has been attached to this generalization by embryologists and naturalists, and it is very widely accepted. Nevertheless, it is open to serious criticism. If it were true, we should expect to find that embryos of closely similar species would be indistinguishable, but this is notoriously not the case. On the contrary, they often differ more than do the adults, in support of which statement the embryos of the different species ofPeripatusmay be referred to. The generalization undoubtedly had its origin in the fact that there is what may be called a family resemblance between embryos, but this resemblance, which is by no means exact, is purely superficial, and does not extend to anatomical detail. On the contrary, it may be fairly argued that in some cases embryos of widely dissimilar members of the same group present anatomical differences of a higher morphological value than do the adults (see Sedgwick,loc. cit.), and, as stated above theembryos of closely allied animals are distinguishable at all stages of development, though the distinguishing features are not the same as those which distinguish the adults. To say that the development of the organism and of its component parts is a progress from the simple to the complex is to state a truism, but to state that it is also a progress from the general to the special is to go altogether beyond the facts. The bipinnaria larva of an echinoderm, the trochosphere larva of an annelid, the blastodermic vesicle of a mammal are all as highly specialized as their respective adults, but the specialization is for a different purpose, and of a different kind to that which characterizes the adult.
In its scientific and systematic form embryology may be considered as having only taken birth within the last century, although the germ from which it sprung was already formed nearly half a century earlier. The ancients,History of embryology.it is true, as we see by the writings of Aristotle and Galen, pursued the subject with interest, and the indefatigable Greek naturalist and philosopher had even made continued series of observations on the progressive stages of development in the incubated egg, and on the reproduction of various animals; but although, after the revival of learning, various anatomists and physiologists from time to time made contributions to the knowledge of the foetal structure in its larger organs, yet from the minuteness of the observations required for embryological research, it was not till the microscope came into use for the investigation of organic structure that any intimate knowledge was attained of the nature of organogenesis. It is not to be wondered at, therefore, that during a long period, in this as in other branches of physical inquiry, vague speculations took the place of direct observation and more solid information. This is apparent in most of the works treating of generation during the 16th and part of the 17th centuries.2
Harvey was the first to give, in the middle of the latter century, a new life and direction to investigation of this subject, by his discovery of the connexion between the cicatricula of the yolk and the rudiments of the chick, and by his faithful description of the successive stages of development as observed in the incubated egg, as well as of the progress of gestation in some Mammalia. He had also the merit of fixing the attention of physiologists upon general laws of development as deduced from actual observation of the phenomena, by the enunciation of two important propositions, viz.—(1) that all animals are produced out of ova, and (2) that the organs of the embryo arise by new formation, orepigenesis,and not by mere enlargement out of a pre-existing invisible condition (Exercitationes de generatione animalium, Amstelodami, 1651). Harvey’s observations, however, were aided only by the use of magnifying glasses (perspecillae), probably of no great power, and he saw nothing of the earliest appearances of the embryo in the first thirty-six hours, and believed the blood and the heart to be the parts first formed.
The influence of the work of Harvey, and of the successful application of the microscope to embryological investigation, was soon afterwards apparent in the admirable researches of Malpighi of Bologna, as evinced by his communications to the Royal Society of London in 1672, “De ovo incubato,” and “De formatione pulli,” and more especially in his delineations of some of the earlier phenomena of development, in which, as in many other parts of minute anatomy, he partially or wholly anticipated discoveries, the full development of which has only been accomplished in the present century. Malpighi traced the origin of the embryo almost to its very commencement in the formation of the cerebro-spinal groove within the cicatricula, which he removed from the opaque mass of the yolk; and he only erred in supposing the embryonal rudiments to have pre-existed as such in the egg, in consequence, apparently, of his having employed for observation, in very warm weather, eggs which, though he believed them to be unincubated, had in reality undergone some of the earlier developmental changes.
The works of Walter Needham (1667), Regnier de Graaf (1673), Swammerdam (1685), Vallisneri (1689)—following upon those of Harvey—all contain important contributions to the knowledge of our subject, as tending to show the similarity in the mode of production from ova in a variety of animals with that previously best known in birds. The observations more especially of de Graaf, Nicolas Steno and J. van Horne gave much greater precision to the knowledge of the connexion between the origin of the ovum of quadrupeds and the vesicles of the ovary now termed Graafian, which de Graaf showed always burst and discharged their contents on the occurrence of pregnancy.
These observations bring us to the period of Boerhaave and Albinus in the earlier part of the 18th century, and in the succeeding years to that of Haller, whose vast erudition and varied and accurate original observations threw light upon the entire process of reproduction in animals, and brought its history into a more systematic and intelligible form. A considerable part of the seventh and the whole of the eighth volumes of Haller’s great work, theElementa physiologiae, published at successive times from 1757 to 1766, are occupied with the general view of the function of generation, while his special contributions to embryology are contained in hisDeux mémoires sur la formation du cœur dans le pouletandDeux mémoires sur la formation des os, both published at Lausanne in 1758, and republished in an extended and altered form, together with his “Observations on the early condition of the Embryo in Quadrupeds,” made along with Kühlemann, in theOpera minora(1762-1768). Though originally educated as a believer in the doctrine of “preformation” by his teacher Boerhaave, Haller was soon led to abandon that view in favour of “epigenesis” or new formation, as may be seen in various parts of his works published before the middle of the century; see especially a long note explanatory of the grounds of his change of opinion in his edition of Boerhaave’sPraelectiones academicae, vol. v. part 2, p. 497 (1744), and hisPrimae lineae physiologiae(1747). But some years later, and after having been engaged in observing the phenomena of development in the incubated egg, he again changed his views, and during the remainder of his life was a keen opponent of the system of epigenesis, and a defender and exponent of the theory of “evolution,” as it was then named—a theory very different from that now bearing the name, and which implied belief in the pre-existence of the organs of the embryo in the germ, according to the theory of encasement (emboîtement) or inclusion supported by Leibnitz and Bonnet. (See the interesting work of Bonnet,Considérations sur les corps organisés, Amsterdam, 1762, for an account of his own views and those of Haller.)
It was reserved for Caspar Frederick Wolff (1733-1794), a German by birth, but naturalized afterwards in Russia, to bring forward observations which, though almost entirely neglected for a long time after their publication, and in some measure discredited under the influence of Haller’s authority, were sixty years later acknowledged to have established the theory of epigenesis upon the secure basis of ascertained facts, and to have laid the first foundation of the morphological science of embryology. Wolff’s work, entitledTheoria generationis, first published as an inaugural Dissertation at Berlin in 1759, was republished with additions in German at Berlin in 1764, and again in Latin at Halle in 1774. Wolff also wrote a “Memoir onthe Development of the Intestine” inNov. comment. acad. Petropol., 1768 and 1769. But it was not till the latter work was translated into German by J.F. Meckel, and appeared in hisArchivfor 1812, that Wolff’s peculiar merits as the founder of modern embryology came to be known or fully appreciated.
The special novelty of Wolff’s discoveries consisted mainly in this, that he showed that the germinal part of the bird’s egg forms a layer of united granules or organized particles (cells of the modern histologist), presenting at first no semblance of the form or structure of the future embryo, but gradually converted by various morphological changes in the formative material, which are all capable of being traced by observation, into the several rudimentary organs and systems of the embryo. The earlier form of the embryo he delineated with accuracy; the actual mode of formation he traced in more than one organ, as for example in the alimentary canal, and he was the discoverer of several new and important embryological facts, as in the instance of the primordial kidneys, which have thus been named the Wolffian bodies. Wolff further showed that the growing parts of plants owe their origin to organized particles or cells, so that he was led to the great generalization that the processes of embryonic formation and of adult growth and nutrition are all of a like nature in both plants and animals. No advance, however, was made upon the basis of Wolff’s discoveries till the year 1817, when the researches of C.H. Pander on the development of the chick gave a fuller and more exact view of the phenomena less clearly indicated by Wolff, and laid down with greater precision a plan of the formation of parts in the embryo of birds, which may be regarded as the foundation of the views of all subsequent embryologists.
But although the minuter investigation of the nature and true theory of the process of embryonic development was thus held in abeyance for more than half a century, the interval was not unproductive of observations having an important bearing on the knowledge of the anatomy of the foetus and the function of reproduction. The great work of William Hunter on the human gravid uterus, containing unequalled pictorial illustrations of its subject from the pencil of Rymsdyk and other artists, was published in 1775;3and during a large part of the same period numerous communications to theMemoirsof the Royal Society testified to the activity and genius of his brother, John Hunter, in the investigation of various parts of comparative embryology. But it is mainly in his rich museum, and in the manuscripts and drawings which he left, and which have been in part described and published in the catalogue of his wonderful collection, that we obtain any adequate idea of the unexampled industry and wide scope of research of that great anatomist and physiologist.
As belonging to a somewhat later period, but still before the time when the more strict investigation of embryological phenomena was resumed by Pander, there fall to be noticed, as indicative of the rapid progress that was making, the experiments of L. Spallanzani, 1789; the researches of J.H. von Autenrieth, 1797, and of Soemmering, 1799, on the human foetus; the observations of Senff on the formation of the skeleton, 1801; those of L. Oken and D.G. Kieser on the intestine and other organs, 1806; Oken’s remarkable work on the bones of the head, 1807 (with the views promulgated in which Goethe’s name is also intimately connected); J.F. Meckel’s numerous and valuable contributions to embryology and comparative anatomy, extending over a long series of years; and F. Tiedemann’s classical work on the development of the brain, 1816.
The observations of the Russian naturalist, Christian Heinrich Pander (1794-1865), were made at the instance and under the immediate supervision of Prof. Döllinger at Würzburg, and we learn from von Baer’s autobiography that he, being an early friend of Pander’s, and knowing his qualifications for the task, had pointed him out to Döllinger as well fitted to carry out the investigation of development which that professor was desirous of having accomplished. Pander’s inaugural dissertation was entitledHistoria metamorphoseos quam ovum incubatum prioribus quinque diebus subit(Virceburgi, 1817); and it was also published in German under the title ofBeiträge zur Entwickelungsgeschichte des Hühnchens im Eie(Würzburg, 1817). The beautiful plates illustrating the latter work were executed by the elder E.J. d’Alton, well known for his skill in scientific observation, delineation and engraving.
Pander observed the germinal membrane orblastoderm, as he for the first time called it, of the fowl’s egg to acquire three layers of organized substance in the earlier period of incubation. These he named respectively the serous or outer, the vascular or middle, and the mucous or inner layers; and he traced with great skill and care the origin of the principal rudimentary organs and systems from each of these layers, pointing out shortly, but much more distinctly than Wolff had done, the actual nature of the changes occurring in the process of development.
Karl Ernest von Baer (q.v.), the greatest of modern embryologists, was, as already remarked, the early friend of Pander, and, at the time when the latter was engaged in his researches at Würzburg, was associated with Döllinger as prosector, and engaged with him in the study of comparative anatomy. He witnessed, therefore, though he did not actually take part in, Pander’s researches; and the latter having afterwards abandoned the inquiry, von Baer took it up for himself in the year 1819, when he had obtained an appointment in the university of Königsberg, where he was the colleague of Burdach and Rathke, both of whom were able coadjutors in the investigation of the subject of his choice. (See v. Baer’s interesting autobiography, published on his retirement from St Petersburg to Dorpat in 1864.)
Von Baer’s observations were carried on at various times from 1819 to 1826 and 1827, when he published the first results in a description of the development of the chick in the first edition of Burdach’sPhysiology.
It was at this time that von Baer made the important discovery of the ovarian ovum of mammals and of man, totally unknown before his time, and was thus able to prove as matter of exact observation what had only been surmised previously, viz. the entire similarity in the mode of origin of these animals with others lower in the scale. (Epistola de ovi mammalium et hominis genesi,Lipsiae, 1827. See also the interesting commentary on or supplement to theEpistolain Heusinger’s Journal, and the translation in Breschet’sRépertoire, Paris, 1829.)
In 1829 von Baer published the first part of his great work, entitledBeobachtungen und Reflexionen über die Entwickelungsgeschichte der Thiere, the second part of which, still leaving the work incomplete, did not appear till 1838. In this work, distinguished by the fulness, richness and extreme accuracy of the observations and descriptions, as well as by the breadth and soundness of the general views on embryology and allied branches of biology which it presents, he gave a detailed account not only of the whole progress of development of the chick as observed day by day during the incubation of the egg, but he also described what was known, and what he himself had investigated by numerous and varied observations, of the whole course of formation of the young in other vertebrate animals. His work is in fact a system of comparative embryology, replete with new discoveries in almost every part.
Von Baer’s account of the layers of the blastoderm differs somewhat from that of Pander, and appears to be more consistent with the further researches which have lately been made than was at one time supposed, in this respect, that he distinguished from a very early period two primitive or fundamental layers, viz. the animal or upper, and the vegetative or lower, from each of which, in connexion with two intermediate layers derived from them, the fundamental organs and systems of the embryo are derived:—the animal layer, with its derivative, supplying the dermal, neural, osseous and muscular; the vegetative layer, with its derivative, the vascular and mucous (intestinal) systems. He laid down the general morphologicalprinciple that the fundamental organs have essentially the shape of tubular cavities, as appears in the first form of the central organ of the nervous system, in the two muscular and osseous tubes which form the walls of the body, and in the intestinal canal; and he followed out with admirable clearness the steps by which from these fundamental systems the other organs arise secondarily, such as the organs of sense, the glands, lungs, heart, vascular glands, Wolffian bodies, kidneys and generative organs.
To complete von Baer’s system there was mainly wanting a more minute knowledge of the intimate structure of the elementary tissues, but this had not yet been acquired by biologists, and it remained for Theodor Schwann of Liége in 1839, along with whom should be mentioned those who, like Robert Brown and M.J. Schleiden, prepared the way for his great discovery, to point out the uniformity in histological structure of the simpler forms of plants and animals, the nature of the organized animal and vegetable cell, the cellular constitution of the primitive ovum of animals, and the derivation of the various tissues, complex as well as simple, from the transformation or, as it is now called, differentiation of simple cellular elements,—discoveries which have exercised a powerful and lasting influence on the whole progress of biological knowledge in our time, and have contributed in an eminent degree to promote the advance of embryology itself.
To K.B. Reichert of Berlin more particularly is due the first application of the newer histological views to the explanation of the phenomena of development, 1840. To him and to R.A. von Kölliker and R. Virchow is due the ascertainment of the general principle that there is no free-cell formation in embryonic development and growth, but that all organs are derived from the multiplication, combination and transformation of cells, and that all cells giving rise to organs are the descendants or progeny of previously existing cells, and that these may be traced back to the original cell or cell-substance of the ovum.
It may be that modern research has somewhat modified the views taken by biologists of the statements of Schwann as to the constitution of the organized cell, especially as regards its simplest or most elementary form, and has indicated more exactly the nature of the protoplasmic material which constitutes its living basis; but it has not caused any very wide departure from the general principles enunciated by that physiologist. Schwann’s treatise, entitledMicroscopical Researches into the Accordance in the Structure and Growths of Animals and Plants, was published in German at Berlin in 1839, and was translated into English by Henry Smith, and printed for the Sydenham Society in 1847, along with a translation of Schleiden’s memoir, “Contributions to Phytogenesis,” which originally appeared in 1838 in Müller’sArchivfor that year, and which had also been published in English in Taylor and Francis’sScientific Memoirs, vol. ii. part vi.
Among the newer observations of the same period which contributed to a more exact knowledge of the structure of the ovum itself may be mentioned—first the discovery of the germinal vesicle, or nucleus, in the germ-disk of birds by J.E. von Purkinje (Symbolae ad ovi avium historiam ante incubationem, Vratislaviae, 1825, and republished at Leipzig in 1830); second, von Baer’s discovery of the mammiferous ovum in 1827, already referred to; third, the discovery of the germinal vesicle of mammals by J.V. Coste in 1834, and its independent observation by Wharton Jones in 1835; and fourth, the observation in the same year by Rudolph Wagner of the germinal macula or nucleus. Coste’s discovery of the germinal vesicle of Mammalia was first communicated to the public in theComptes rendusof the French Academy for 1833, and was more fully described in theRecherches sur la génération des mammifères, by Delpech and Coste (Paris, 1834). Thomas Wharton Jones’s observations, made in the autumn of 1834, without a knowledge of Coste’s communication, were presented to the Royal Society in 1835. This discovery was also confirmed and extended by G.G. Valentin and Bernardt, as recorded by the latter in his workSymb. ad ovi mammal. hist. ante praegnationem. Rudolph Wagner’s observations first appeared in hisTextbook of Comparative Anatomy, published at Leipzig in 1834-1835, and in Müller’sArchivfor the latter year. His more extended researches are described in his workProdromus hist. generationis hominis atque animalium(Leipzig, 1836), and in a memoir inserted in theTrans. of the Roy. Bavarian Acad. of Sciences(Munich, 1837).
The two decades of years from 1820 to 1840 were peculiarly fertile in contributions to the anatomy of the foetus and the progress of embryological knowledge. The researches of Prévost and Dumas on the ova and primary stages of development of Batrachia, birds and mammals, made as early as 1824, deserve especial notice as important steps in advance, both in the discovery of the process of yolk segmentation in the batrachian ovum, and in their having shown almost with the force of demonstration, previous to the discovery of the mammiferous ovarian ovum by von Baer, that that body must exist as a minute spherule in the Graafian follicle of the ovary, although they did not actually succeed in bringing the ova clearly under observation.
The works of Pockels (1825), of Seiler (1831), of G. Breschet (1832), of A.A.L.M. Velpeau (1833), of T.L.W. Bischoff (1834)—all bearing upon human embryology; the researches of Coste in comparative embryology in 1834, already referred to, and those published by the same author in 1837; the publication of Johannes Müller’s great work on physiology, and Rudolph Wagner’s smaller text-book, in both of which the subject of embryology received a very full treatment, together with the excellentManual of the Development of the Foetus, by Valentin, in 1835, the first separate and systematic work on the whole subject, now secured to embryology its permanent place among the biological sciences on the Continent; while in this country attention was drawn to the subject by the memoirs of Allen Thomson (1831), Th. Wharton Jones (1835-1838) and Martin Barry (1839-1840).
Among the more remarkable special discoveries which belong to the period now referred to, a few may be mentioned, as, for example, that of the chorda dorsalis by von Baer, a most important one, which may be regarded as the key to the whole of vertebral morphology; the phenomenon of yolk segmentation, now known to be universal among animals, but which was only first carefully observed in Batrachia by Prévost and Dumas (though previously casually noticed by Swammerdam), and was soon afterwards followed out by Rusconi and von Baer in fishes; the discovery of the branchial clefts, plates and vascular arches in the embryos of the higher abranchiate animals by H. Rathke in 1825-1827; the able investigation of the transformations of these arches by Reichert in 1837; and the researches on the origin and development of the urinary and generative organs by Johannes Müller in 1829-1830.
On entering the fifth decade of the 19th century, the number of original contributions and systematic treatises becomes so great as to render the attempt to enumerate even a selection of the more important of them quite unsuitable to the limits of the present article. We must be satisfied, therefore, with a reference to one or two which seem to stand out with greater prominence than the rest as landmarks in the progress of embryological discovery. Among these may first be mentioned the researches of Theodor L.W. von Bischoff, formerly of Giessen and later of Munich, on the development of the ovum in Mammalia, in which a series of the most laborious, minute and accurate observations furnished a greatly novel and very full history of the formative process in several animals of that class. These researches are contained in four memoirs, treating separately of the development of the rabbit, the dog, the guinea-pig and the roe-deer, and appeared in succession in the years 1842, 1845, 1852 and 1854.
Next may be mentioned the great work of Coste, entitledHistoire gén. et particul. du développement des animaux, of which, however, only four fasciculi appeared between the years 1847 and 1859, leaving the work incomplete. In this work, in the large folio form, beautiful representations are given of the author’s valuable observations on human embryology, and on that of various mammals, birds and fishes, and of the author’sdiscovery in 1847 of the process of partial yolk segmentation in the germinal disk of the fowl’s egg during its descent through the oviduct, and his observations on the same phenomenon in fishes and mammals.
The development of reptiles received important elucidation from the researches of Rathke, in his history of the development of serpents, published at Königsberg in 1839, and in a similar work on the turtle in 1848, as well as in a later one on the crocodile in 1866, along with which may be associated the observations of H.J. Clark on the “Embryology of the Turtle,” published in Agassiz’sContributions to Natural History, &c., 1857.
The phenomena of yolk segmentation, to which reference has more than once been made, and to which later researches give more and more importance in connexion with the fundamental phenomena of development, received great elucidation during this period, first from the observations of C.T.E. von Siebold and those of Bagge on the complete yolk segmentation of the egg in nematoid worms in 1841, and more fully by the observations of Kölliker in the same animals in 1843. The nature of partial segmentation of the yolk was first made known by Kölliker in his work on the development of the Cephalopoda in 1844, and, as has already been mentioned, the phenomena were observed by Coste in the eggs of birds. The latter observations have since been confirmed by those of Oellacher, Götte and Kölliker. Further researches in a vast number of animals give every reason to believe that the phenomenon of segmentation is in some shape or other the invariable precursor of embryonic formation.
The first considerable work on the development of a division of the invertebrates was that of Maurice Herold of Marburg on spiders,De generatione aranearum ex ovo, published at Marburg in 1824, in which the whole phenomena of the formative processes in that animal are described with remarkable clearness and completeness. A few years later an important series of contributions to the history of the development of invertebrate animals appeared in the second volume of Burdach’s work onPhysiology, of which the first edition was published in 1828, and in this the history of the development of the Entozoa was the production of Ch. Theod. von Siebold, and that of most of the other invertebrates was compiled by H. Rathke from the results of his own observations and those of others. These memoirs, together with others subsequently published by Rathke, notably thatÜber die Bildung und Entwickelungsgeschichte d. Flusskrebses(Leipzig, 1829), in which an attempt is made to extend the doctrine of the derivation of the organs from the germinal layers to the invertebrata, entitle him to be regarded as the founder of invertebrate embryology.