Chapter 2

It may be well to explain here that a claim has been set up by his admirers for the celebrated artist, architect and engineer, Leonardo da Vinci, to be regarded as the discoverer of the principles and practice of flight (see Theodore Andrea Cook,Spirals in Nature and Art, 1903). The claim is, however, unwarranted; Leonardo’s chief work on flight, bearing the titleCodice sul Volo degli Uccelli e Varie Altre Materie, written in 1505, consists of a short manuscript of twenty-seven small quarto pages, with simple sketch illustrations interspersed in the text. In addition he makes occasional references to flight in his other manuscripts, which are also illustrated. In none of Leonardo’s manuscripts, however, and in none of his figures, is the slightest hint given of his having any knowledge of the spiral movements made by the wing in flight or of the spiral structure of the wing itself. It is claimed that Leonardo knew the direction of the stroke of the wing, as revealed by recent researches and proved by modern instantaneous photography. As a matter of fact, Leonardo gives a wholly inaccurate account of the direction of the stroke of the wing. He states that the wing during the down stroke strikes downwards andbackwards, whereas in reality it strikes downwards andforwards. In speaking of artificial flight Leonardo says: “The wings have to row downwards andbackwardsto support the machine on high, so that it moves forward.” In speaking of natural flight he remarks: “If in its descent the bird rowsbackwardswith its wings the bird will move rapidly; this happens because the wings strike the air which successively runs behind the bird to fill the void whence it comes.” There is nothing in Leonardo’s writings to show that he knew either the anatomy or physiology of the wing in the modern sense.

It may be well to explain here that a claim has been set up by his admirers for the celebrated artist, architect and engineer, Leonardo da Vinci, to be regarded as the discoverer of the principles and practice of flight (see Theodore Andrea Cook,Spirals in Nature and Art, 1903). The claim is, however, unwarranted; Leonardo’s chief work on flight, bearing the titleCodice sul Volo degli Uccelli e Varie Altre Materie, written in 1505, consists of a short manuscript of twenty-seven small quarto pages, with simple sketch illustrations interspersed in the text. In addition he makes occasional references to flight in his other manuscripts, which are also illustrated. In none of Leonardo’s manuscripts, however, and in none of his figures, is the slightest hint given of his having any knowledge of the spiral movements made by the wing in flight or of the spiral structure of the wing itself. It is claimed that Leonardo knew the direction of the stroke of the wing, as revealed by recent researches and proved by modern instantaneous photography. As a matter of fact, Leonardo gives a wholly inaccurate account of the direction of the stroke of the wing. He states that the wing during the down stroke strikes downwards andbackwards, whereas in reality it strikes downwards andforwards. In speaking of artificial flight Leonardo says: “The wings have to row downwards andbackwardsto support the machine on high, so that it moves forward.” In speaking of natural flight he remarks: “If in its descent the bird rowsbackwardswith its wings the bird will move rapidly; this happens because the wings strike the air which successively runs behind the bird to fill the void whence it comes.” There is nothing in Leonardo’s writings to show that he knew either the anatomy or physiology of the wing in the modern sense.

Pettigrew’s discovery of the figure-of-8 and waved movements made by the wing in stationary and progressive flight was confirmed some two years after it was made by Prof. E.J. Marey of Paris4by the aid of the “sphygmograph.”5The movements in question are now regarded as fundamental, from the fact that they are alike essential to natural and artificial flight.

The following is Pettigrew’s description of wings and wing movements published in 1867:—

“The wings of insects and birds are, as a rule, more or less triangular in shape, the base of the triangle being directed towards the body, its sides anteriorly and posteriorly. They are also conical on section from within outwards and from before backwards, this shape converting the pinions into delicately graduated instruments balanced with the utmost nicety to satisfy the requirements of the muscular system on the one hand and the resistance and resiliency of the air on the other. While all wings are graduated as explained, innumerable varieties occur as to their general contour, some being falcated or scythe-like, others oblong, others rounded or circular, some lanceolate and some linear. The wings of insects may consist either of one or two pairs—the anterior or upper pair, when two are present, being in some instances greatly modified and presenting a corneous condition. They are then known as elytra, from the Gr.ἔλυτρον, a sheath. Both pairs are composed of a duplicature of the integument, or investing membrane, and are strengthened in various directions by a system of hollow, horny tubes, known to entomologists as the neurae or nervures. These nervures taper towards the extremity of the wing, and are strongest towards its root and anterior margin, where they supply the place of the arm in birds and bats. The neurae are arranged at the axis of the wing after the manner of a fan or spiral stair—the anterior one occupying a higher position than that farther back, and so of the others. As this arrangement extends also to the margins,the wings are more or less twisted upon themselvesand present a certain degree of convexity on their superior or upper surface, and a corresponding concavity on their inferior or under surface,—their free edges supplying those fine curves which act with such efficacy upon the air in obtaining the maximum of resistance and the minimum of displacement. As illustrative examples of the form of wings alluded to, those of the beetle, bee and fly may be cited—the pinions in those insects acting ashelices, ortwisted levers, and elevating weights much greater than the area of the wings would seem to warrant” (figs. 10 and 11).... “To confer on the wings the multiplicity of movements which they require, they are supplied with double hinge or compound joints, which enable them to move not only in an upward, downward, forward and backward direction, but also at various intermediate degrees of obliquity. An insect with wings thus hinged may, as far as steadiness of body is concerned, be not inaptly compared to a compass set upon gimbals, where the universality of motion in one direction ensures comparative fixedness in another.”... “All wings obtain their leverage by presenting oblique surfaces to the air, the degree of obliquity gradually increasing in a direction from behind, forwards and downwards, during extension when the sudden or effective stroke is being given, and gradually decreasing in an opposite direction during flexion, or when the wing is being more slowly recovered preparatory to making a second stroke. The effective stroke in insects, and this holds true also of birds, is therefore delivereddownwards and forwards, and not, as the majority of writers believe, vertically, or even slightly backwards.... The wing in the insect is more flattened than in the bird; and advantage is taken on some occasions of this circumstance, particularly in heavy-bodied, small-winged, quick-flying insects,to reverse the pinion more or less completely during the down and up strokes.”... “This is effected in the following manner. The posterior margin of the wing is made to rotate, during the down stroke, in a direction from above downwards and from behind forwards—the anterior margin travelling in an opposite direction and reciprocating. The wing may thus be said to attack the air by ascrewing movementfrom above. During the up or return stroke, on the other hand, the posterior margin rotates in a direction from below upwards and from before backwards, so that by a similar butreverse screwing motionthe pinion attacks the air from beneath.”... “A figure-of-8, compressed laterally and placed obliquely with its long axis running from left to right of the spectator, represents the movements in question.The down and up strokes, as will be seen from this account,cross each other, the wing smiting the air during its descent from above, as in the bird and bat, and during its ascent from below as in the flying fish and boy’s kite” (fig. 12).Fig. 12shows the figure-of-8 made by the margins of the wing in extension (continuous line), and flexion (dotted line). As the tip of the wing is mid-way between its margins, a line between the continuous and dotted lines gives the figure-of-8 made by the tip. The arrows indicate the reversal of the planes of the wing, and show how the down and up strokescross each other.... “The figure-of-8 action of the wing explains how an insect or bird may fix itself in the air, the backward and forward reciprocating action of the pinion affording support, but no propulsion. In these instances the backward and forward strokes are made to counterbalance each other. Although the figure-of-8 represents with considerable fidelity the twisting of the wing upon its axis during extension and flexion, when the insect is playing its wings before an object, or still better when it is artificially fixed, it is otherwise when the down stroke is added and the insect is fairly on the wing and progressing rapidly. In this case the wing, in virtue of its being carried forward by the body in motion, describes an undulating or spiral course, as shown in fig. 13.”... “The down and up strokes are compound movements—the termination of the down stroke embracing the beginning of the up stroke, and the termination of the up stroke including the beginning of the down stroke. This is necessary in order that the down and up strokes may glide into each other in such a manner as to prevent jerking and unnecessary retardation.”6...Fig. 13.—Wave track made by the wing in progressive flight.a, b, Crests of the wave;c, d, e, up strokes;x, x, down strokes;f, point corresponding to the anterior margin of the wing, and forming a centre for the downward rotation of the wing (a, g);g, point corresponding to the posterior margin of the wing, and forming a centre for the upward rotation of the wing (d, f).Fig. 14.—a, b, line along which the wing travels during extension and flexion. The arrows indicate the direction in which the wing is spread out in extension and closed or folded in flexion.Fig. 15.—Right Wing of the Red-legged Partridge (Perdix rubra). Dorsal aspect as seen from above.Fig. 16.—Right Wing of the Red-legged Partridge (Perdix rubra). Dorsal and ventral aspects as seen from behind; showing auger-like conformation of wing. Compare with figs. 11 and 18.Fig. 17.—Right Wing of the Bat (Phyllocina gracilis). Dorsal aspect as seen from above.Fig. 18.—Right Wing of the Bat (Phyllocina gracilis). Dorsal and ventral aspects, as seen from behind. These show the screw-like configuration of the wing, and also how the wing twists and untwists during its action.“The wing of the bird, like that of the insect, is concavo-convex, andmore or less twisted upon itselfwhen extended, so that the anterior or thick margin of the pinion presents a different degree of curvature to that of the posterior or thin margin. This twisting is in a great measure owing to the manner in which the bones of the wing are twisted upon themselves, and the spiral nature of their articular surfaces—the long axes of the joints always intersecting each other at right angles, and the bones of the elbow and wrist making a quarter of a turn or so during extension and the same amount during flexion. As a result of this disposition of the articular surfaces, the wing may be shot out or extended, and retracted or flexed in nearly the same plane, the bones composing the wing rotating on their axes during either movement (fig. 14). The secondary action, or the revolving of the component bones on their own axes, is of the greatest importance in the movements of the wing, as it communicates to the hand and forearm, and consequently to the primary and secondary feathers which they bear, the precise angles necessary for flight. It in fact ensures that the wing, and the curtain or fringe of the wing which the primary and secondary feathers form, shall be screwed into and down upon the wind in extension, and unscrewed or withdrawn from the wind during flexion. The wing of the bird may therefore be compared to a huge gimlet or auger, the axis of the gimlet representing the bones of the wing, the flanges or spiral thread of the gimlet the primary and secondary feathers” (figs. 15 and 16).... “From this description it will be evident that by the mere rotation of the bones of the forearm and hand the maximum and minimum of resistance is secured much in the same way that this object is attained by the alternate dipping and feathering of an oar.”... “The wing, both when at rest and when in motion, may not inaptly be compared to the blade of an ordinary screw propeller as employed in navigation. Thus the general outline of the wing corresponds closely with the outline of the propeller (figs. 11, 16 and 18), and the track described by the wing in spaceis twisted upon itselfpropeller fashion7(figs. 12, 20, 21, 22, 23). The great velocity with which the wing is driven converts the impression or blur made by it into what is equivalent to a solid for the time being, in the same way that the spokes of a wheel in violent motion, as is well understood, more or less completely occupy the space contained within the rim or circumference of the wheel” (figs. 9, 20 and 21).... “The wing of the bat bears a considerable resemblance to that of the insect, inasmuch as it consists of a delicate, semi-transparent, continuous membrane, supported in divers directions, particularly towards its anterior margin, by a system of osseous stays or stretchers which confer upon it the degree of rigidity requisite for flight. It is, as a rule, deeply concave on its under or ventral surface, and in this respect resembles the wing of the heavy-bodied birds. The movement of the bat’s wing in extension is aspiralone, the spiral running alternately from below upwards and forwards and from above downwards and backwards. The action of the wing of the bat, and the movements of its component bones, are essentially the same as in the bird” (figs. 17 and 18).... “The wing strikes the air precisely as a boy’s kite would if it were jerked by its string, the only difference being that the kite ispulled forwardsupon the wind by the string and the hand, whereas in the insect, bird and bat the wing ispushed forwardson the wind by the weight of the body and the power residing in the pinion itself” (fig. 19).8

“The wings of insects and birds are, as a rule, more or less triangular in shape, the base of the triangle being directed towards the body, its sides anteriorly and posteriorly. They are also conical on section from within outwards and from before backwards, this shape converting the pinions into delicately graduated instruments balanced with the utmost nicety to satisfy the requirements of the muscular system on the one hand and the resistance and resiliency of the air on the other. While all wings are graduated as explained, innumerable varieties occur as to their general contour, some being falcated or scythe-like, others oblong, others rounded or circular, some lanceolate and some linear. The wings of insects may consist either of one or two pairs—the anterior or upper pair, when two are present, being in some instances greatly modified and presenting a corneous condition. They are then known as elytra, from the Gr.ἔλυτρον, a sheath. Both pairs are composed of a duplicature of the integument, or investing membrane, and are strengthened in various directions by a system of hollow, horny tubes, known to entomologists as the neurae or nervures. These nervures taper towards the extremity of the wing, and are strongest towards its root and anterior margin, where they supply the place of the arm in birds and bats. The neurae are arranged at the axis of the wing after the manner of a fan or spiral stair—the anterior one occupying a higher position than that farther back, and so of the others. As this arrangement extends also to the margins,the wings are more or less twisted upon themselvesand present a certain degree of convexity on their superior or upper surface, and a corresponding concavity on their inferior or under surface,—their free edges supplying those fine curves which act with such efficacy upon the air in obtaining the maximum of resistance and the minimum of displacement. As illustrative examples of the form of wings alluded to, those of the beetle, bee and fly may be cited—the pinions in those insects acting ashelices, ortwisted levers, and elevating weights much greater than the area of the wings would seem to warrant” (figs. 10 and 11).... “To confer on the wings the multiplicity of movements which they require, they are supplied with double hinge or compound joints, which enable them to move not only in an upward, downward, forward and backward direction, but also at various intermediate degrees of obliquity. An insect with wings thus hinged may, as far as steadiness of body is concerned, be not inaptly compared to a compass set upon gimbals, where the universality of motion in one direction ensures comparative fixedness in another.”... “All wings obtain their leverage by presenting oblique surfaces to the air, the degree of obliquity gradually increasing in a direction from behind, forwards and downwards, during extension when the sudden or effective stroke is being given, and gradually decreasing in an opposite direction during flexion, or when the wing is being more slowly recovered preparatory to making a second stroke. The effective stroke in insects, and this holds true also of birds, is therefore delivereddownwards and forwards, and not, as the majority of writers believe, vertically, or even slightly backwards.... The wing in the insect is more flattened than in the bird; and advantage is taken on some occasions of this circumstance, particularly in heavy-bodied, small-winged, quick-flying insects,to reverse the pinion more or less completely during the down and up strokes.”... “This is effected in the following manner. The posterior margin of the wing is made to rotate, during the down stroke, in a direction from above downwards and from behind forwards—the anterior margin travelling in an opposite direction and reciprocating. The wing may thus be said to attack the air by ascrewing movementfrom above. During the up or return stroke, on the other hand, the posterior margin rotates in a direction from below upwards and from before backwards, so that by a similar butreverse screwing motionthe pinion attacks the air from beneath.”... “A figure-of-8, compressed laterally and placed obliquely with its long axis running from left to right of the spectator, represents the movements in question.The down and up strokes, as will be seen from this account,cross each other, the wing smiting the air during its descent from above, as in the bird and bat, and during its ascent from below as in the flying fish and boy’s kite” (fig. 12).

... “The figure-of-8 action of the wing explains how an insect or bird may fix itself in the air, the backward and forward reciprocating action of the pinion affording support, but no propulsion. In these instances the backward and forward strokes are made to counterbalance each other. Although the figure-of-8 represents with considerable fidelity the twisting of the wing upon its axis during extension and flexion, when the insect is playing its wings before an object, or still better when it is artificially fixed, it is otherwise when the down stroke is added and the insect is fairly on the wing and progressing rapidly. In this case the wing, in virtue of its being carried forward by the body in motion, describes an undulating or spiral course, as shown in fig. 13.”

... “The down and up strokes are compound movements—the termination of the down stroke embracing the beginning of the up stroke, and the termination of the up stroke including the beginning of the down stroke. This is necessary in order that the down and up strokes may glide into each other in such a manner as to prevent jerking and unnecessary retardation.”6...

“The wing of the bird, like that of the insect, is concavo-convex, andmore or less twisted upon itselfwhen extended, so that the anterior or thick margin of the pinion presents a different degree of curvature to that of the posterior or thin margin. This twisting is in a great measure owing to the manner in which the bones of the wing are twisted upon themselves, and the spiral nature of their articular surfaces—the long axes of the joints always intersecting each other at right angles, and the bones of the elbow and wrist making a quarter of a turn or so during extension and the same amount during flexion. As a result of this disposition of the articular surfaces, the wing may be shot out or extended, and retracted or flexed in nearly the same plane, the bones composing the wing rotating on their axes during either movement (fig. 14). The secondary action, or the revolving of the component bones on their own axes, is of the greatest importance in the movements of the wing, as it communicates to the hand and forearm, and consequently to the primary and secondary feathers which they bear, the precise angles necessary for flight. It in fact ensures that the wing, and the curtain or fringe of the wing which the primary and secondary feathers form, shall be screwed into and down upon the wind in extension, and unscrewed or withdrawn from the wind during flexion. The wing of the bird may therefore be compared to a huge gimlet or auger, the axis of the gimlet representing the bones of the wing, the flanges or spiral thread of the gimlet the primary and secondary feathers” (figs. 15 and 16).... “From this description it will be evident that by the mere rotation of the bones of the forearm and hand the maximum and minimum of resistance is secured much in the same way that this object is attained by the alternate dipping and feathering of an oar.”... “The wing, both when at rest and when in motion, may not inaptly be compared to the blade of an ordinary screw propeller as employed in navigation. Thus the general outline of the wing corresponds closely with the outline of the propeller (figs. 11, 16 and 18), and the track described by the wing in spaceis twisted upon itselfpropeller fashion7(figs. 12, 20, 21, 22, 23). The great velocity with which the wing is driven converts the impression or blur made by it into what is equivalent to a solid for the time being, in the same way that the spokes of a wheel in violent motion, as is well understood, more or less completely occupy the space contained within the rim or circumference of the wheel” (figs. 9, 20 and 21).

... “The wing of the bat bears a considerable resemblance to that of the insect, inasmuch as it consists of a delicate, semi-transparent, continuous membrane, supported in divers directions, particularly towards its anterior margin, by a system of osseous stays or stretchers which confer upon it the degree of rigidity requisite for flight. It is, as a rule, deeply concave on its under or ventral surface, and in this respect resembles the wing of the heavy-bodied birds. The movement of the bat’s wing in extension is aspiralone, the spiral running alternately from below upwards and forwards and from above downwards and backwards. The action of the wing of the bat, and the movements of its component bones, are essentially the same as in the bird” (figs. 17 and 18).

... “The wing strikes the air precisely as a boy’s kite would if it were jerked by its string, the only difference being that the kite ispulled forwardsupon the wind by the string and the hand, whereas in the insect, bird and bat the wing ispushed forwardson the wind by the weight of the body and the power residing in the pinion itself” (fig. 19).8

The figure-of-8 and kite-like action of the wing referred to lead us to explain how it happens that the wing, which in many instances is a comparatively small and delicate organ, can yet attack the air with such vigour as to extract from it the recoil necessary to elevate and propel the flying creature. The accompanying figures from one of Pettigrew’s later memoirs9will serve to explain therationale(figs. 20, 21, 22 and 23).

As will be seen from these figures, the wing during its vibration sweeps through a comparatively very large space. This space, as already explained, is practically a solid basis of support for the wing and for the flying animal. The wing attacks the air in such a manner as virtually to have no slip—this for two reasons. The wing reverses instantly and acts as a kite during nearly the entire down and up strokes. The angles, moreover, made by the wing with the horizon during the down and up strokes are at no two intervals the same, but (and this is aremarkable circumstance) they are always adapted to the speed at which the wing is travelling for the time being. The increase and decrease in the angles made by the wing as it hastens to and fro are due partly to the resistance offered by the air, and partly to the mechanism and mode of application of the wing to the air. The wing, during its vibrations, rotates upon two separate centres, the tip rotating round the root of the wing as an axis (short axis of wing), the posterior margin rotating around the anterior margin (long axis of wing). The wing is really eccentric in its nature, a remark which applies also to the rowing feathers of the bird’s wing. The compound rotation goes on throughout the entire down and up strokes, and is intimately associated with the power which the wing enjoys of alternately seizing and evading the air.

The compound rotation of the wing is greatly facilitated by the wing being elastic and flexible. It is this which causes the wing to twist and untwist diagonally on its long axis when it is made to vibrate. The twisting referred to is partly a vital and partly a mechanical act;—that is, it is occasioned in part by the action of the muscles and in part by the greater resistance experienced from the air by the tip and posterior margin of the wing as compared with the root and anterior margin,—the resistance experienced by the tip and posterior margin causing them to reverse always subsequently to the root and anterior margin, which has the effect of throwing the anterior and posterior margins of the wing into figure-of-8 curves, as shown at figs. 9, 11, 12, 16, 18, 20, 21, 22 and 23.

The compound rotation of the wing, as seen in the bird, is represented in fig. 24.

Not the least curious feature of the wing movements is the remarkable power which the wing possesses of making and utilizing its own currents. Thus, when the wing descends it draws after it a strong current, which, being met by the wing during its ascent, greatly increases the efficacy of the up stroke. Similarly and conversely, when the wing ascends, it creates an upward current, which, being met by the wing when it descends, powerfully contributes to the efficiency of the down stroke. This statement can be readily verified by experiment both with natural and artificial wings. Neither the up nor the down strokes are complete in themselves.

The wing to act efficiently must be driven at a certain speed, and in such a manner that the down and up strokes shall glide into each other. It is only in this way that the air can be made to pulsate, and that the rhythm of the wing and the air waves can be made to correspond. The air must be seized and let go in a certain order and at a certain speed to extract a maximum recoil. The rapidity of the wing movements is regulated by the size of the wing, small wings being driven at a very much higher speed than larger ones. The different parts of the wing, moreover, travel at different degrees of velocity—the tip and posterior margin of the wing always rushing through a much greater space, in a given time, than the root and anterior margin.

a, b,Short axis of the wing (axis for tip of wing,h).

c, d,Long axis (axis for posterior margin of wing,h, i, j, k, l).

m, n,Short axis of rowing feathers of wing.

r, s,Long axis of rowing feathers of wing. The rotation of the rowing feathers on their long axis (they are eccentrics) enables them to open or separate during the up, and close or come together during the down strokes.

e f, g p,concave shape presented by the under surface of the wing.

The rapidity of travel of the insect wing is in some cases enormous. The wasp, for instance, is said to ply its wings at the rate of 110, and the common house-fly at the rate of 330 beats per second. Quick as are the vibrations of natural wings, the speed of certain parts of the wing is amazingly increased. Wings as a rule are long and narrow. As a consequence, a comparatively slow and very limited movement at the root confers great range and immense speed at the tip, the speed of each portion of the wing increasing as the root of the wing is receded from. This is explained on a principle well understood in mechanics, viz. that when a wing or rod hinged at one end is made to move in a circle, the tip or free end of the wing or rod describes a much wider circle in a given time than a portion of the wing or rod nearer the hinge (fig. 25).

One naturally inquires why the high speed of wings, and why the progressive increase of speed at their tips and posterior margins? The answer is not far to seek. If the wings were not driven at a high speed, and if they were not eccentrics made to revolve upon two separate axes, they would of necessity be large cumbrous structures; but large heavy wings would be difficult to work, and what is worse, they would (if too large), instead of controlling the air, be controlled by it, and so cease to be flying organs.

There is, however, another reason why wings should be made to vibrate at high speeds. The air, as explained, is a very light, thin, elastic medium, which yields on the slightest pressure, and unless the wings attacked it with great violence the necessary recoil or resistance could not be obtained. The atmosphere, because of its great tenuity, mobility and comparative imponderability, presents little resistance to bodies passing through it at low velocities. If, however, the speed be greatly accelerated,the action of even an ordinary cane is sufficient to elicit a recoil. This comes of the action and reaction of matter, the resistance experienced varying according to the density of the atmosphere and the shape, extent and velocity of the body acting upon it. While, therefore, scarcely any impediment is offered to the progress of an animal in motion in the air, it is often exceedingly difficult to compress the air with sufficient rapidity and energy to convert it into a suitable fulcrum for securing the necessary support and forward impetus. This arises from the fact that bodies moving in air experience aminimum of resistanceand occasion amaximum of displacement. Another and very obvious difficulty is traceable to the great disparity in the weight of air as compared with any known solid, and the consequent want of buoying or sustaining power which that disparity involves. If we compare air with water we find it is nearly 1000 times lighter. To meet these peculiarities the insect, bird and bat are furnished with extensive flying surfaces in the shape of wings, which they apply with singular velocity and power to the air, as levers of the third order. In this form of lever the power is applied between the fulcrum and the weight to be raised. The power is represented by the wing, the fulcrum by the air, and the weight by the body of the flying animal. Although the third order of lever is particularly inefficient when the fulcrum is rigid and immobile, it possesses singular advantages when these conditions are reversed, that is, when the fulcrum, as happens with the air, iselasticandyielding. In this instance a very slight movement at the root of the pinion, or that end of the lever directed towards the body, is followed by an immense sweep of the extremity of the wing, where its elevating and propelling power is greatest—this arrangement ensuring that the large quantity of air necessary for support and propulsion shall be compressed under the most favourable conditions.

In this process the weight of the body performs an important part, by acting upon the inclined planes formed by the wings in the plane of progression. The power and the weight may thus be said to reciprocate, the two sitting as it were side by side and blending their peculiar influences to produce a common result, as indicated at fig. 26.

When the wings descend they elevate the body, the wings being active and the body passive; when the body descends it contributes to the elevation of the wings,10the body being active and the wings more or less passive. It is in this way that weight forms a factor in flight, the wings and the weight of the body reciprocating and mutually assisting and relieving each other. This is an argument for employing four wings in artificial flight,—the wings being so arranged that the two which are up shall always by their fall mechanically elevate the two which are down. Such an arrangement is calculated greatly to conserve the driving power, and as a consequence, to reduce the weight.

That the weight of the body plays an important part in the production of flight may be proved by a very simple experiment. If two quill feathers are fixed in an ordinary cork, and so arranged that they expand and arch above it (fig. 27), it is found that if the apparatus be dropped from a vertical height of 3 yds. it does not fall vertically downwards, but downwards andforwardsin a curve, the forward travel amounting in some instances to a yard and a half. Here the cork, in falling, acts upon the feathers (which are to all intents and purposes wings), and these in turn act upon the air, in such a manner as to produce a horizontal transference.

In order to utilize the air as a means of transit, the body in motion, whether it moves in virtue of the life it possesses, or because of a force super-added, must be heavier than air. It must tread with its wings and rise upon the air as a swimmer upon the water, or as a kite upon the wind. This is necessary for the simple reason that the body must be active, the air passive. The flying body must act against gravitation, and elevate and carry itself forward at the expense of the air and of the force which resides in it, whatever that may be. If it were otherwise—if it were rescued from the law of gravitation on the one hand, and bereft of independent movement on the other, it would float about uncontrolled and uncontrollable like an ordinary balloon.

In flight one of two things is necessary. Either the wings must attack the air with great violence, or the air in rapid motion must attack the wings: either suffices. If a bird attempts to fly in a calm, the wings must be made to smite the air after the manner of a boy’s kite with great vigour and at a high speed. In this case the wings fly the bird. If, however, the bird is fairly launched in space and a stiff breeze is blowing, all that is required in many instances is to extend the wings at a slight upward angle to the horizon so that the under parts of the wings present kite-like surfaces. In these circumstances the rapidly moving air flies the bird. The flight of the albatross supplies the necessary illustration. If by any chance this magnificent bird alights upon the sea he must flap and beat the water and air with his wings with tremendous energy until he gets fairly launched. This done he extends his enormous pinions11and sails majestically along, seldom deigning to flap his wings, the breeze doing the work for him. A familiar illustration of the same principle may be witnessed any day when children are engaged in the pastime of kite-flying. If two boys attempt to fly a kite in a calm, the one must hold up the kite and let go when the other runs. In this case the under surface of the kite is made to strike the still air. If, however, a stiff autumn breeze be blowing, it suffices if the boy who formerly ran when the kite was let go stands still. In this case the air in rapid motion strikes the under surface of the kite and forces it up. The string and the hand are to the kite what the weight of the flying creature is to the inclined planes formed by its wings.

The area of the insect, bird and bat, when the wings are fully expanded, is greater than that of any other class of animal, their weight being proportionally less. As already stated, however, it ought never to be forgotten that even the lightest insect, bird or bat is vastly heavier than the air, and that no fixed relation exists between the weight of body and expanse of wing in any of the orders. We have thus light-bodied andlarge-winged insects and birds, as the butterfly and heron; and others with heavy bodies and small wings, as the beetle and partridge. Similar remarks are to be made of bats. Those apparent inconsistencies in the dimensions of the body and wings are readily explained by the greater muscular development of the heavy-bodied, small-winged insects, birds and bats, and the increased power and rapidity with which the wings in them are made to oscillate. This is of the utmost importance in the science of aviation, as showing that flight may be attained by a heavy powerful animal with comparatively small wings, as well as by a lighter one with greatly enlarged wings. While, therefore, there is apparently no correspondence between the area of the wing and the animal to be raised, there is, except in the case of sailing insects, birds and bats, an unvarying relation as to the weight and number of oscillations; so that the problem of flight would seem to resolve itself into one of weight, power, velocity and small surfaces,versusbuoyancy, debility, diminished speed and extensive surfaces—weight in either case being asine qua non.

That no fixed relation exists between the area of the wings and the size and weight of the body to be elevated is evident on comparing the dimensions of the wings and bodies of the several orders of insects, bats and birds. If such comparison be made, it will be found that the pinions in some instances diminish while the bodies increase, and the converse. No practical good can therefore accrue to aviation from elaborate measurements of the wings and body of any flying thing; neither can any rule be laid down as to the extent of surface required for sustaining a given weight in the air. The statements here advanced are borne out by the fact that the wings of insects, bats and birds may be materially reduced without impairing their powers of flight. In such cases the speed with which the wings are driven is increased in the direct ratio of the mutilation. The inference to be deduced from the foregoing is plainly this, that even in large-bodied, small-winged insects and birds the wing-surface is greatly in excess, the surplus wing area supplying that degree of elevating and sustaining power which is necessary to prevent undue exertion on the part of the volant animal. In this we have a partial explanation of the buoyancy of insects, and the great lifting power possessed by birds and bats,—the bats carrying their young without inconvenience, the birds elevating surprising quantities of fish, game, carrion, &c. (fig. 28).

While as explained, no definite relation exists between the weight of a flying animal and the size of its flying surfaces, there being, as stated, heavy-bodied and small-winged insects, birds and bats, and the converse, and while, as has been shown, flight is possible within a wide range, the wings being, as a rule, in excess of what are required for the purposes of flight,—still it appears from the researches of L. de Lucy that there is a general law, to the effect that the larger the volant animal, the smaller, by comparison, are its flying surfaces. The existence of such a law is very encouraging so far as artificial flight is concerned, for it shows that the flying surfaces of a large, heavy, powerful flying machine will be comparatively small, and consequently comparatively compact and strong. This is a point of very considerable importance, as the object desiderated in a flying machine is elevating capacity.

De Lucy tabulated his results as under:—

“It is easy, by the aid of this table, to follow the order, always decreasing, of the surfaces, in proportion as the winged animal increases in size and weight. Thus, in comparing the insects with one another, we find that the gnat, which weighs 460 times less than the stag-beetle, has 14 times more of surface. The lady-bird weighs 150 times less than the stag-beetle, and possesses 5 times more of surface, &c. It is the same with the birds. The sparrow weighs about 10 times less than the pigeon, and has twice as much surface. The pigeon weighs about 8 times less than the stork, and has twice as much surface. The sparrow weighs 339 times less than the Australian crane, and possesses 7 times more surface, &c. If now we compare the insects and the birds, the gradation will become even much more striking. The gnat, for example, weighs 97,000 times less than the pigeon, and has 40 times more surface; it weighs three millions of times less than the crane of Australia, and possesses 140 times more of surface than this latter, the weight of which is about 9 kilogrammes 500 grammes (25 ℔ 5 oz. 9 dwt. troy, 20 ℔ 15 oz. 2¼ dr. avoirdupois).“The Australian crane, the heaviest bird weighed, is that which has the smallest amount of surface, for, referred to the kilogramme, it does not give us a surface of more than 899 square centimetres (139 sq. in.), that is to say, about an eleventh part of a square metre. But every one knows that these grallatorial animals are excellent birds of flight. Of all travelling birds they undertake the longest and most remote journeys. They are, in addition, the eagle excepted, the birds which elevate themselves the highest, and the flight of which is the longest maintained.”12

“It is easy, by the aid of this table, to follow the order, always decreasing, of the surfaces, in proportion as the winged animal increases in size and weight. Thus, in comparing the insects with one another, we find that the gnat, which weighs 460 times less than the stag-beetle, has 14 times more of surface. The lady-bird weighs 150 times less than the stag-beetle, and possesses 5 times more of surface, &c. It is the same with the birds. The sparrow weighs about 10 times less than the pigeon, and has twice as much surface. The pigeon weighs about 8 times less than the stork, and has twice as much surface. The sparrow weighs 339 times less than the Australian crane, and possesses 7 times more surface, &c. If now we compare the insects and the birds, the gradation will become even much more striking. The gnat, for example, weighs 97,000 times less than the pigeon, and has 40 times more surface; it weighs three millions of times less than the crane of Australia, and possesses 140 times more of surface than this latter, the weight of which is about 9 kilogrammes 500 grammes (25 ℔ 5 oz. 9 dwt. troy, 20 ℔ 15 oz. 2¼ dr. avoirdupois).

“The Australian crane, the heaviest bird weighed, is that which has the smallest amount of surface, for, referred to the kilogramme, it does not give us a surface of more than 899 square centimetres (139 sq. in.), that is to say, about an eleventh part of a square metre. But every one knows that these grallatorial animals are excellent birds of flight. Of all travelling birds they undertake the longest and most remote journeys. They are, in addition, the eagle excepted, the birds which elevate themselves the highest, and the flight of which is the longest maintained.”12

The way in which the natural wing rises and falls on the air, and reciprocates with the body of the flying creature, has a very obvious bearing upon artificial flight. In natural flight the body of the flying creature falls slightly forward in a curve when thewing ascends, and is slightly elevated in a curve when the wing descends. The wing and body are consequently always playing at cross purposes, the wing rising when the body is falling and vice versa. The alternate rise and fall of the body and wing of the bird are well seen when contemplating the flight of the gull from the stern of a steamboat, as the bird is following in the wake of the vessel. The complementary movements referred to are indicated at fig. 29, where the continuous waved line represents the trajectory made by the wing, and the dotted waved line that made by the body. As will be seen from this figure,the wing advances both when it rises and when it falls. It is a peculiarity of natural wings, and of artificial wings constructed on the principle of living wings, that when forcibly elevated or depressed, even in a strictly vertical direction, they inevitably dart forward. If, for instance, the wing is suddenly depressed in a vertical direction, as ata bof fig. 29, it at once darts downwards and forwards in a double curve (see continuous line of figure) toc, thus converting the vertical down stroke into adown, oblique, forward stroke. If, again, the wing be suddenly elevated in a strictly vertical direction, as atc d, the wing as certainly darts upwards and forwards in a double curve toe, thus converting the vertical up strokes into anupward, oblique, forward stroke. The same thing happens when the wing is depressed frometofand elevated fromgtoh, the wing describing awaved trackas ate g, g i.

There are good reasons why the wings should always be in advance of the body. A bird when flying is a body in motion; but a body in motion tends to fall not vertically downwards, butdownwards and forwards. The wings consequently must be made to strikeforwardsand kept in advance of the body of the bird if they are to prevent the bird from fallingdownwards and forwards. If the wings were to strike backwards in aerial flight, the bird would turn a forward somersault.

That the wings invariably strike forwards during the down and up strokes in aerial flight is proved alike by observation and experiment. If any one watches a bird rising from the ground or the water, he cannot fail to perceive that the head and body are slightly tilted upwards, and that the wings are made to descend with great vigour in a downward andforwarddirection. The dead natural wing and a properly constructed artificial wing act in precisely the same way. If the wing of a gannet, just shot, be removed and made to flap in what the operator believes to be a strictly vertical downward direction, the tip of the wing, in spite of him, will dart forwards between 2 and 3 ft.—the amount of forward movement being regulated by the rapidity of the down stroke. This is a very striking experiment. The same thing happens with a properly constructed artificial wing. The down stroke with the artificial as with the natural wing is invariably converted into an oblique, downward and forward stroke. No one ever saw a bird in the air flapping its wings towards its tail. The old idea was that the wings during the down strokepushedthe body of the bird in an upward and forward direction; in reality the wings do not push butpull, and in order to pull they must always be in advance of the body to be flown. If the wings did not themselves flyforward, they could not possibly cause the body of the bird to fly forward. It is the wings which cause the bird to fly.

It only remains to be stated that the wing acts as a true kite, during both the down and the up strokes, its under concave or biting surface, in virtue of the forward travel communicated to it by the body of the flying creature, being closely applied to the air, during both its ascent and its descent. This explains how the wing furnishes a persistent buoyancy alike when it rises and when it falls (fig. 30).

The natural kite formed by the wing differs from the artificial kite only in this, that the former is capable of being moved in all its parts, and is more or less flexible and elastic, whereas the latter is comparatively rigid. The flexibility and elasticity of the kite formed by the natural wing are rendered necessary by the fact that the wing, as already stated, is practically hinged at its root and along its anterior margin, an arrangement which necessitates its several parts travelling at different degrees of speed, in proportion as they are removed from the axes of rotation. Thus the tip travels at a higher speed than the root, and the posterior margin than the anterior margin. This begets atwisting diagonal movementof the wing on its long axis, which, but for the elasticity referred to, would break the wing into fragments. The elasticity contributes also to the continuous play of the wing, and ensures that no two parts of it shall reverse at exactly the same instant. If the wing was inelastic, every part of it would reverse at precisely the same moment, and its vibration would be characterized by pauses or dead points at the end of the down and up strokes which would be fatal to it as a flying organ. The elastic properties of the wing are absolutely essential, when the mechanism and movements of the pinion are taken into account. A rigid wing can never be an effective flying instrument.

The kite-like surfaces referred to in natural flight are those upon which the constructors of flying machines very properly ground their hopes of ultimate success. These surfaces may be conferred on artificial wings, aeroplanes, aerial screws or similar structures; and these structures, if we may judge from what we find in nature,should be of moderate size and elastic. The power of the flying organs will be increased if they are driven at a comparatively high speed, and particularly if they are made to reverse and reciprocate, as in this case they will practically create the currents upon which they are destined to rise and advance. The angles made by the kite-like surfaces with the horizon should vary according to circumstances. They should be small when the speed is high, and vice versa. This, as stated, is true of natural wings. It should also be true of artificial wings and their analogues.

Artificial Flight.—We are now in a position to enter upon a consideration of artificial wings and wing movements, and of artificial flight and flying machines.

We begin with artificial wings. The first properly authenticated account of an artificial wing was given by G.A. Borelli in 1670. This author, distinguished alike as a physiologist, mathematician and mechanician, describes and figures a bird with artificial wings, each of which consists ofa rigid rod in front and flexible feathers behind. The wings are represented as strikingvertically downwards, as the annexed duplicate of Borelli’s figure shows (fig. 31).

r e, Anterior margin of the right wing, consisting of a rigid rod.

o a, Posterior margin of the right wing, consisting of flexible feathers.

b c, Anterior; and

f, Posterior margins of the left wing same as the right.

d, Tail of the bird.

r g, d h, Vertical direction of the down stroke of the wing.

Borelli was of opinion that flight resulted from the application of an inclined plane, which beats the air, and which has a wedgeaction. He, in fact, endeavours to prove that a bird wedges itself forward upon the air by the perpendicular vibration of its wings, the wings during their action forming a wedge, the base of which (c b e) is directed towards the head of the bird, the apex (a f) being directed towards the tail (d). In the 196th proposition of his work (De motu animalium, Leiden, 1685) he states that—


Back to IndexNext