Chapter 6

Lessing.—Of Leibnitz’s immediate followers we may mention Lessing, who in hisEducation of the Human Racebrought out the truth of the process of gradual development underlying human history, even though he expressed this in a form inconsistent with the idea of a spontaneous evolution.

Herder.—Herder, on the other hand, Lessing’s contemporary, treated the subject of man’s development in a thoroughly naturalistic spirit. In his Ideen zur Philosophie der Geschichte, Herder adopts Leibnitz’s idea of a graduated scale of beings, at the same time conceiving of the lower stages as the conditions of the higher. Thus man is said to be the highest product of nature, and as such to be dependent on all lower products. All material things are assimilated to one another as organic, the vitalizing principle being inherent in all matter. The development of man is explained in connexion with that of the earth, and in relation to climatic variations, &c. Man’s mental faculties are viewed as related to his organization, and as developed under the pressure of the necessities of life.13

Kant.—Kant’s relation to the doctrine of evolution is a many-sided one. In the first place, his peculiar system of subjective idealism, involving the idea that time is but a mental form to which there corresponds nothing in the sphere of noümenal reality, serves to give a peculiar philosophical interpretation to every doctrine of cosmic evolution. Kant, like Leibnitz, seeks to reconcile the mechanical and teleological views of nature, only he assigns to these different spheres. The order of the inorganic world is explained by properly physical causes. In hisNaturgeschichte des Himmels, in which he anticipated the nebular theory afterwards more fully developed by Laplace, Kant sought to explain the genesis of the cosmos as a product of physical forces and laws. The worlds, or systems of worlds, which fill infinite space are continually being formed and destroyed. Chaos passes by a process of evolution into a cosmos, and this again into chaos. So far as the evolution of the solar system is concerned, Kant held these mechanical causes as adequate. For the world as a whole, however, he postulated a beginning in time (whence his use of the word creation), and further supposed that the impulse of organization which was conveyed to chaotic matter by the Creator issued from a central point in the infinite space spreading gradually outwards.14Whilein his cosmology Kant thus relies on mechanical conceptions, in his treatment of organic life his mind is, on the contrary, dominated by teleological ideas. An organism was to him something controlled by a formative organizing principle. It was natural, therefore, that he rejected the idea of a spontaneous generation of organisms (which was just then being advocated by his friend Forster), not only as unsupported by experience but as an inadequate hypothesis. Experience forbids our excluding organic activity from natural causes, also our excluding intelligence from purposeful (zwecktätigen) causes; hence experience forbids our defining the fundamental force or first cause out of which living creatures arose.15Just as Kant thus sharply marks off the regions of the inorganic and the organic, so he sets man in strong opposition to the lower animals. His ascription to man of a unique faculty, free-will, forbade his conceiving our species as a link in a graduated series of organic developments. In his doctrine of human development he does indeed recognize an early stage of existence in which our species was dominated by sensuous enjoyment and instinct. He further conceives of this stage as itself a process of (natural) development, namely, of the natural disposition of the species to vary in the greatest possible manner so as to preserve its unity through a process of self-adaptation (Anarten) to climate. This, he says, must not be conceived as resulting from the action of external causes, but is due to a natural disposition (Anlage). From this capability of natural development (which already involves a teleological idea) Kant distinguishes the power of moral self-development or self-liberation from the dominion of nature, the gradual realization of which constitutes human history or progress. This moral development is regarded as a gradual approach to that rational, social and political state in which will be realized the greatest possible quantity of liberty. Thus Kant, though he appropriated and gave new form to the idea of human progress, conceived of this as wholly distinct from a natural (mechanical) process. In this particular, as in his view of organic actions, Kant distinctly opposed the idea of evolution as one universal process swaying alike the physical and the moral world.

Schelling.—In the earlier writings of Schelling, containing the philosophy of identity, existence is represented as a becoming, or process of evolution. Nature and mind (which are the two sides, or polar directions, of the one absolute) are each viewed as an activity advancing by an uninterrupted succession of stages. The side of this process which Schelling worked out most completely is the negative side, that is, nature. Nature is essentially a process of organic self-evolution. It can only be understood by subordinating the mechanical conception to the vital, by conceiving the world as one organism animated by a spiritual principle or intelligence (Weltseele). From this point of view the processes of nature from the inorganic up to the most complex of the organic become stages in the self-realization of nature. All organic forms are at bottom but one organization, and the inorganic world shows the same formative activity in various degrees or potences. Schelling conceives of the gradual self-evolution of nature in a succession of higher and higher forms as brought about by a limitation of her infinite productivity, showing itself in a series of points of arrest. The detailed exhibition of the organizing activity of nature in the several processes of the organic and inorganic world rests on a number of fanciful and unscientific ideas. Schelling’s theory is a bold attempt to revitalize nature in the light of growing physical and physiological science, and by so doing to comprehend the unity of the world under the idea of one principle of organic development. His highly figurative language might leave us in doubt how far he conceived the higher stages of this evolution of nature as following the lower in time. In the introduction to his workVon der Weltseele, however, he argues in favour of the possibility of a transmutation of species in periods incommensurable with ours. The evolution of mind (the positive pole) proceeds by way of three stages—theoretic, practical and aesthetical activity. Schelling’s later theosophic speculations do not specially concern us here.

Followers of Schelling.—Of the followers of Schelling a word or two must be said. Heinrich Steffens, in hisAnthropologie, seeks to trace out the origin and history of man in connexion with a general theory of the development of the earth, and this again as related to the formation of the solar system. All these processes are regarded as a series of manifestations of a vital principle in higher and higher forms. Oken, again, who carries Schelling’s ideas into the region of biological science, seeks to reconstruct the gradual evolution of the material world out of original matter, which is the first immediate appearance of God, or the absolute. This process is an upward one, through the formation of the solar system and of our earth with its inorganic bodies, up to the production of man. The process is essentially a polar linear action, or differentiation from a common centre. By means of this process the bodies of the solar system separate themselves, and the order of cosmic evolution is repeated in that of terrestrial evolution. The organic world (like the world as a whole) arises out of a primitive chaos, namely, the infusorial slime. A somewhat similar working out of Schelling’s idea is to be found in H.C. Oersted’s work entitledThe Soul in Nature(Eng. trans.). Of later works based on Schelling’s doctrine of evolution mention may be made of the volume entitledNatur und Idee, by G.F. Carus. According to this writer, existence is nothing but a becoming, and matter is simply the momentary product of the process of becoming, while force is this process constantly revealing itself in these products.

Hegel.—Like Schelling, Hegel conceives the problem of existence as one of becoming. He differs from him with respect to the ultimate motive of that process of gradual evolution which reveals itself alike in nature and in mind. With Hegel the absolute is itself a dialectic process which contains within itself a principle of progress from difference to difference and from unity to unity. “This process (W. Wallace remarks) knows nothing of the distinctions between past and future, because it implies an eternal present.” This conception of an immanent spontaneous evolution is applied alike both to nature and to mind and history. Nature to Hegel is the idea in the form of hetereity; and finding itself here it has to remove this exteriority in a progressive evolution towards an existence for itself in life and mind. Nature (says Zeller) is to Hegel a system of gradations, of which one arises necessarily out of the other, and is the proximate truth of that out of which it results. There are three stadia, or moments, in this process of nature—(1) the mechanical moment, or matter devoid of individuality; (2) the physical moment, or matter which has particularized itself in bodies—the solar system; and (3) the organic moment, or organic beings, beginning with the geological organism—or the mineral kingdom, plants and animals. Yet this process of development is not to be conceived as if one stage is naturally produced out of the other, and not even as if the one followed the other in time. Only spirit has a history; in nature all forms are contemporaneous.16Hegel’s interpretation of mind and history as a process of evolution has more scientific interest than his conception of nature. His theory of the development of free-will (the objective spirit), which takes its start from Kant’s conception of history, with its three stages of legal right, morality as determined by motive and instinctive goodness (Sittlichkeit), might almost as well be expressed in terms of a thoroughly naturalistic doctrine of human development. So, too, some of his conceptions respecting the development of art and religion (the absolute spirit) lend themselves to a similar interpretation. Yet while, in its application to history, Hegel’s theory of evolution has points of resemblance with those doctrines which seek to explain the world-process as one unbroken progress occurring in time, it constitutes on the whole a theory apart andsui generis. It does not conceive of the organic as succeeding on the inorganic, or of conscious lifeas conditioned in time by lower forms. In this respect it resembles Leibnitz’s idea of the world as a development; the idea of evolution is in each case a metaphysical as distinguished from a scientific one. Hegel gives a place in his metaphysical system to the mechanical and the teleological views; yet in his treatment of the world as an evolution the idea of end or purpose is the predominant one.

Of the followers of Hegel who have worked out his peculiar idea of evolution it is hardly necessary to speak. A bare reference may be made to J.K. F. Rosenkranz, who in his workHegel’s Naturphilosophieseeks to develop Hegel’s idea of an earth-organism in the light of modern science, recognizing in crystallization the morphological element.

Schopenhauer.—Of the other German philosophers immediately following Kant, there is only one who calls for notice here, namely, Arthur Schopenhauer. This writer, by his conception of the world as will which objectifies itself in a series of gradations from the lowest manifestations of matter up to conscious man, gives a slightly new shape to the evolutional view of Schelling, though he deprives this view of its optimistic character by denying any co-operation of intelligence in the world-process. In truth, Schopenhauer’s conception of the world as the activity of a blind force is at bottom a materialistic and mechanical rather than a spiritualistic and teleological theory. Moreover, Schopenhauer’s subjective idealism, and his view of time as something illusory, hindered him from viewing this process as a sequence of events in time. Thus he ascribes eternity of existence to species under the form of the “Platonic ideas.” As Ludwig Noiré observes, Schopenhauer has no feeling for the problem of the origin of organic beings. He says Lamarck’s original animal is something metaphysical, not physical, namely, the will to live. “Every species (according to Schopenhauer) has of its own will, and according to the circumstances under which it would live, determined its form and organization,—yet not as something physical in time, but as something metaphysical out of time.”

Von Baer.—Before leaving the German speculation of the first half of the century, a word must be said of von Baer, to whose biological contributions we shall refer later in this article, who recognized in the law of development the law of the universe as a whole. In hisEntwickelungsgeschichte der Thiere(p. 264) he distinctly tells us that the law of growing individuality is “the fundamental thought which goes through all forms and degrees of animal development and all single relations. It is the same thought which collected in the cosmic space the divided masses into spheres, and combined these to solar systems; the same which caused the weather-beaten dust on the surface of our metallic planet to spring forth into living forms.” Von Baer thus prepared the way for Herbert Spencer’s generalization of the law of organic evolution as the law of all evolution.

Comte.—As we arrive at the 19th century, though yet before the days of Darwin, biology is already beginning to affect the general aspect of thought. It might suffice to single out the influence of Auguste Comte, as the last great thinker who wrote before Darwinism began to permeate philosophic speculation. Though Comte did not actually contribute to a theory of cosmic organic evolution, he helped to lay the foundations of a scientific conception of human history as a natural process of development determined by general laws of human nature together with the accumulating influences of the past. Comte does not recognize that this process is aided by any increase of innate capacity; on the contrary, progress is to him the unfolding of fundamental faculties of human nature which always pre-existed in a latent condition; yet he may perhaps be said to have prepared the way for the new conception of human progress by his inclusion of mental laws under biology.

Development of the Biological Doctrine.—In the 19th century the doctrine of evolution received new biological contents and became transformed from a vague, partly metaphysical theory to the dominant modern conception. At this point it is convenient to leave the guidance of Professor J. Sully and to follow closely T.H. Huxley, who in the 9th edition of this encyclopaedia traced the history of the growth of the biological idea of evolution from its philosophical beginnings to its efflorescence in Charles Darwin.

In the earlier half of the 18th century the term “evolution” was introduced into biological writings in order to denote the mode in which some of the most eminent physiologists of that time conceived that the generation of living things took place; in opposition to the hypothesis advocated, in the preceding century, by W. Harvey in that remarkable work17which would give him a claim to rank among the founders of biological science, even had he not been the discoverer of the circulation of the blood.

One of Harvey’s prime objects is to defend and establish, on the basis of direct observation, the opinion already held by Aristotle, that, in the higher animals at any rate, the formation of the new organism by the process of generation takes place, not suddenly, by simultaneous accretion of rudiments of all or the most important of the organs of the adult, nor by sudden metamorphosis of a formative substance into a miniature of the whole, which subsequently grows, but byepigenesis, or successive differentiation of a relatively homogeneous rudiment into the parts and structures which are characteristic of the adult.

“Et primo, quidem, quoniam perepigenesinsive partium superexorientium additamentum pullum fabricari certum est: quaenam pars ante alias omnes exstruatur, et quid de illa ejusque generandi modo observandum veniat, dispiciemus. Ratum sane est et in ovo manifeste apparet quodAristotelesde perfectorum animalium generatione enuntiat: nimirum, non omnes partes simul fieri, sed ordine aliam post aliam; primumque existere particulam genitalem, cujus virtute postea (tanquam ex principio quodam) reliquae omnes partes prosiliant. Qualem in plantarum seminibus (fabis, puta, aut glandibus) gemmam sive apicem protuberantem cernimus, totius futurae arboris principium.Estque haec particula velut filius emancipatus seorsumque collocatus, et principium per se vivens; unde postea membrorum ordo describitur; et quaecunque ad absolvendum animal pertinent, disponuntur.18Quoniam enimnulla pars se ipsam generat; sed postquam generata est, se ipsam jam auget; ideo eam primum oriri necesse est, quae principium augendi contineat(sive enim planta, sive animal est, aeque omnibus inest quod vim habeat vegetandi, sive nutriendi),19simulque reliquas omnes partes suo quamque ordine distinguat et formet; proindeque in eadem primogenita particula anima primario inest, sensus, motusque, et totius vitae auctor et principium.” (Exercitatio51.)

“Et primo, quidem, quoniam perepigenesinsive partium superexorientium additamentum pullum fabricari certum est: quaenam pars ante alias omnes exstruatur, et quid de illa ejusque generandi modo observandum veniat, dispiciemus. Ratum sane est et in ovo manifeste apparet quodAristotelesde perfectorum animalium generatione enuntiat: nimirum, non omnes partes simul fieri, sed ordine aliam post aliam; primumque existere particulam genitalem, cujus virtute postea (tanquam ex principio quodam) reliquae omnes partes prosiliant. Qualem in plantarum seminibus (fabis, puta, aut glandibus) gemmam sive apicem protuberantem cernimus, totius futurae arboris principium.Estque haec particula velut filius emancipatus seorsumque collocatus, et principium per se vivens; unde postea membrorum ordo describitur; et quaecunque ad absolvendum animal pertinent, disponuntur.18Quoniam enimnulla pars se ipsam generat; sed postquam generata est, se ipsam jam auget; ideo eam primum oriri necesse est, quae principium augendi contineat(sive enim planta, sive animal est, aeque omnibus inest quod vim habeat vegetandi, sive nutriendi),19simulque reliquas omnes partes suo quamque ordine distinguat et formet; proindeque in eadem primogenita particula anima primario inest, sensus, motusque, et totius vitae auctor et principium.” (Exercitatio51.)

Harvey proceeds to contrast this view with that of the “Medici,” or followers of Hippocrates and Galen, who, “badly philosophizing,” imagined that the brain, the heart, and the liver were simultaneously first generated in the form of vesicles; and, at the same time, while expressing his agreement with Aristotle in the principle of epigenesis, he maintains that it is the blood which is the primal generative part, and not, as Aristotle thought, the heart.

In the latter part of the 17th century the doctrine of epigenesis thus advocated by Harvey was controverted on the ground of direct observation by M. Malpighi, who affirmed that the body of the chick is to be seen in the egg before thepunctum sanguineummakes it appearance. But from this perfectly correct observation a conclusion which is by no means warranted was drawn, namely, that the chick as a whole really exists in the egg antecedently to incubation; and that what happens in the course of the latter process is no addition of new parts, “alias post alias natas,” as Harvey puts it, but a simple expansion or unfolding of the organs which already exist, though they are too small and inconspicuous to be discovered. The weight of Malpighi’s observations therefore fell into the scale of that doctrine which Harvey terms metamorphosis, in contradistinction to epigenesis.

The views of Malpighi were warmly welcomed on philosophical grounds by Leibnitz,20who found in them a support to hishypothesis of monads, and by Nicholas Malebranche;21while, in the middle of the 18th century, not only speculative considerations, but a great number of new and interesting observations on the phenomena of generation, led the ingenious Charles Bonnet and A. von Haller, the first physiologist of the age, to adopt, advocate and extend them.

Bonnet affirms that, before fecundation, the hen’s egg contains an excessively minute but complete chick; and that fecundation and incubation simply cause this germ to absorb nutritious matters, which are deposited in the interstices of the elementary structures of which the miniature chick, or germ, is made up. The consequence of this intussusceptive growth is the “development” or “evolution” of the germ into the visible bird. Thus an organized individual (tout organisé) “is a composite body consisting of the original, orelementary, parts and of the matters which have been associated with them by the aid of nutrition”; so that, if these matters could be extracted from the individual (tout), it would, so to speak, become concentrated in a point, and would thus be restored to its primitive condition of agerm; “just as, by extracting from a bone the calcareous substance which is the source of its hardness, it is reduced to its primitive state of gristle or membrane.”22

“Evolution” and “development” are, for Bonnet, synonymous terms; and since by “evolution” he means simply the expansion of that which was invisible into visibility, he was naturally led to the conclusion, at which Leibnitz had arrived by a different line of reasoning, that no such thing as generation, in the proper sense of the word exists in nature. The growth of an organic being is simply a process of enlargement, as a particle of dry gelatine may be swelled up by the intussusception of water; its death is a shrinkage, such as the swelled jelly might undergo on desiccation. Nothing really new is produced in the living world, but the germs which develop have existed since the beginning of things; and nothing really dies, but, when what we call death takes place, the living thing shrinks back into its germ state.23

The two parts of Bonnet’s hypothesis, namely, the doctrine that all living things proceed from pre-existing germs, and that these contain, one enclosed within the other, the germs of all future living things, which is the hypothesis of “emboîtement,” and the doctrine that every germ contains in miniature all the organs of the adult, which is the hypothesis of evolution or development, in the primary senses of these words, must be carefully distinguished. In fact, while holding firmly by the former, Bonnet more or less modified the latter in his later writings, and, at length, he admits that a “germ” need not be an actual miniature of the organism, but that it may be merely an “original preformation” capable of producing the latter.24

But, thus defined, the germ is neither more nor less than the “particula genitalis” of Aristotle, or the “primordium vegetale” or “ovum” of Harvey; and the “evolution” of such a germ would not be distinguishable from “epigenesis.”

Supported by the great authority of Haller, the doctrine of evolution, or development, prevailed throughout the whole of the 18th century, and Cuvier appears to have substantially adopted Bonnet’s later views, though probably he would not have gone all lengths in the direction of “emboîtement.” In a well-known note to Charles Leopold Laurillard’sÉloge, prefixed to the last edition of theOssemens fossiles, the “radical de l’être” is much the same thing as Aristotle’s “particula genitalis” and Harvey’s “ovum.”25

Bonnet’s eminent contemporary, Buffon, held nearly the same views with respect to the nature of the germ, and expresses them even more confidently.

“Ceux qui ont cru que le cœur étoit le premier formé, se sont trompés; ceux qui disent que c’est le sang se trompent aussi: tout est formé en même temps. Si l’on ne consulte que l’observation, le poulet se voit dans l’œuf avant qu’il ait été couvé.”26“J’ai ouvert une grande quantité d’œufs à differens temps avant et après l’incubation, et je me suis convaincu par mes yeux que le poulet existe en entier dans le milieu de la cicatrule au moment qu’il sort du corps de la poule.”27

“Ceux qui ont cru que le cœur étoit le premier formé, se sont trompés; ceux qui disent que c’est le sang se trompent aussi: tout est formé en même temps. Si l’on ne consulte que l’observation, le poulet se voit dans l’œuf avant qu’il ait été couvé.”26

“J’ai ouvert une grande quantité d’œufs à differens temps avant et après l’incubation, et je me suis convaincu par mes yeux que le poulet existe en entier dans le milieu de la cicatrule au moment qu’il sort du corps de la poule.”27

The “moule intérieur” of Buffon is the aggregate of elementary parts which constitute the individual, and is thus the equivalent of Bonnet’s germ,28as defined in the passage cited above. But Buffon further imagined that innumerable “molécules organiques” are dispersed throughout the world, and that alimentation consists in the appropriation by the parts of an organism of those molecules which are analogous to them. Growth, therefore, was, on this hypothesis, partly a process of simple evolution, and partly of what has been termed syngenesis. Buffon’s opinion is, in fact, a sort of combination of views, essentially similar to those of Bonnet, with others, somewhat similar to those of the “Medici” whom Harvey condemns. The “molécules organiques” are physical equivalents of Leibnitz’s “monads.”

It is a striking example of the difficulty of getting people to use their own powers of investigation accurately, that this form of the doctrine of evolution should have held its ground so long; for it was thoroughly and completely exploded, not long after its enunciation, by Caspar Frederick Wolff, who in hisTheoria generatìonis, published in 1759, placed the opposite theory of epigenesis upon the secure foundation of fact, from which it has never been displaced. But Wolff had no immediatesuccessors. The school of Cuvier was lamentably deficient in embryologists; and it was only in the course of the first thirty years of the 19th century that Prévost and Dumas in France, and, later on, Döllinger, Pander, von Bär, Rathke, and Remak in Germany, founded modern embryology; and, at the same time, proved the utter incompatibility of the hypothesis of evolution as formulated by Bonnet and Haller with easily demonstrable facts.

Nevertheless, though the conceptions originally denoted by “evolution” and “development” were shown to be untenable, the words retained their application to the process by which the embryos of living beings gradually make their appearance; and the terms “development,” “Entwickelung,” and “evolutio” are now indiscriminately used for the series of genetic changes exhibited by living beings, by writers who would emphatically deny that “development” or “Entwickelung” or “evolutio,” in the sense in which these words were usually employed by Bonnet or Haller, ever occurs.

Evolution, or development, is, in fact, at present employed in biology as a general name for the history of the steps by which any living being has acquired the morphological and the physiological characters which distinguish it. As civil history may be divided into biography, which is the history of individuals, and universal history, which is the history of the human race, so evolution falls naturally into two categories—the evolution of the individual (seeEmbryology) and the evolution of the sum of living beings.

The Evolution of the Sum of Living Beings.—The notion that all the kinds of animals and plants may have come into existence by the growth and modification of primordial germs is as old as speculative thought; but the modern scientific form of the doctrine can be traced historically to the influence of several converging lines of philosophical speculation and of physical observation, none of which go further back than the 17th century. These are:—

1. The enunciation by Descartes of the conception that the physical universe, whether living or not living, is a mechanism, and that, as such, it is explicable on physical principles.

2. The observation of the gradations of structure, from extreme simplicity to very great complexity, presented by living things, and of the relation of these graduated forms to one another.

3. The observation of the existence of an analogy between the series of gradations presented by the species which compose any great group of animals or plants, and the series of embryonic conditions of the highest members of that group.

4. The observation that large groups of species of widely different habits present the same fundamental plan of structure; and that parts of the same animal or plant, the functions of which are very different, likewise exhibit modifications of a common plan.

5. The observation of the existence of structures, in a rudimentary and apparently useless condition, in one species of a group, which are fully developed and have definite functions in other species of the same group.

6. The observation of the effects of varying conditions in modifying living organisms.

7. The observation of the facts of geographical distribution.

8. The observation of the facts of the geological succession of the forms of life.

1. Notwithstanding the elaborate disguise which fear of the powers that were led Descartes to throw over his real opinions, it is impossible to read thePrincipes de la philosophiewithout acquiring the conviction that this great philosopher held that the physical world and all things in it, whether living or not living, have originated by a process of evolution, due to the continuous operation of purely physical causes, out of a primitive relatively formless matter.29

The following passage is especially instructive:—

“Et tant s’en faut que je veuille que l’on croie toutes les choses que j’écrirai, que même je prétends en proposer ici quelques-unes que je crois absolument être fausses; à savoir, je ne doute point que le monde n’ait été créé au commencement avec autant de perfection qu’il en a; en sorte que le soleil, la terre, la lune, et les étoiles ont été dès lors; et que la terre n’a pas eu seulement en soi les semences des plantes, mais que les plantes même en ont couvert une partie; et qu’Adam et Ève n’ont pas été créés enfans mais en âge d’hommes parfaits. La religion chrétienne veut que nous le croyons ainsi, et la raison naturelle nous persuade entièrement cette vérité; car si nous considérons la toute puissance de Dieu, nous devons juger que tout ce qu’il a fait a eu dès le commencement toute la perfection qu’il devoit avoir. Mais néanmoins, comme on connoîtroit beaucoup mieux quelle a été la nature d’Adam et celle des arbres de Paradis si on avoit examiné comment les enfants se forment peu à peu dans le ventre de leurs mères et comment les plantes sortent de leurs semences, que si on avoit seulement considéré quels ils ont été quand Dieu les a créés: tout de même, nous ferons mieux entendre quelle est généralement la nature de toutes les choses qui sont au monde si nous pouvons imaginer quelques principes qui soient fort intelligibles et fort simples, desquels nous puissions voir clairement que les astres et la terre et enfin tout ce monde visible auroit pu être produit ainsi que de quelques semences (bien que nous sachions qu’il n’a pas été produit en cette façon) que si nous la décrivions seulement comme il est, ou bien comme nous croyons qu’il a été créé. Et parceque je pense avoir trouvé des principes qui sont tels, je tâcherai ici de les expliquer.”30

“Et tant s’en faut que je veuille que l’on croie toutes les choses que j’écrirai, que même je prétends en proposer ici quelques-unes que je crois absolument être fausses; à savoir, je ne doute point que le monde n’ait été créé au commencement avec autant de perfection qu’il en a; en sorte que le soleil, la terre, la lune, et les étoiles ont été dès lors; et que la terre n’a pas eu seulement en soi les semences des plantes, mais que les plantes même en ont couvert une partie; et qu’Adam et Ève n’ont pas été créés enfans mais en âge d’hommes parfaits. La religion chrétienne veut que nous le croyons ainsi, et la raison naturelle nous persuade entièrement cette vérité; car si nous considérons la toute puissance de Dieu, nous devons juger que tout ce qu’il a fait a eu dès le commencement toute la perfection qu’il devoit avoir. Mais néanmoins, comme on connoîtroit beaucoup mieux quelle a été la nature d’Adam et celle des arbres de Paradis si on avoit examiné comment les enfants se forment peu à peu dans le ventre de leurs mères et comment les plantes sortent de leurs semences, que si on avoit seulement considéré quels ils ont été quand Dieu les a créés: tout de même, nous ferons mieux entendre quelle est généralement la nature de toutes les choses qui sont au monde si nous pouvons imaginer quelques principes qui soient fort intelligibles et fort simples, desquels nous puissions voir clairement que les astres et la terre et enfin tout ce monde visible auroit pu être produit ainsi que de quelques semences (bien que nous sachions qu’il n’a pas été produit en cette façon) que si nous la décrivions seulement comme il est, ou bien comme nous croyons qu’il a été créé. Et parceque je pense avoir trouvé des principes qui sont tels, je tâcherai ici de les expliquer.”30

If we read between the lines of this singular exhibition of force of one kind and weakness of another, it is clear that Descartes believed that he had divined the mode in which the physical universe had been evolved; and theTraité de l’hommeand the essaySur les passionsafford abundant additional evidence that he sought for, and thought he had found, an explanation of the phenomena of physical life by deduction from purely physical laws.

Spinoza abounds in the same sense, and is as usual perfectly candid—

“Naturae leges et regulae, secundum quas omnia fiunt et ex unis formis in alias mutantur, sunt ubique et semper eadem.”31

“Naturae leges et regulae, secundum quas omnia fiunt et ex unis formis in alias mutantur, sunt ubique et semper eadem.”31

Leibnitz’s doctrine of continuity necessarily led him in the same direction; and, of the infinite multitude of monads with which he peopled the world, each is supposed to be the focus of an endless process of evolution and involution. In theProtogaea, xxvi., Leibnitz distinctly suggests the mutability of species—

“Alii mirantur in saxis passim species videri quas vel in orbe cognito, vel saltem in vicinis locis frustra quaeras. ItaCornua Ammonis, quae ex nautilorum numero habeantur, passim et forma et magnitudine (nam et pedali diametro aliquando reperiuntur) ab omnibus illis naturis discrepare dicunt, quas praebet mare. Sed quis absconditos ejus recessus aut subterraneas abyssos pervestigavit? quam multa nobis animalia antea ignota offert novus orbis? Et credibile est per magnas illas conversiones etiam animalium species plurimum immutatas.”

“Alii mirantur in saxis passim species videri quas vel in orbe cognito, vel saltem in vicinis locis frustra quaeras. ItaCornua Ammonis, quae ex nautilorum numero habeantur, passim et forma et magnitudine (nam et pedali diametro aliquando reperiuntur) ab omnibus illis naturis discrepare dicunt, quas praebet mare. Sed quis absconditos ejus recessus aut subterraneas abyssos pervestigavit? quam multa nobis animalia antea ignota offert novus orbis? Et credibile est per magnas illas conversiones etiam animalium species plurimum immutatas.”

Thus in the end of the 17th century the seed was sown which has at intervals brought forth recurrent crops of evolutional hypotheses, based, more or less completely, on general reasonings.

Among the earliest of these speculations is that put forward by Benoît de Maillet in hisTelliamed, which, though printed in 1735, was not published until twenty-three years later. Considering that this book was written before the time of Haller, or Bonnet, or Linnaeus, or Hutton, it surely deserves more respectful consideration than it usually receives. For De Maillet not only has a definite conception of the plasticity of living things, and of the production of existing species by the modification of their predecessors, but he clearly apprehends the cardinal maxim of modern geological science, that the explanation of the structure of the globe is to be sought in the deductive application to geological phenomena of the principles established inductively by the study of the present course of nature. Somewhat later, P.L.M. de Maupertuis32suggested a curious hypothesis as to the causes of variation, which he thinks may be sufficient to account for the origin of all animalsfrom a single pair. Jean Baptiste René Robinet33followed out much the same line of thought as De Maillet, but less soberly; and Bonnet’s speculations in thePalingénésie, which appeared in 1769, have already been mentioned. Buffon (1753-1778), at first a partisan of the absolute immutability of species, subsequently appears to have believed that larger or smaller groups of species have been produced by the modification of a primitive stock; but he contributed nothing to the general doctrine of evolution.

Erasmus Darwin (Zoonomia, 1794), though a zealous evolutionist, can hardly be said to have made any real advance on his predecessors; and, notwithstanding the fact that Goethe had the advantage of a wide knowledge of morphological facts, and a true insight into their signification, while he threw all the power of a great poet into the expression of his conceptions, it may be questioned whether he supplied the doctrine of evolution with a firmer scientific basis than it already possessed. Moreover, whatever the value of Goethe’s labours in that field, they were not published before 1820, long after evolutionism had taken a new departure from the works of Treviranus and Lamarck—the first of its advocates who were equipped for their task with the needful large and accurate knowledge of the phenomena of life as a whole. It is remarkable that each of these writers seems to have been led, independently and contemporaneously, to invent the same name of “biology” for the science of the phenomena of life; and thus, following Buffon, to have recognized the essential unity of these phenomena, and their contradistinction from those of inanimate nature. And it is hard to say whether Lamarck or Treviranus has the priority in propounding the main thesis of the doctrine of evolution; for though the first volume of Treviranus’sBiologieappeared only in 1802, he says, in the preface to his later work, theErscheinungen und Gesetze des organischen Lebens, dated 1831, that he wrote the first volume of theBiologie“nearly five-and-thirty years ago,” or about 1796.

Now, in 1794, there is evidence that Lamarck held doctrines which present a striking contrast to those which are to be found in thePhilosophie zoologique, as the following passages show:—

“685. Quoique mon unique objet dans cet article n’ait été que de traiter de la cause physique de l’entretien de la vie des êtres organiques, malgré cela j’ai osé avancer en débutant, que l’existence de ces êtres étonnants n’appartiennent nullement à la nature; que tout ce qu’on peut entendre par le motnature, ne pouvoit donner la vie, c’est-à-dire, que toutes les qualités de la matière, jointes à toutes les circonstances possibles, et même à l’activité répandue dans l’univers, ne pouvaient point produire un être muni du mouvement organique, capable de reproduire son semblable, et sujet à la mort.“686. Tous les individus de cette nature, qui existent, proviennent d’individus semblables qui tous ensemble constituent l’espèce entière. Or, je crois qu’il est aussi impossible à l’homme de connoître la cause physique du premier individu de chaque espèce, que d’assigner aussi physiquement la cause de l’existence de la matière ou de l’univers entier. C’est au moins ce que le résultat de mes connaissances et de mes réflexions me portent à penser. S’il existe beaucoup de variétés produites par l’effet des circonstances, ces variétés ne dénaturent point les espèces; mais on se trompe, sans doute souvent, en indiquant comme espèce, ce qui n’est que variété; et alors je sens que cette erreur peut tirer à conséquence dans les raisonnements que l’on fait sur cette matière.”34

“685. Quoique mon unique objet dans cet article n’ait été que de traiter de la cause physique de l’entretien de la vie des êtres organiques, malgré cela j’ai osé avancer en débutant, que l’existence de ces êtres étonnants n’appartiennent nullement à la nature; que tout ce qu’on peut entendre par le motnature, ne pouvoit donner la vie, c’est-à-dire, que toutes les qualités de la matière, jointes à toutes les circonstances possibles, et même à l’activité répandue dans l’univers, ne pouvaient point produire un être muni du mouvement organique, capable de reproduire son semblable, et sujet à la mort.

“686. Tous les individus de cette nature, qui existent, proviennent d’individus semblables qui tous ensemble constituent l’espèce entière. Or, je crois qu’il est aussi impossible à l’homme de connoître la cause physique du premier individu de chaque espèce, que d’assigner aussi physiquement la cause de l’existence de la matière ou de l’univers entier. C’est au moins ce que le résultat de mes connaissances et de mes réflexions me portent à penser. S’il existe beaucoup de variétés produites par l’effet des circonstances, ces variétés ne dénaturent point les espèces; mais on se trompe, sans doute souvent, en indiquant comme espèce, ce qui n’est que variété; et alors je sens que cette erreur peut tirer à conséquence dans les raisonnements que l’on fait sur cette matière.”34

The first three volumes of Treviranus’s Biologie, which contains his general views of evolution, appeared between 1802 and 1805. TheRecherches sur l’organisation des corps vivants, which sketches out Lamarck’s doctrines, was published in 1802; but the full development of his views in thePhilosophie zoologiquedid not take place until 1809.

TheBiologieand thePhilosophie zoologiqueare both very remarkable productions, and are still worthy of attentive study, but they fell upon evil times. The vast authority of Cuvier was employed in support of the traditionally respectable hypotheses of special creation and of catastrophism; and the wild speculations of theDiscours sur les révolutions de la surface du globewere held to be models of sound scientific thinking, while the really much more sober and philosophical hypotheses of theHydrogéologiewere scouted. For many years it was the fashion to speak of Lamarck with ridicule, while Treviranus was altogether ignored.

Nevertheless, the work had been done. The conception of evolution was henceforwardirrepressible, and it incessantly reappears, in one shape or another,35up to the year 1858, when Charles Darwin and A.R. Wallace published theirTheory of Natural Selection. TheOrigin of Speciesappeared in 1859; and thenceforward the doctrine of evolution assumed a position and acquired an importance which it never before possessed. In theOrigin of Species, and in his other numerous and important contributions to the solution of the problem of biological evolution, Darwin confined himself to the discussion of the causes which have brought about the present condition of living matter, assuming such matter to have once come into existence. On the other hand, Spencer36and E. Haeckel37dealt with the whole problem of evolution. The profound and vigorous writings of Spencer embody the spirit of Descartes in the knowledge of our own day, and may be regarded as thePrincipes de la philosophieof the 19th century; while, whatever hesitation may not unfrequently be felt by less daring minds in following Haeckel in many of his speculations, his attempt to systematize the doctrine of evolution and to exhibit its influence as the central thought of modern biology, cannot fail to have a far-reaching influence on the progress of science.

If we seek for the reason of the difference between the scientific position of the doctrine of evolution in the days of Lamarck and that which it occupies now, we shall find it in the great accumulation of facts, the several classes of which have been enumerated above, under the second to the eighth heads. For those which are grouped under the second to the seventh of these classes, respectively, have a clear significance on the hypothesis of evolution, while they are unintelligible if that hypothesis be denied. And those of the eighth group are not onlyunintelligiblewithout the assumption of evolution, but can be proved never to be discordant with that hypothesis, while, in some cases, they are exactly such as the hypothesis requires. The demonstration of these assertions would require a volume, but the general nature of the evidence on which they rest may be briefly indicated.

2. The accurate investigation of the lowest forms of animal life, commenced by Leeuwenhoek and Swammerdam, and continued by the remarkable labours of Réaumur, Abraham Trembley, Bonnet, and a host of other observers in the latter part of the 17th and the first half of the 18th centuries, drew the attention of biologists to the gradation in the complexity of organization which is presented by living beings, and culminated in the doctrine of theéchelle des êtres, so powerfully and clearly stated by Bonnet, and, before him, adumbrated by Locke and by Leibnitz. In the then state of knowledge, it appeared that all the species of animals and plants could be arranged in one series, in such a manner that, by insensible gradations, the mineral passed into the plant, the plant into the polype, the polype into the worm, and so, through gradually higher forms of life, to man, at the summit of the animated world.

But, as knowledge advanced, this conception ceased to be tenable in the crude form in which it was first put forward. Taking into account existing animals and plants alone, it became obvious that they fell into groups which were more or less sharply separated from one another; and, moreover, that eventhe species of a genus can hardly ever be arranged in linear series. Their natural resemblances and differences are only to be expressed by disposing them as if they were branches springing from a common hypothetical centre.

Lamarck, while affirming the verbal proposition that animals form a single series, was forced by his vast acquaintance with the details of zoology to limit the assertion to such a series as may be formed out of the abstractions constituted by the common characters of each group.38

Cuvier on anatomical, and Von Baer on embryological grounds, made the further step of proving that, even in this limited sense, animals cannot be arranged in a single series, but that there are several distinct plans of organization to be observed among them, no one of which, in its highest and most complicated modification, leads to any of the others.

The conclusions enunciated by Cuvier and Von Baer have been confirmed in principle by all subsequent research into the structure of animals and plants. But the effect of the adoption of these conclusions has been rather to substitute a new metaphor for that of Bonnet than to abolish the conception expressed by it. Instead of regarding living things as capable of arrangement in one series like the steps of a ladder, the results of modern investigation compel us to dispose them as if they were the twigs and branches of a tree. The ends of the twigs represent individuals, the smallest groups of twigs species, larger groups genera, and so on, until we arrive at the source of all these ramifications of the main branch, which is represented by a common plan of structure. At the present moment it is impossible to draw up any definition, based on broad anatomical or developmental characters, by which any one of Cuvier’s great groups shall be separated from all the rest. On the contrary, the lower members of each tend to converge towards the lower members of all the others. The same may be said of the vegetable world. The apparently clear distinction between flowering and flowerless plants has been broken down by the series of gradations between the two exhibited by theLycopodiaceae,Rhizocarpeae, andGymnospermeae. The groups ofFungi,LicheneaeandAlgaehave completely run into one another, and, when the lowest forms of each are alone considered, even the animal and vegetable kingdoms cease to have a definite frontier.

If it is permissible to speak of the relations of living forms to one another metaphorically, the similitude chosen must undoubtedly be that of a common root, whence two main trunks, one representing the vegetable and one the animal world, spring; and, each dividing into a few main branches, these subdivide into multitudes of branchlets and these into smaller groups of twigs.

As Lamarck has well said:—39


Back to IndexNext