References.—Some of the books mentioned underAeronauticscontain details of flying machines; see H.W.L. Moedebeck,A Pocketbook of Aeronautics, trans. by W. Mansergh Varley (London, 1907); Sir Hiram S. Maxim,Artificial and Natural Flight(London, 1908); F.W. Lanchester,AerodynamicsandAerodonetics(London, 1907 and 1908); C.C. Turner,Aerial Navigation of To-day(London, 1909); also two papers on “Aerial Navigation” read by Colonel G.O. Fullerton before the Royal United Service Institution in 1892 and 1906; papers read by Major B.F.S. Baden-Powell and E.S. Bruce before the Society of Arts, London, in April 1907 and December 1908 respectively; Cantor Lectures by F.W. Lanchester (Society of Arts, 1909); and theProceedingsof the Aeronautical Society (founded 1865), &c.
References.—Some of the books mentioned underAeronauticscontain details of flying machines; see H.W.L. Moedebeck,A Pocketbook of Aeronautics, trans. by W. Mansergh Varley (London, 1907); Sir Hiram S. Maxim,Artificial and Natural Flight(London, 1908); F.W. Lanchester,AerodynamicsandAerodonetics(London, 1907 and 1908); C.C. Turner,Aerial Navigation of To-day(London, 1909); also two papers on “Aerial Navigation” read by Colonel G.O. Fullerton before the Royal United Service Institution in 1892 and 1906; papers read by Major B.F.S. Baden-Powell and E.S. Bruce before the Society of Arts, London, in April 1907 and December 1908 respectively; Cantor Lectures by F.W. Lanchester (Society of Arts, 1909); and theProceedingsof the Aeronautical Society (founded 1865), &c.
1According to Dr Crisp, the swallow, martin, snipe and many birds of passage have no air in their bones.—Proc. Zool. Soc. Lond. part xxv., 1857, p. 13.2By the term aeroplane is meant a thin, light, expanded structure inclined at a slight upward angle to the horizon intended to float or rest upon the air, and calculated to afford a certain amount of support to any body attached to it.3“On the Various Modes of Flight in relation to Aeronautics,” by J. Bell Pettigrew,Proc. Roy. Inst., 1867; “On the Mechanical Appliances by which Flight is attained in the Animal Kingdom,” by the same author,Trans. Linn. Soc., 1867.4Revue des cours scientifiques de la France et de l’Étranger, 1869.5The sphygmograph, as its name indicates, is a recording instrument. It consists of a smoked cylinder revolving by means of clock-work at a known speed, and a style or pen which inscribes its surface by scratching or brushing away the lampblack. The movements to be registered are transferred to the style or pen by one or more levers, and the pen in turn transfers them to the cylinder, where they appear as legible tracings. In registering the movements of the wings the tips and margins of the pinions were, by an ingenious modification, employed as the styles or pens. By this arrangement the different parts of the wings were made actually to record their own movements. As will be seen from this account, the figure-of-8 or wave theory of stationary and progressive flight has been made the subject of a rigorousexperimentum crucis.6This continuity of the down into the up stroke and the converse is greatly facilitated by the elastic ligaments at the root and in the substance of the wing. These assist in elevating, and, when necessary, in flexing and elevating it. They counteract in some measure what may be regarded as the dead weight of the wing, and are especially useful in giving it continuous play.7“The importance of the twisted configuration or screw-like form cannot be over-estimated. That this shape is intimately associated with flight is apparent from the fact that the rowing feathers of the wing of the bird are every one of them distinctly spiral in their nature; in fact, one entire rowing feather is equivalent—morphologically and physiologically—to one entire insect wing. In the wing of the martin, where the bones of the pinion are short, and in some respects rudimentary, the primary and secondary feathers are greatly developed, and banked up in such a manner that the wing as a whole presents the same curves as those displayed by the insect’s wing, or by the wing of the eagle, where the bones, muscles and feathers have attained a maximum development. The conformation of the wing is such that it presents a waved appearance in every direction—the waves running longitudinally, transversely and obliquely. The greater portion of the wing may consequently be removed without essentially altering either its form or its functions. This is proved by making sections in various directions, and by finding that in some instances as much as two-thirds of the wing may be lopped off without materially impairing the power of flight.”—Trans. Roy. Soc. Edin.vol. xxvi. pp. 325, 326.8“On the Various Modes of Flight in relation to Aeronautics,”Proc. Roy. Inst., 1867; “On the Mechanical Appliances by which Flight is attained in the Animal Kingdom,”Trans. Linn. Soc., 1867, 26.9“On the Physiology of Wings; being an analysis of the movements by which flight is produced in the Insect, Bat and Bird,”Trans. Roy. Soc. Edin.vol. 26.10The other forces which assist in elevating the wings are—(a) the elevator muscles of the wings, (b) the elastic properties of the wings, and (c) the reaction of the compressed air on the under surfaces of the wings.11The wings of the albatross, when fully extended, measure across the back some 14 ft. They are exceedingly narrow, being sometimes under a foot in width.12On the Flight of Birds, of Bats and of Insects, in reference to the subject of Aerial Locomotion,by L. de Lucy (Paris).13E.J. Marey,Revue des cours scientifiques de la France et de l’étranger(1869).14“The Aero-bi-plane, or First Steps to Flight,”Ninth Annual Report of the Aeronautical Society of Great Britain, 1874.15“Resistance to Falling Planes on a Path of Translation,”Ninth Annual Report of the Aeronautical Society of Great Britain, 1874.16TheAeronautfor January 1872 and February 1875.17Cayley’s screws, as explained, were made of feathers, and consequently elastic. As, however, no allusion is made in his writings to the superior advantages possessed by elastic over rigid screws, it is to be presumed that feathers were employed simply for convenience and lightness. Pettigrew, there is reason to believe, was the first to advocate the employment of elastic screws for aerial purposes.18Stringfellow constructed a second model, which is described and figured further on (fig. 44).19“On Aerial Locomotion,”Aeronautical Society’s Reportfor 1867.
1According to Dr Crisp, the swallow, martin, snipe and many birds of passage have no air in their bones.—Proc. Zool. Soc. Lond. part xxv., 1857, p. 13.
2By the term aeroplane is meant a thin, light, expanded structure inclined at a slight upward angle to the horizon intended to float or rest upon the air, and calculated to afford a certain amount of support to any body attached to it.
3“On the Various Modes of Flight in relation to Aeronautics,” by J. Bell Pettigrew,Proc. Roy. Inst., 1867; “On the Mechanical Appliances by which Flight is attained in the Animal Kingdom,” by the same author,Trans. Linn. Soc., 1867.
4Revue des cours scientifiques de la France et de l’Étranger, 1869.
5The sphygmograph, as its name indicates, is a recording instrument. It consists of a smoked cylinder revolving by means of clock-work at a known speed, and a style or pen which inscribes its surface by scratching or brushing away the lampblack. The movements to be registered are transferred to the style or pen by one or more levers, and the pen in turn transfers them to the cylinder, where they appear as legible tracings. In registering the movements of the wings the tips and margins of the pinions were, by an ingenious modification, employed as the styles or pens. By this arrangement the different parts of the wings were made actually to record their own movements. As will be seen from this account, the figure-of-8 or wave theory of stationary and progressive flight has been made the subject of a rigorousexperimentum crucis.
6This continuity of the down into the up stroke and the converse is greatly facilitated by the elastic ligaments at the root and in the substance of the wing. These assist in elevating, and, when necessary, in flexing and elevating it. They counteract in some measure what may be regarded as the dead weight of the wing, and are especially useful in giving it continuous play.
7“The importance of the twisted configuration or screw-like form cannot be over-estimated. That this shape is intimately associated with flight is apparent from the fact that the rowing feathers of the wing of the bird are every one of them distinctly spiral in their nature; in fact, one entire rowing feather is equivalent—morphologically and physiologically—to one entire insect wing. In the wing of the martin, where the bones of the pinion are short, and in some respects rudimentary, the primary and secondary feathers are greatly developed, and banked up in such a manner that the wing as a whole presents the same curves as those displayed by the insect’s wing, or by the wing of the eagle, where the bones, muscles and feathers have attained a maximum development. The conformation of the wing is such that it presents a waved appearance in every direction—the waves running longitudinally, transversely and obliquely. The greater portion of the wing may consequently be removed without essentially altering either its form or its functions. This is proved by making sections in various directions, and by finding that in some instances as much as two-thirds of the wing may be lopped off without materially impairing the power of flight.”—Trans. Roy. Soc. Edin.vol. xxvi. pp. 325, 326.
8“On the Various Modes of Flight in relation to Aeronautics,”Proc. Roy. Inst., 1867; “On the Mechanical Appliances by which Flight is attained in the Animal Kingdom,”Trans. Linn. Soc., 1867, 26.
9“On the Physiology of Wings; being an analysis of the movements by which flight is produced in the Insect, Bat and Bird,”Trans. Roy. Soc. Edin.vol. 26.
10The other forces which assist in elevating the wings are—(a) the elevator muscles of the wings, (b) the elastic properties of the wings, and (c) the reaction of the compressed air on the under surfaces of the wings.
11The wings of the albatross, when fully extended, measure across the back some 14 ft. They are exceedingly narrow, being sometimes under a foot in width.
12On the Flight of Birds, of Bats and of Insects, in reference to the subject of Aerial Locomotion,by L. de Lucy (Paris).
13E.J. Marey,Revue des cours scientifiques de la France et de l’étranger(1869).
14“The Aero-bi-plane, or First Steps to Flight,”Ninth Annual Report of the Aeronautical Society of Great Britain, 1874.
15“Resistance to Falling Planes on a Path of Translation,”Ninth Annual Report of the Aeronautical Society of Great Britain, 1874.
16TheAeronautfor January 1872 and February 1875.
17Cayley’s screws, as explained, were made of feathers, and consequently elastic. As, however, no allusion is made in his writings to the superior advantages possessed by elastic over rigid screws, it is to be presumed that feathers were employed simply for convenience and lightness. Pettigrew, there is reason to believe, was the first to advocate the employment of elastic screws for aerial purposes.
18Stringfellow constructed a second model, which is described and figured further on (fig. 44).
19“On Aerial Locomotion,”Aeronautical Society’s Reportfor 1867.
FLINCK, GOVERT(1615-1660), Dutch painter, born at Cleves in 1615, was apprenticed by his father to a silk mercer, but having secretly acquired a passion for drawing, was sent to Leuwarden, where he boarded in the house of Lambert Jacobszon, a Mennonite, better known as an itinerant preacher than as a painter. Here Flinck was joined by Jacob Backer, and the companionship of a youth determined like himself to be an artist only confirmed his passion for painting. Amongst the neighbours of Jacobszon at Leuwarden were the sons and relations of Rombert Ulenburg, whose daughter Saske married Rembrandt in 1634. Other members of the same family lived at Amsterdam, cultivating the arts either professionally or as amateurs. The pupils of Lambert probably gained some knowledge of Rembrandt by intercourse with the Ulenburgs. Certainly J. von Sandrart, who visited Holland in 1637, found Flinck acknowledged as one of Rembrandt’s best pupils, and living habitually in the house of the dealer Hendrik Ulenburg at Amsterdam. For many years Flinck laboured on the lines of Rembrandt, following that master’s style in all the works which he executed between 1636 and 1648; then he fell into peculiar mannerisms by imitating the swelling forms and grand action of Rubens’s creations. Finally he sailed with unfortunate complacency into the Dead Sea of official and diplomatic painting. Flinck’s relations with Cleves became in time very important. He was introduced to the court of the Great Elector, Frederick William of Brandenburg, who married in 1646 Louisa of Orange. He obtained the patronage of John Maurice of Orange, who was made stadtholder of Cleves in 1649. In 1652 a citizen of Amsterdam, Flinck married in 1656 an heiress, daughter of Ver Hoeven, a director of the Dutch East India Company. He was already well known even then in the patrician circles over which the burgomasters De Graef and the Echevin Six presided; he was on terms of intimacy with the poet Vondel and the treasurer Uitenbogaard. In his house, adorned with antique casts, costumes, and a noble collection of prints, he oftenreceived the stadtholder John Maurice, whose portrait is still preserved in the work of the learned Barleius.
The earliest of Flinck’s authentic pieces is a likeness of a lady, dated 1636, in the gallery of Brunswick. His first subject picture is the “Blessing of Jacob,” in the Amsterdam museum (1638). Both are thoroughly Rembrandtesque in effect as well as in vigour of touch and warmth of flesh tints. The four “civic guards” of 1642, and “the twelve musketeers” with their president in an arm-chair (1648), in the town-hall at Amsterdam, are fine specimens of composed portrait groups. But the best of Flinck’s productions in this style is the peace of Münster in the museum of Amsterdam, a canvas with 19 life-size figures full of animation in the faces, “radiant with Rembrandtesque colour,” and admirably distributed. Flinck here painted his own likeness to the left in a doorway. The mannered period of Flinck is amply illustrated in the “Marcus Curius eating Turnips before the Samnite Envoys,” and “Solomon receiving Wisdom,” in the palace on the Dam at Amsterdam. Here it is that Flinck shows most defects, being faulty in arrangement, gaudy in tint, flat and shallow in execution, and partial to whitened flesh that looks as if it had been smeared with violet powder and rouge. The chronology of Flinck’s works, so far as they are seen in public galleries, comprises, in addition to the foregoing, the “Grey Beard” of 1639 at Dresden, the “Girl” of 1641 at the Louvre, a portrait group of a male and female (1646) at Rotterdam, a lady (1651) at Berlin. In November 1659 the burgomaster of Amsterdam contracted with Flinck for 12 canvases to represent four heroic figures of David and Samson and Marcus Curius and Horatius Cocles, and scenes from the wars of the Batavians and Romans. Flinck was unable to finish more than the sketches. In the same year he received a flattering acknowledgment from the town council of Cleves on the completion of a picture of Solomon which was a counterpart of the composition at Amsterdam. This and other pictures and portraits, such as the likenesses of Frederick William of Brandenburg and John Maurice of Nassau, and the allegory of “Louisa of Orange attended by Victory and Fame” and other figures at the cradle of the first-born son of the elector, have disappeared. Of several pictures which were painted for the Great Elector, none are preserved except the “Expulsion of Hagar” in the Berlin museum. Flinck died at Amsterdam on the 22nd of February 1660.
FLINDERS, MATTHEW(1774-1814), English navigator, explorer, and man of science, was born at Donington, near Boston, in Lincolnshire, on the 16th of March 1774. Matthew was at first designed to follow his father’s profession of surgeon, but his enthusiasm in favour of a life of adventure impelled him to enter the royal navy, which he did on the 23rd of October 1789. After a voyage to the Friendly Islands and West Indies, and after serving in the “Bellerophon” during Lord Howe’s “glorious first of June” (1794) off Ushant, Flinders went out in 1795 as midshipman in the “Reliance” to New South Wales. For the next few years he devoted himself to the task of accurately laying down the outline and bearings of the Australian coast, and he did his work so thoroughly that he left comparatively little for his successors to do. With his friend George Bass, the surgeon of the “Reliance,” in the year of his arrival he explored George’s river; and, after a voyage to Norfolk Island, again in March 1796 the two friends in the same boat, the “Tom Thumb,” only 8 ft. long, and with only a boy to help them, explored a stretch of coast to the south of Port Jackson. After a voyage to the Cape of Good Hope, when he was promoted to a lieutenancy, Flinders was engaged during February 1798 in a survey of the Furneaux Islands, lying to the north of Tasmania. His delight was great when, in September of the same year, he was commissioned along with Bass, who had already explored the sea between Tasmania and the south coast to some extent and inferred that it was a strait, to proceed in the sloop “Norfolk” (25 tons) to prove conclusively that Van Diemen’s Land was an island by circumnavigating it. In the same sloop, in the summer of next year, Flinders made an exploration to the north of Port Jackson, the object being mainly to survey Glasshouse Bay (Moreton Bay) and Hervey’s Bay. Returning to England he was appointed to the command of an expedition for the thorough exploration of the coasts of Terra Australis, as the southern continent was still called, though Flinders is said to have been the first to suggest for it the name Australia. On the 18th of July 1801 the sloop “Investigator” (334 tons), in which the expedition sailed, left Spithead, Flinders being furnished with instructions and with a passport from the French government to all their officials in the Eastern seas. Among the scientific staff was Robert Brown, one of the most eminent English botanists; and among the midshipmen was Flinders’s relative, John Franklin, of Arctic fame. Cape Leeuwin, on the south-west coast of Australia, was reached on November 6, and King George’s sound on the 9th of December. Flinders sailed round the Great Bight, examining the islands and indentations on the east side, noting the nature of the country, the people, products, &c., and paying special attention to the subject of the variation of the compass. Spenser and St Vincent Gulfs were discovered and explored. On the 8th of April 1802, shortly after leaving Kangaroo Islands, at the mouth of St Vincent Gulf, Flinders fell in with the French exploring ship, “Le Géographe,” under Captain Nicolas Baudin, in the bay now known as Encounter Bay. In the narrative of the French expedition published in 1807 (when Flinders was a prisoner in the Mauritius) by M. Peron, the naturalist to the expedition, much of the land west of the point of meeting was claimed as having been discovered by Baudin, and French names were extensively substituted for the English ones given by Flinders. It was only in 1814, when Flinders published his own narrative, that the real state of the case was fully exposed. Flinders continued his examination of the coast along Bass’s Strait, carefully surveying Port Phillip. Port Jackson was reached on the 9th of May 1802.
After staying at Port Jackson for about a couple of months, Flinders set out again on the 22nd of July to complete his circumnavigation of Australia. The Great Barrier Reef was examined with the greatest care in several places. The north-east entrance of the Gulf of Carpentaria was reached early in November; and the next three months were spent in an examination of the shores of the gulf, and of the islands that skirt them. An inspection of the “Investigator” showed that she was in so leaky a condition that only with the greatest precaution could the voyage be completed in her. Flinders completed the survey of the Gulf of Carpentaria, and after touching at the island of Timor, the “Investigator” sailed round the west and south of Australia, and Port Jackson was reached on the 9th of June 1803. Much suffering was endured by nearly all the members of the expedition: a considerable proportion of the men succumbed to disease, and their leader was so reduced by scurvy that his health was greatly impaired.
Flinders determined to proceed home in H.M.S. “Porpoise” as a passenger, submit the results of his work to the Admiralty, and obtain, if possible, another vessel to complete his exploration of the Australian coast. The “Porpoise” left Port Jackson on the 10th of August, accompanied by the H.E.I.C.’s ship “Bridgewater” (750 tons) and the “Cato” (450 tons) of London. On the night of the 17th the “Porpoise” and “Cato” suddenly struck on a coral reef and were rapidly reduced to wrecks. The officers and men encamped on a small sandbank near, 3 or 4 ft. above high-water, a considerable quantity of provisions, with many of the papers and charts, having been saved from the wrecks. The reef was in about 22° 11′ S. and 155° E., and about 800 m. from Port Jackson. Flinders returned to Port Jackson in a six-oared cutter in order to obtain a vessel to rescue the party. The reef was again reached on the 8th of October, and all the officers and men having been satisfactorily disposed of, Flinders on the 11th left for Jones Strait in an unsound schooner of 29 tons, the “Cumberland,” with ten companions, and a valuable collection of papers, charts, geological specimens, &c. On the 15th of December he put in at Mauritius, when he discovered that France and England were at war. The passport he possessed from the French government was for the “Investigator”; still, though he was now on board another ship, his mission wasessentially the same, and the work he was on was simply a continuation of that commenced in the unfortunate vessel. Nevertheless, on her arrival at Port Louis the “Cumberland” was seized by order of the governor-general de Caen. Flinders’s papers were taken possession of, and he found himself virtually a prisoner. We need not dwell on the sad details of this unjustifiable captivity, which lasted to June 1810. But there can be no doubt that the hardships and inactivity Flinders was compelled to endure for upwards of six years told seriously on his health, and brought his life to a premature end. He reached England in October 1810, after an absence of upwards of nine years. The official red-tapeism of the day barred all promotion to the unfortunate explorer, who set himself to prepare an account of his explorations, though unfortunately an important part of his record had been retained by de Caen. The results of his labours were published in two large quarto volumes, entitledA Voyage to Terra Australis, with a folio volume of maps. The very day (July 19, 1814) on which his work was published Flinders died, at the early age of forty. The great work is a model of its kind, containing as it does not only a narrative of his own and of previous voyages, but masterly statements of the scientific results, especially with regard to magnetism, meteorology, hydrography and navigation. Flinders paid great attention to the errors of the compass, especially to those caused by the presence of iron in ships. He is understood to have been the first to discover the source of such errors (which had scarcely been noticed before), and after investigating the laws of the variations, he suggested counter-attractions, an invention for which Professor Barlow got much credit many years afterwards. Numerous experiments on ships’ magnetism were conducted at Portsmouth by Flinders, by order of the admiralty, in 1812. Besides theVoyage, Flinders wroteObservations on the Coast of Van Diemen’s Land,Bass’s Strait, &c., and two papers in thePhil. Trans.—one on the “Magnetic Needle” (1805), and the other, “Observations on the Marine Barometer” (1806).
(J. S. K.)
FLINSBERG,a village and watering-place of Germany, in the Prussian province of Silesia, on the Queis, at the foot of the Iserkamm, 1450 ft. above the sea, 5 m. W. of Friedeberg, the terminus station of the railway from Greiffenberg. Pop. (1900) 1957. It contains an Evangelical and a Roman Catholic church, and has some manufactures of wooden wares. Flinsberg is celebrated for its chalybeate waters, specific in cases of feminine disorders, and used both for bathing and drinking. It is also a climatic health resort of some reputation, and the visitors number about 8500 annually.
See Adam,Bad Flinsberg als klimatischer Kurort(Görlitz, 1891).
See Adam,Bad Flinsberg als klimatischer Kurort(Görlitz, 1891).
FLINT, AUSTIN(1812-1886), American physician, was born at Petersham, Massachusetts, on the 20th of October 1812, and graduated at the medical department of Harvard University in 1833. From 1847 to 1852 he was professor of the theory and practice of medicine in Buffalo Medical College, of which he was one of the founders, and from 1852 to 1856 he filled the same chair in the university of Louisville. From 1861 to 1886 he was professor of the principles and practice of medicine and clinical medicine in Bellevue Hospital Medical College, New York. He wrote many text-books on medical subjects, among these beingDiseases of the Heart(1859-1870);Principles and Practice of Medicine(1866);Clinical Medicine(1879); andPhysical Exploration of the Lungs by means of Auscultation and Percussion(1882). He died in New York on the 13th of March 1886.
His son,Austin Flint, junr., who was born at Northampton, Massachusetts, on the 28th of March 1836, after studying at Harvard and at the university of Louisville, graduated at the Jefferson Medical College, Philadelphia, in 1857. He then became professor of physiology at the university of Buffalo (1858) and subsequently at other centres, his last connexion being with the Cornell University Medical College (1898-1906). He was better known as a teacher and writer on physiology than as a practitioner, and hisText-book of Human Physiology(1876) was for many years a standard book in American medical colleges. He also published an extensivePhysiology of Man(5 vols., 1866-1874),Chemical Examination of the Urine in Disease(1870),Effects of Severe and Protracted Muscular Exercise(1871),Source of Muscular Power(1878), andHandbook of Physiology(1905). In 1896 he became a consulting physician to the New York State Hospital for the Insane.
FLINT, ROBERT(1838- ), Scottish divine and philosopher, was born near Dumfries and educated at the university of Glasgow. After a few years of pastoral service, first in Aberdeen and then at Kilconquhar, Fife, he was appointed professor of moral philosophy and political economy at St Andrews in 1864. From 1876 to 1903 he was professor of divinity at Edinburgh. He contributed a number of articles to the 9th edition of theEncyclopaedia Britannica. His chief works areChrist’s Kingdom upon Earth(Sermons, 1865);Philosophy of History in Europe(1874; partly rewritten with reference to France and Switzerland, 1894);TheismandAnti-theistic Theories(2 vols., being the Baird Lectures for 1876-1877; often reprinted);Socialism(1894);Sermons and Addresses(1899);Agnosticism(1903).
FLINT, TIMOTHY(1780-1840), American clergyman and writer, was born in Reading, Massachusetts, on the 11th of July 1780. He graduated at Harvard in 1800, and in 1802 settled as a Congregational minister in Lunenburg, Mass., where he pursued scientific studies with interest; and his labours in his chemical laboratory seemed so strange to the people of that retired region, that some persons supposed and asserted that he was engaged in counterfeiting. This, together with political differences, led to disagreeable complications, which resulted in his resigning his charge (1814) and becoming a missionary (1815) in the valley of the Mississippi. He was also for a short period a teacher and a farmer. His observations on the manners and character of the settlers of the Ohio and Mississippi valleys were recorded in a picturesque work calledRecollections of the Last Ten Years passed in the Valley of the Mississippi(1826; reprinted in England and translated into French), the first account of the western states which brought to light the real life and character of the people. The success which this work met with, together with the failing health of the writer, led him to relinquish his more active labours for literary pursuits, and, besides editing theWestern Reviewin Cincinnati from 1825 to 1828 andKnickerbocker’s Magazine(New York) in 1833, he published a number of books, includingFrancis Berrian, or the Mexican Patriot(1826), his best novel;A Condensed Geography and History of the Western States, or the Mississippi Valley(2 vols., 1828);Arthur Clenning(1828), a novel; andIndian Wars in the West(1833). His style is vivid, plain and forcible, and his matter interesting; and his works on the western states are of great value. He died in Salem, Mass., on the 16th of August 1840.
FLINT,a city and the county-seat of Genesee county, Michigan, U.S.A., on Flint river, 68 m. (by rail) N.W. of Detroit. Pop. (1890) 9803; (1900) 13,103, of whom 2165 were foreign-born; (1910, census) 38,550. It is served by the Grand Trunk and the Père Marquette railways, and by an electric line, the Detroit United railway, connecting with Detroit. The city has a fine court-house (1904), a federal building (1908), a city hall (1908) and a public library. The Michigan school for the deaf, established in 1854, and the Oak Grove hospital (private) for the treatment of mental and nervous diseases, are here. Flint has important manufacturing interests, its chief manufactures being automobiles, wagons, carriages—Flint is called “the vehicle city,”—flour, woollen goods, iron goods, cigars, beer, and bricks and tiles; and its grain trade is of considerable importance. In 1904 the total value of the city’s factory product was $6,177,170, an increase of 31.1% over that of 1900. The settlement of the place, then called the Grand Traverse of the Flint, began in 1820, but Flint’s growth was very slow until 1831, when it was platted as a village; it was chartered as a city in 1855.
FLINT,orFlintshire(sîr Gallestr), a county of North Wales, the smallest in the country, bounded N. by the Irish Sea and the Dee estuary, N.E. by the Dee, E. by Cheshire, and S.W. by Denbighshire. Area, 257 sq. m. Included in Flint is the detached hundred of Maelor, lying 8 m. S.E. of the main part of the county,and shut in by Cheshire on the N. and N.E., by Shropshire on the S., and by Denbighshire on the W. and N.W. The Clwyd valley is common to Flint and Denbigh. Those of the Alyn and Wepre (from Ewloe Castle to the Dee) are fine. The Dee, entering the county near Overton, divides Maelor from Denbigh on the W., passes Chester and bounds most of the county on the N. The Clwyd enters Flint near Bodfary, and joining the Elwy near Rhuddlan, reaches the Irish Sea near Rhyl. The Alyn enters the county under Moel Fammau, passes Cilcen and Mold (y Wyddgrug), runs underground near Hesb-Alyn (Alyn’s drying-up), bends south to Caergwrle, re-enters Denbighshire and joins the Dee. Llyn Helyg (willow-pool), near Whitford, is the chief lake.
Both for their influence upon the physical features and for their economic value the carboniferous rocks of Flintshire are the most important. From Prestatyn on the coast a band of carboniferous limestone passes close by Holywell and through Caerwen; it forms the Halkin Mountain east of Halkin, whence it continues past Mold to beyond the county boundary. The upper portion of this series is cherty in the north—the chert is quarried for use in the potteries of Staffordshire—but traced southward it passes into sandstones and grits; above these beds come the Holywell shales, possibly the equivalent of the Pendleside series of Lancashire and Derbyshire, while upon them lies the Gwespyr sandstone, which has been thought to correspond to the Gannister coal measures of Lancashire, but may be a representative of the Millstone Grit. Farther to the east, the coal measures, with valuable coals, some oil shale, and with fireclays and marls which are used for brick and tile-making, extend from Talacre through Flint, Northop, Hawarden and Broughton to Hope. The carboniferous rocks appear again through the intervention of a fault, in the neighbourhood of St Asaph. Silurian strata, mostly of Wenlock age, lie below the carboniferous limestone on the western border of the county. Triassic red beds of the Bunter fill the Clwyd valley and appear again on the coal measures S.E. of Chester. Lead and zinc ores have been worked in the lower carboniferous rocks in the north of the county, and caves in the same formation, at Caer Gwyn and Ffynnon Beuno, have yielded the remains of Pleistocene mammals along with palaeolithic implements. Much glacial drift obscures the older rocks on the east and north and in the vale of Clwyd. Short stretches of blown sand occur on the coast near Rhyl and Talacre.
Both for their influence upon the physical features and for their economic value the carboniferous rocks of Flintshire are the most important. From Prestatyn on the coast a band of carboniferous limestone passes close by Holywell and through Caerwen; it forms the Halkin Mountain east of Halkin, whence it continues past Mold to beyond the county boundary. The upper portion of this series is cherty in the north—the chert is quarried for use in the potteries of Staffordshire—but traced southward it passes into sandstones and grits; above these beds come the Holywell shales, possibly the equivalent of the Pendleside series of Lancashire and Derbyshire, while upon them lies the Gwespyr sandstone, which has been thought to correspond to the Gannister coal measures of Lancashire, but may be a representative of the Millstone Grit. Farther to the east, the coal measures, with valuable coals, some oil shale, and with fireclays and marls which are used for brick and tile-making, extend from Talacre through Flint, Northop, Hawarden and Broughton to Hope. The carboniferous rocks appear again through the intervention of a fault, in the neighbourhood of St Asaph. Silurian strata, mostly of Wenlock age, lie below the carboniferous limestone on the western border of the county. Triassic red beds of the Bunter fill the Clwyd valley and appear again on the coal measures S.E. of Chester. Lead and zinc ores have been worked in the lower carboniferous rocks in the north of the county, and caves in the same formation, at Caer Gwyn and Ffynnon Beuno, have yielded the remains of Pleistocene mammals along with palaeolithic implements. Much glacial drift obscures the older rocks on the east and north and in the vale of Clwyd. Short stretches of blown sand occur on the coast near Rhyl and Talacre.
The London & North-Western railway follows the coast-line. Other railways which cross the county are the Great Western, and the Wrexham, Mold & Connah’s Quay, acquired by the Great Central company. For pasture the vale of Clwyd is well known. Oats, turnips and swedes are the chief crops. Stock and dairy farming prospers, native cattle being crossed with Herefords and Downs, native sheep with Leicesters and Southdowns, while in the thick mining population a ready market is found for meat, cheese, butter, &c. The population (81,700 in 1901) nearly doubled in the 19th century, and Flintshire to-day is one of the most densely populated counties in North Wales. The area of the ancient county is 164,744 acres, and that of the administrative county 163,025 acres. The collieries begin at Llanasa, run through Whitford, Holywell, Flint, Halkin (Halcyn), Northop, Buckley, Mold and Hawarden (Penarlâg). At Halkin, Mold, Holywell, Prestatyn and Talacre lead is raised, and is sometimes sent to Bagillt, Flint or Chester to be smelted. Zinc, formerly only worked at Dyserth, has increased in output, and copper mines also exist, as at Talargoch, together with smelting works, oil, vitriol, potash and alkali manufactories. Potteries around Buckley send their produce chiefly to Connah’s Quay, whence a railway crosses the Dee to the Birkenhead (Cheshire) district. Iron seams are now thin, but limestone quarries yield building stone, lime for burning and small stone for chemical works. Fisheries are unproductive and textile manufactures small.
The county returns one member to parliament. The parliamentary borough district (returning one member), consists of Caergwrle, Caerwys, Flint, Holywell, Mold, Overton, St Asaph and Rhuddlan. In addition, there is a small part of the Chester parliamentary borough. There is one municipal borough, Flint (pop. 4625). The other urban districts are: Buckley (5780), Connah’s Quay (3369), Holywell (2652), Mold (4263), Prestatyn (1261) and Rhyl (8473). Flint is in the North Wales and Chester circuit, assizes being held at Mold. The Flint borough has a separate commission of the peace, but no separate court of quarter sessions. The ancient county, which is in the dioceses of Chester, Lichfield and St Asaph, contains forty-six entire ecclesiastical parishes and districts, with parts of eleven others.
Among sites of antiquarian or historical interest, besides the fragmentary ruin of Flint Castle, the following may be mentioned:—Caerwys, near Flint, still shows traces of Roman occupation. Bodfary (Bodfari) was traditionally occupied by the Romans. Moel y gaer (bald hill of the fortress), near Northop, is a remarkably perfect old British post. Maes y Garmon (perhaps forMeusydd Garmon, asy, the article, has no significance before a proper name, and so to be translated, battlefields of Germanus). A mile from Mold is the reputed scene ofune victoire sans larmes, gagnée non par les armes, mais par la foi(E.H. Vollet). The Britons, says the legend, were threatened by the Picts and Saxons, at whose approach theAlleluiaof that Easter (A.D.430) was sung. Panic duly seized the invaders, but the victor, St Germanus, confessor and bishop of Auxerre (A.D.380-448), had to return to the charge in 446. He has, under the name Garmon, a great titular share in British topography. At Bangor Iscoed, “the great high choir in Maelor,” was the monastery, destroyed with over 2000 monks, by Æthelfred of Northumberland in 607, as (by a curious coincidence) its namesake Bangor in Ireland was sacked by the Danes in the 9th century. Bede says (ii. 2) that Bangor monastery was in seven sections, with three hundred (working) monks. The supposed lines of direction of Watt’s and Offa’s dykes were: Basingwerk, Halkin, Hope, Alyn valley, Oswestry (Croes Oswallt, “Oswald’s cross”), for Watt’s, and Prestatyn, Mold, Minera, across the Severn (Hafren, or Sabrina) for Offa’s. Owain Gwynedd (Gwynedd or Venedocia, is North Wales) defeated Henry II. at Coed Ewloe (where is a tower) and at Coleshill (Cynsyllt). Near Pant Asa (pantis a bottom) is the medieval Maen Achwynfan (achwyn, to complain,maen, stone), and tumuli, menhirs (meini hirion) and inscribed stones are frequent throughout the county. There is a 14th-century cross in Newmarket churchyard. Caergwrle Castle seems early Roman, or even British; but most of the castles in the county date from the early Edwards.
See H. Taylor,Flint(London, 1883).
See H. Taylor,Flint(London, 1883).
FLINT,a municipal borough and the county town of the above; a seaport and contributory parliamentary borough, on the south of the Dee estuary, 192 m. from London by the London & North-Western railway. Pop. (1901) 4265. The seat of great alkali manufactures, it imports chiefly sulphur and other chemicals, exporting coal, soda, potash, copper, &c. The county gaol here, as at Haverfordwest, occupied an angle of the castle, was removed to Mold, and is now Chester Castle (jointly with Cheshire.)
Flint Castle was built on a lonely rock by the riverside by Edward I. Here met Edward II. and Piers Gaveston. Edward III. bestowed its constableship upon the earls of Chester, and here Richard II. surrendered to Bolingbroke. It was twice taken, after siege, by the parliamentarians, and finally dismantled in 1647. There remain a square court (with angle towers), round tower and drawbridge, all three entrusted to a constable, appointed by the crown under the Municipal Corporations Reforms Act. Made a borough by Edward I., Flint was chartered by Edward III., and by Edward the Black Prince, as earl of Chester.
FLINT(a word common in Teutonic and Scandinavian languages, possibly cognate with the Gr.πλίνθος, a tile), in petrology, a dark grey or dark brown crypto-crystalline substance which has an almost vitreous lustre, and when pure appears structureless to the unaided eye. In the mass it is dark and opaque, but thin plates or the edges of splinters are pale yellow and translucent. Its hardness is greater than that of steel, so that a knife blade leaves a grey metallic streak when drawn across its surface. Its specific gravity is 2.6 or only a little less than that of crystalline quartz. It is brittle, and when hammered readily breaks up into a powder of angular grains. The fracture is perfectly conchoidal, so that blows with a hammer detach flakes which have convex, slightly undulating surfaces. At the point of impact a bulb of percussion, which is a somewhatelevated conical mark, is produced. This serves to distinguish flints which have been fashioned by human agencies from those which have been split merely by the action of frost and the weather. The bulb is evidence of a direct blow, probably intentionally made, and is a point of some importance to archaeologists investigating Palaeolithic implements. With skill and experience a mass of flint can be worked to any simple shape by well directed strokes, and further trimming can be effected with pressure by a pointed stone in a direction slightly across the edge of the weapon. The purest flints have the most perfect conchoidal fracture, and prehistoric man is known to have quarried or mined certain bands of flint which were specially suitable for his purposes.
Silica forms nearly the whole substance of flint; calcite and dolomite may occur in it in small amounts, and analysis has also detected minute quantities of volatile ingredients, organic compounds, &c., to which the dark colour is ascribed by some authorities. These are dispelled by heat and the flint becomes white and duller in lustre. Microscopic sections show that flint is very finely crystalline and consists of quartz or chalcedonic silica; colloidal or amorphous silica may also be present but cannot form any considerable part of the rock. Spicules of sponges and fragments of other organisms, such as molluscs, polyzoa, foraminifera and brachiopods, often occur in flint, and may be partly or wholly silicified with retention of their original structure. Nodules of flint when removed from the chalk which encloses them have a white dull rough surface, and exposure to the weather produces much the same appearance on broken flints. At first they acquire a bright and very smooth surface, but this is subsequently replaced by a dull crust, resembling white or yellowish porcelain. It has been suggested that this change is due to the removal of the colloidal silica in solution, leaving behind the fibres and grains of more crystalline structure. This process must be a very slow one as, from its chemical composition, flint is a material of great durability. Its great hardness also enables it to resist attrition. Hence on beaches and in rivers, such as those of the south-east of England, flint pebbles exist in vast numbers. Their surfaces often show minute crescentic or rounded cracks which are the edges of small conchoidal fractures produced by the impact of one pebble on another during storms or floods.Flint occurs primarily as concretions, veins and tabular masses in the white chalk of such localities as the south of England (seeChalk). It is generally nodular, and forms rounded or highly irregular masses which may be several feet in diameter. Although the flint nodules often lie in bands which closely follow the bedding, they were not deposited simultaneously with the chalk; very often the flint bands cut across the beds of the limestone and may traverse them at right angles. Evidently the flint has accumulated along fissures, such as bedding planes, joints and other cracks, after the chalk had to some extent consolidated. The silica was derived from the tests of radiolaria and the spicular skeletons of sponges. It has passed into solution, filtered through the porous matrix, and has been again precipitated when the conditions were suitable. Its formation is consequently the result of “concretionary action.” Where the flints lie the chalk must have been dissolved away; we have in fact a kind of metasomatic replacement in which a siliceous rock has slowly replaced a calcareous one. The process has been very gradual and the organisms of the original chalk often have their outlines preserved in the flint. Shells may become completely silicified, or may have their cavities occupied by flint with every detail of the interior of the shell preserved in the outer surface of the cast. Objects of this kind are familiar to all collectors of fossils in chalk districts.Chert is a coarser and less perfectly homogeneous substance of the same nature and composition as flint. It is grey, black or brown, and commonly occurs in limestone (e.g.the Carboniferous Limestone) in the same way as flint occurs in chalk. Some cherts contain tests of radiolaria, and correspond fairly closely to the siliceous radiolarian oozes which are gathering at the present day at the bottom of some of the deepest parts of the oceans. Brownish cherts are found in the English Greensand; these often contain remains of sponges.
Silica forms nearly the whole substance of flint; calcite and dolomite may occur in it in small amounts, and analysis has also detected minute quantities of volatile ingredients, organic compounds, &c., to which the dark colour is ascribed by some authorities. These are dispelled by heat and the flint becomes white and duller in lustre. Microscopic sections show that flint is very finely crystalline and consists of quartz or chalcedonic silica; colloidal or amorphous silica may also be present but cannot form any considerable part of the rock. Spicules of sponges and fragments of other organisms, such as molluscs, polyzoa, foraminifera and brachiopods, often occur in flint, and may be partly or wholly silicified with retention of their original structure. Nodules of flint when removed from the chalk which encloses them have a white dull rough surface, and exposure to the weather produces much the same appearance on broken flints. At first they acquire a bright and very smooth surface, but this is subsequently replaced by a dull crust, resembling white or yellowish porcelain. It has been suggested that this change is due to the removal of the colloidal silica in solution, leaving behind the fibres and grains of more crystalline structure. This process must be a very slow one as, from its chemical composition, flint is a material of great durability. Its great hardness also enables it to resist attrition. Hence on beaches and in rivers, such as those of the south-east of England, flint pebbles exist in vast numbers. Their surfaces often show minute crescentic or rounded cracks which are the edges of small conchoidal fractures produced by the impact of one pebble on another during storms or floods.
Flint occurs primarily as concretions, veins and tabular masses in the white chalk of such localities as the south of England (seeChalk). It is generally nodular, and forms rounded or highly irregular masses which may be several feet in diameter. Although the flint nodules often lie in bands which closely follow the bedding, they were not deposited simultaneously with the chalk; very often the flint bands cut across the beds of the limestone and may traverse them at right angles. Evidently the flint has accumulated along fissures, such as bedding planes, joints and other cracks, after the chalk had to some extent consolidated. The silica was derived from the tests of radiolaria and the spicular skeletons of sponges. It has passed into solution, filtered through the porous matrix, and has been again precipitated when the conditions were suitable. Its formation is consequently the result of “concretionary action.” Where the flints lie the chalk must have been dissolved away; we have in fact a kind of metasomatic replacement in which a siliceous rock has slowly replaced a calcareous one. The process has been very gradual and the organisms of the original chalk often have their outlines preserved in the flint. Shells may become completely silicified, or may have their cavities occupied by flint with every detail of the interior of the shell preserved in the outer surface of the cast. Objects of this kind are familiar to all collectors of fossils in chalk districts.
Chert is a coarser and less perfectly homogeneous substance of the same nature and composition as flint. It is grey, black or brown, and commonly occurs in limestone (e.g.the Carboniferous Limestone) in the same way as flint occurs in chalk. Some cherts contain tests of radiolaria, and correspond fairly closely to the siliceous radiolarian oozes which are gathering at the present day at the bottom of some of the deepest parts of the oceans. Brownish cherts are found in the English Greensand; these often contain remains of sponges.
The principal uses to which flint has been put are the fabrication of weapons in Palaeolithic and Neolithic times. Other materials have been employed where flint was not available,e.g.obsidian, chert, chalcedony, agate and quartzite, but to prehistoric man (seeFlint Implementsbelow) flint must have been of great value and served many of the uses to which steel is put at the present day. Flint gravels are widely employed for dressing walks and roads, and for rough-cast work in architecture. For road-mending flint, though very hard, is not regarded with favour, as it is brittle and pulverizes readily; binds badly, yielding a surface which breaks up with heavy traffic and in bad weather; and its fine sharp-edged chips do much damage to tires of motors and cycles. Seasoned flints from the land, having been long exposed to the atmosphere, are preferred to flints freshly dug from the chalk pits. Formerly flint and steel were everywhere employed for striking a light; and gun flints were required for fire-arms. A special industry in the shaping of gun flints long existed at Brandon in Suffolk. In 1870 about thirty men were employed. Since then the trade has become almost extinct as gun flints are in demand only in semi-savage countries where modern fire-arms are not obtainable. Powdered flint was formerly used in the manufacture of glass, and is still one of the ingredients of many of the finer varieties of pottery.
(J. S. F.)
FLINT IMPLEMENTS AND WEAPONS.The excavation of these remains of the prehistoric races of the globe in river-drift gravel-beds has marked a revolution in the study of Man’s history (seeArchaeology). Until almost the middle of the 19th century no suspicion had arisen in the minds of British and European archaeologists that the momentous results of the excavations then proceeding in Egypt and Assyria would be dwarfed by discoveries at home which revolutionized all previous ideas of Man’s antiquity. It was in 1841 that Boucher de Perthes observed in some sand containing mammalian remains, at Menchecourt near Abbeville, a flint, roughly worked into a cutting implement. This “find” was rapidly followed by others, and Boucher de Perthes published his first work on the subject,Antiquités celtiques et antédiluviennes: mémoire sur l’industrie primitive et les arts à leur origin(1847), in which he proclaimed his discovery of human weapons in beds unmistakably belonging to the age of the Drift. It was not until 1859 that the French archaeologist convinced the scientific world. An English mission then visited his collection and testified to the great importance of his discoveries. The “finds” at Abbeville were followed by others in many places in England, and in fact in every country where siliceous stones which are capable of being flaked and fashioned into implements are to be found. The implements occurred in beds of rivers and lakes, in the tumuli and ancient burial-mounds; on the sites of settlements of prehistoric man in nearly every land, such as the shell-heaps and lake-dwellings; but especially embedded in the high-level gravels of England and France which have been deposited by river-floods and long left high and dry above the present course of the stream. These gravels represent the Drift or Palaeolithic period when man shared Europe with the mammoth and woolly-haired rhinoceros. The worked flints of this age are, however, unevenly distributed; for while the river-gravels of south-eastern England yield them abundantly, none has been found in Scotland or the northern English counties. On the continent the same partial distribution is observable: while they occur plentifully in the north-western area of France, they are not discovered in Sweden, Norway or Denmark. The association of these flints, fashioned for use by chipping only, with the bones of animals either extinct or no longer indigenous, has justified their reference to the earlier period of the Stone Age, generally called Palaeolithic. Those flint implements, which show signs of polishing and in many cases remarkably fine workmanship, and are found in tumuli, peat-bogs and lake-dwellings mixed with the bones of common domestic animals, are assigned to the Neolithic or later Stone Age. The Palaeolithic flints are hammers, flakes, scrapers, implements worked to a cutting edge at one side, implements which resemble rude axes, flat ovoid implements worked to an edge all round, and a great quantity of spear and arrow heads. None of these is ground or polished. The Neolithic flints, on the other hand, exhibit more variety of design, are carefully finished, and the particular use of each weapon can be easily detected. Man has reached the stage of culture when he could socket a stone into a wooden handle, and fix a flaked flint as a handled dagger or knife. The workmanship is superior to that shown in any of the stone utensils made by savage tribes of historic times. The manner of making flint implements appears to have been in all ages much the same. Flint from its mode of fracture is the only kind of stone which can be chipped or flaked into almost any shape, and thus forms the principal material of these earliest weapons. The blows must be carefully aimed or the flakesdislodged will be shattered: a gun-flint maker at Brandon, Suffolk, stated that it took him two years to acquire the art.