Chapter 22

(V. B. L.)

2.Gas for Fuel and Power—The first gas-producers, which were built by Faber du Faur at Wasseralfingen in 1836 and by C.G.C. Bischof at Mägdesprung (both in Germany), consisted of simple perpendicular shafts of masonry contracted at the top and the bottom, with or without a grate for the coal. Such producers, frequently strengthened by a wrought iron casing, are even now used to a great extent. Sometimes the purpose of a gas-producer is attained in a very simple manner by lowering the grate of an ordinary fireplace so much that a layer of coal 4 or 5 ft. deep is maintained in the fire. The effect of this arrangement is that the great body of coal reaches a higher temperature than in an ordinary fireplace, and this, together with the reduction of the carbon dioxide formed immediately above the grate by the red-hot coal in the upper part of the furnace, leads to the formation of carbon monoxide which later on, on the spot where the greatest heat is required, is burned into dioxide by admitting fresh air, preferably pre-heated. This simple and inexpensive arrangement has the further advantage that the producer-gas is utilized immediately after its formation, without being allowed to cool down. But it is not very well adapted to large furnaces, and especially not to those cases where all the space round the furnace is required for manipulating heavy, white-hot masses of iron, or for similar purposes. In these cases the producers are arranged outside the iron-works, glass-works, &c., in an open yard where all the manipulations of feeding them with coal, of stoking, and of removing the ashes are performed without interfering with the work inside. But care must always be taken to place the producers at such a low level that the gas has an upward tendency, in order to facilitate its passage to the furnace where it is to be burned. This purpose can be further promoted by various means. The gas-producers constructed by Messrs Siemens Brothers, from 1856 onwards, were provided with a kind of brick chimney; on the top of this there was a horizontal iron tube, continued into an iron down-draught, and only from this the underground flues were started which sent the gas into the single furnaces. This arrangement, by which the gas was cooled down by the action of the air, acted as a gas-siphon for drawing the gas out of the producer, but it has various drawbacks and has been abandoned in all modern constructions. Where the “natural draught” is not sufficient, it is aided either by blowing air under the grate or else by suction at the other end.

We shall now describe a few of the very large number of gas-producers producers constructed, selecting some of the most widely applied in practice.

The Siemens Producer in its original shape, of which hundreds have been erected and many may be still at work, is shown in fig. 12. A is the charging-hole; B, the inclined front wall, consisting of a cast iron plate with fire-brick lining; C, the equally inclined “step-grate”; D, a damper by which the producer may be isolated in case of repairs; E, a water-pipe, by which the cinders at the bottom may be quenched before taking away; the steam here formed rises into the producer where it forms some “semi-water gas” (seeFuel:Gaseous). Openings like that shown at G serve for introducing a poker in order to clean the brickwork from adhering slags. H is the gas flue; I, the perpendicularly ascending shaft, 10 or 12 ft. high; JJ, the horizontal iron tube; K, the descending branch mentioned above, for producing a certain amount of suction by means of the gas-siphon thus formed. In the horizontal branch JJ much of the tar and flue-dust is also condensed, which is of importance where bituminous coal is employed for firing.Fig. 16.—Taylor’s Producer.Fig. 17.—Dowson Gas Plant.Fig. 18.—Mond Gas Plant.Fig. 19.—Mond Gas Plant.This as well as most other descriptions of gas-producers, is not adapted to being worked with such coal as softens in the heat and forms cakes, impenetrable to the air and impeding the regular sinking of the charge in the producer. The fuel employed should be non-bituminous coal, anthracite or coke, or at least so much of these materials should be mixed with ordinary coal that no semi-solid cakes of the kind just described are formed. Where it is unavoidable to work with coal softening in the fire, Lürmann’s producer may be employed, which is shown in fig. 13. V shows a gas-producer of the ordinary kind, which during regular work is filled with the coke formed in the horizontal retort E. The doorbserves for removing the slags and ashes from the bottom of V, as far as they do not fall through the grate. The hot producer-gas formed in V is passed round the retort E in the flues n2n2, and ultimately goes away through K to the furnace where it is to be used. The retort E is charged with ordinary bituminous coal which is submitted to destructive distillation by the heat communicated through the flues n2n2and is thus converted into coke. The gases formed during this process pass into the upper portion of V and get mixed with the producer-gas formed in the lower portion. From time to time, as the level of the coke in V goes down, some of the freshly formed coke in E is pushed into V, whereby the level of the coke in V should assume the shape shown by the dotted linel ... m. If the level becametoo low, such as is shown by the dotted linex ... y, the working of the producer would be wrong, as in this case the layer of coke at the front side would be too low, and carbon dioxide would be formed in lieu of monoxide.Fig. 20.—Blass’ Gas Plant.Figs. 14 and 15 show Liegel’s producer, the special object of which is to deal with any fuel (coal or coke) giving a tough, pasty slag on combustion. Such slags act very prejudicially by impeding the up-draught of the air and the sinking of the fuel; nor can they be removed by falling through a grate, like ordinary coal-ashes. To obviate these drawbacks the producer A is kept at a greater heat than is otherwise usual, the air required for feeding the producer being pre-heated in the channelse, e. The inside shape of the producer is such that the upper, less hot portion cannot get stopped, as it widens out towards the bottom; the lower, hotter portion, where the ashes are already fluxed, is contracted to a slit a, through which the air ascends. The gratebretains any small pieces of fuel, but allows the liquid cinder to pass through. The lateral fluesc, cprevent the brickwork from being melted.One of the best-known gas-producers for working with compressed air from below is Taylor’s, shown in fig. 16. A is the feeding-hopper, on the same principle as is used in blast-furnaces. L is the producer-shaft, with an iron casing B and peep-holes B1to B4, passing through the brick lining M. F is the contracted part, leading to the closed ash-pit, accessible through the doors D. An injector I, worked by means of the steam-pipe J, forces air through K into F. The circular grate G can be turned round K by means of the crank E from the outside. This is done, without interfering with the blast, in order to keep the fuel at the proper level in L, according to the indications of the burning zone, as shown through the peep-holes B1to B4. The ashes collecting at the bottom are from time to time removed by the doors D. As the steam, introduced by J, is decomposed in the producer, we here obtain a “semi-water gas,” with about 27% CO and 12% H2.Fig. 17 shows the Dowson gas-producer, together with the arrangements for purifying the gas for the purpose of working a gas engine.ais a vertical steam boiler, heated by a central shaft filled with coke, with superheating tubesbpassing through the central shaft.cis the steam-pipe, carrying the dry steam into the air-injectord. This mixture of steam and air enters into the gas-producerebelow the fire-gratef.gis the feeding-hopper for the anthracite which is usually employed in this kind of producer.h,hare cooling-pipes for the gas where most of the undecomposed steam (say 10% of the whole employed ind) is condensed.iis a hydraulic box with water seal;j, a coke-scrubber;k, a filter;l, a sawdust-scrubber;m, inlet of gas-holder;n, gas-holder;o, outlet of same;p, a valve with weighted lever to regulate the admission of steam to the gas-producer;q, the weight which actuates the lever automatically by the rise or fall of the bell of the gas-holder. In practical work about ¾ ℔ of steam is decomposed for each pound of anthracite consumed, and no more than 5% of carbon dioxide is found in the resulting gas. The latter has an average calorific power of 1732 calories per cubic metre, or 161 B.T.U. per cubic foot, at 0° and 760 mm.The Mond plant is shown in figs. 18 and 19. The gases produced in the generators G are passed through pipesrinto washers W, in which water is kept in violent motion by means of paddle-wheels. The spray of water removes the dust and part of the tar and ammonia from the gases, much steam being produced at the same time. This water is withdrawn from time to time and worked for the ammonia it contains. The gases, escaping from W at a temperature of about 100° C., and containing much steam, pass thoughgandainto a tower, fed with an acid-absorbing liquid, coming from the tanks, which is spread into many drops by the brick filling of the tower. This liquid is a strong solution of ammonium sulphate, containing about 2.5% free sulphuric acid which absorbs nearly all the ammonia from the gases, without dissolving much of the tarry substances. Most of the liquor arriving at the bottom, after mechanically separating the tar, is pumped back intos, but a portion is always withdrawn and worked for ammonium sulphate. When escaping from the acid tower, the gas contains about 0.013% NH3, and has a temperature of about 80° C. and is saturated with aqueous vapour. It is passed throughcinto a second tower B, filled with blocks of wood, where it meets with a stream of comparatively cold water. At the bottom of this the water runs away, its temperature being 78° C.; at the top the gas passes away throughdinto the distributing main. The hot water from B, freed from tar, is pumped into a third tower C, through which cold air is forced by means of a Root’s blower by the pipew. This air, after being heated to 76° C., and saturated with steam in the tower C, passes throughlinto the generator G. The water in C leaves this tower cold enough to be used in the scrubber B. Thus two-thirds of the steam originally employed in the generator is reintroduced into it, leaving only one-third to be supplied by the exhaust steam of the steam-engine. The gas-generators G have a rectangular section, 6 × 12 ft., several of them being erected in series. The introduction of the air and the removal of the ashes takes place at the narrower ends. The bottom is formed by a water-tank and the ashes are quenched here. The air enters just above the water-level, at a pressure of 4 in. TheMond gas in the dry state contains 15% carbon dioxide, 10% monoxide, 23% hydrogen, 3% hydrocarbons, 49% nitrogen. The yield of ammonium sulphate is 75 ℔ from a ton of coal (slack with 11.5% ashes and 55% fixed carbon).Fig. 21.—Dellwik-Fleischer Producer.One of the best plants for the generation ofwater-gasis that constructed by E. Blass (fig. 20). Steam enters through the valve V at D into the generator, filled with coke, and passes away at the bottom through A. The pressure of the gas should not be such that it could get into the pipe conveying the air-blast, by which an explosive mixture would be formed. This is prevented by the water-cooled damper S, which always closes the air-blast when the gas-pipe is open and vice versa. Below the entry W of the air-blast there is a throttle valve d which is closed as soon as the damper S opens the gas canal; thus a second security against the production of a mixture of air and gas is afforded. The water-cooled ring channel K protects the bottom outlet of the generator and causes the cinders to solidify, so that they can be easily removed. But sometimes no such cooling is effected, in which case the cinders run away in the liquid form. Below K the fuel is lying in a conical heap, leaving the ring channel A free. During the period of hot-blowing (heating-up) S is turned so that the air-blast communicates with the generator;dand G are open;g(the damper connected with the scrubber) and V are closed. During the period of gas-making G anddare closed, S now closes the air-blast and connects the generator with the scrubber; V is opened, and the gas passes from the scrubber into the gas-holder, the inletwbeing under a pressure of 4 in. All these various changes in the opening of the valves and dampers are automatically performed in the proper order by means of a hand-wheel H, the shaft m resting on the standardstand shaftv. This hand-wheel has merely to be turned one way for starting the hot-blowing, and the opposite way for gas-making, to open and shut all the connexions, without any mistake being possible on the part of the attendant. The feeding-hopper E is so arranged that, when the cone e2opens, e1is shut, and vice versa, thus no more gas can escape, on feeding fresh coke into the generator, than that which is contained in E. G is the pipe through which the blowing-up gas (Siemens gas) is carried away, either into the open air (where it is at once burned) or into a pre-heater for the blast, or into some place where it can be utilized as fuel. This gas, which is made for 10 or 11 minutes, contains from 23 to 32% carbon monoxide, 7 to 1.5% carbon dioxide, 2 to 3% hydrogen, a little methane, 64 to 66% nitrogen, and has a heating value of 950 calories per cub. metre. The water-gas itself is made for 7 minutes, and has an average composition of 3.3% carbon dioxide, 44% carbon monoxide, 0.4% methane, 48.6% hydrogen, 3.7% nitrogen, and a heating value of 2970 calories per cub. metre. 1 kilogram coke yields 1.13 cub. metre water-gas and 3.13 Siemens gas. 100 parts coke (of 7000 calories) furnish 42% of their heat value as water-gas and 42% as Siemens gas.Lastly we give a section of the Dellwik-Fleischer gas-producer (fig. 21). The feeding-hoppers A are alternately charged every half-hour, so that the layer of fuel in the generator always remains 4 ft. deep. B is the chimney-damper, C the grate, D the door for removing the slags, E the ash-door, F the inlet of the air-blast, G the upper, G1the lower outlet for the water-gas which is removed alternately at top and bottom by means of an outside valve, steam being always admitted at the opposite end. The blowing-up generally lasts 1¾ minutes, the gas-making 8 or 10 minutes. The air-blast works under a pressure of 8 or 9 in. below the grate, or 4 to 4½ in. above the coke. The blowing-up gas contains 17 or 18% carbon dioxide and 1.5% oxygen, with mere traces of carbon monoxide. The water-gas shows 4 to 5% carbon dioxide, 40% carbon monoxide, 0.8% methane, 48 to 51% hydrogen, 4 or 5% nitrogen. About 2.5 cub. metres is obtained per kilogram of best coke.See Mills and Rowan,Fuel and its Application(London, 1889); Samuel S. Wyer,Producer-Gas and Gas-Producers, published by theEngineering and Mining Journal(New York); F. Fischer,Chemische Technologie der Brennstoffe(1897-1901);Gasförmige Heizstoffe, in Stohmann and Kerl’sHandbuch der technischen Chemie, 4th edition, iii. 642 et seq.

The Siemens Producer in its original shape, of which hundreds have been erected and many may be still at work, is shown in fig. 12. A is the charging-hole; B, the inclined front wall, consisting of a cast iron plate with fire-brick lining; C, the equally inclined “step-grate”; D, a damper by which the producer may be isolated in case of repairs; E, a water-pipe, by which the cinders at the bottom may be quenched before taking away; the steam here formed rises into the producer where it forms some “semi-water gas” (seeFuel:Gaseous). Openings like that shown at G serve for introducing a poker in order to clean the brickwork from adhering slags. H is the gas flue; I, the perpendicularly ascending shaft, 10 or 12 ft. high; JJ, the horizontal iron tube; K, the descending branch mentioned above, for producing a certain amount of suction by means of the gas-siphon thus formed. In the horizontal branch JJ much of the tar and flue-dust is also condensed, which is of importance where bituminous coal is employed for firing.

This as well as most other descriptions of gas-producers, is not adapted to being worked with such coal as softens in the heat and forms cakes, impenetrable to the air and impeding the regular sinking of the charge in the producer. The fuel employed should be non-bituminous coal, anthracite or coke, or at least so much of these materials should be mixed with ordinary coal that no semi-solid cakes of the kind just described are formed. Where it is unavoidable to work with coal softening in the fire, Lürmann’s producer may be employed, which is shown in fig. 13. V shows a gas-producer of the ordinary kind, which during regular work is filled with the coke formed in the horizontal retort E. The doorbserves for removing the slags and ashes from the bottom of V, as far as they do not fall through the grate. The hot producer-gas formed in V is passed round the retort E in the flues n2n2, and ultimately goes away through K to the furnace where it is to be used. The retort E is charged with ordinary bituminous coal which is submitted to destructive distillation by the heat communicated through the flues n2n2and is thus converted into coke. The gases formed during this process pass into the upper portion of V and get mixed with the producer-gas formed in the lower portion. From time to time, as the level of the coke in V goes down, some of the freshly formed coke in E is pushed into V, whereby the level of the coke in V should assume the shape shown by the dotted linel ... m. If the level becametoo low, such as is shown by the dotted linex ... y, the working of the producer would be wrong, as in this case the layer of coke at the front side would be too low, and carbon dioxide would be formed in lieu of monoxide.

Figs. 14 and 15 show Liegel’s producer, the special object of which is to deal with any fuel (coal or coke) giving a tough, pasty slag on combustion. Such slags act very prejudicially by impeding the up-draught of the air and the sinking of the fuel; nor can they be removed by falling through a grate, like ordinary coal-ashes. To obviate these drawbacks the producer A is kept at a greater heat than is otherwise usual, the air required for feeding the producer being pre-heated in the channelse, e. The inside shape of the producer is such that the upper, less hot portion cannot get stopped, as it widens out towards the bottom; the lower, hotter portion, where the ashes are already fluxed, is contracted to a slit a, through which the air ascends. The gratebretains any small pieces of fuel, but allows the liquid cinder to pass through. The lateral fluesc, cprevent the brickwork from being melted.

One of the best-known gas-producers for working with compressed air from below is Taylor’s, shown in fig. 16. A is the feeding-hopper, on the same principle as is used in blast-furnaces. L is the producer-shaft, with an iron casing B and peep-holes B1to B4, passing through the brick lining M. F is the contracted part, leading to the closed ash-pit, accessible through the doors D. An injector I, worked by means of the steam-pipe J, forces air through K into F. The circular grate G can be turned round K by means of the crank E from the outside. This is done, without interfering with the blast, in order to keep the fuel at the proper level in L, according to the indications of the burning zone, as shown through the peep-holes B1to B4. The ashes collecting at the bottom are from time to time removed by the doors D. As the steam, introduced by J, is decomposed in the producer, we here obtain a “semi-water gas,” with about 27% CO and 12% H2.

Fig. 17 shows the Dowson gas-producer, together with the arrangements for purifying the gas for the purpose of working a gas engine.ais a vertical steam boiler, heated by a central shaft filled with coke, with superheating tubesbpassing through the central shaft.cis the steam-pipe, carrying the dry steam into the air-injectord. This mixture of steam and air enters into the gas-producerebelow the fire-gratef.gis the feeding-hopper for the anthracite which is usually employed in this kind of producer.h,hare cooling-pipes for the gas where most of the undecomposed steam (say 10% of the whole employed ind) is condensed.iis a hydraulic box with water seal;j, a coke-scrubber;k, a filter;l, a sawdust-scrubber;m, inlet of gas-holder;n, gas-holder;o, outlet of same;p, a valve with weighted lever to regulate the admission of steam to the gas-producer;q, the weight which actuates the lever automatically by the rise or fall of the bell of the gas-holder. In practical work about ¾ ℔ of steam is decomposed for each pound of anthracite consumed, and no more than 5% of carbon dioxide is found in the resulting gas. The latter has an average calorific power of 1732 calories per cubic metre, or 161 B.T.U. per cubic foot, at 0° and 760 mm.

The Mond plant is shown in figs. 18 and 19. The gases produced in the generators G are passed through pipesrinto washers W, in which water is kept in violent motion by means of paddle-wheels. The spray of water removes the dust and part of the tar and ammonia from the gases, much steam being produced at the same time. This water is withdrawn from time to time and worked for the ammonia it contains. The gases, escaping from W at a temperature of about 100° C., and containing much steam, pass thoughgandainto a tower, fed with an acid-absorbing liquid, coming from the tanks, which is spread into many drops by the brick filling of the tower. This liquid is a strong solution of ammonium sulphate, containing about 2.5% free sulphuric acid which absorbs nearly all the ammonia from the gases, without dissolving much of the tarry substances. Most of the liquor arriving at the bottom, after mechanically separating the tar, is pumped back intos, but a portion is always withdrawn and worked for ammonium sulphate. When escaping from the acid tower, the gas contains about 0.013% NH3, and has a temperature of about 80° C. and is saturated with aqueous vapour. It is passed throughcinto a second tower B, filled with blocks of wood, where it meets with a stream of comparatively cold water. At the bottom of this the water runs away, its temperature being 78° C.; at the top the gas passes away throughdinto the distributing main. The hot water from B, freed from tar, is pumped into a third tower C, through which cold air is forced by means of a Root’s blower by the pipew. This air, after being heated to 76° C., and saturated with steam in the tower C, passes throughlinto the generator G. The water in C leaves this tower cold enough to be used in the scrubber B. Thus two-thirds of the steam originally employed in the generator is reintroduced into it, leaving only one-third to be supplied by the exhaust steam of the steam-engine. The gas-generators G have a rectangular section, 6 × 12 ft., several of them being erected in series. The introduction of the air and the removal of the ashes takes place at the narrower ends. The bottom is formed by a water-tank and the ashes are quenched here. The air enters just above the water-level, at a pressure of 4 in. TheMond gas in the dry state contains 15% carbon dioxide, 10% monoxide, 23% hydrogen, 3% hydrocarbons, 49% nitrogen. The yield of ammonium sulphate is 75 ℔ from a ton of coal (slack with 11.5% ashes and 55% fixed carbon).

One of the best plants for the generation ofwater-gasis that constructed by E. Blass (fig. 20). Steam enters through the valve V at D into the generator, filled with coke, and passes away at the bottom through A. The pressure of the gas should not be such that it could get into the pipe conveying the air-blast, by which an explosive mixture would be formed. This is prevented by the water-cooled damper S, which always closes the air-blast when the gas-pipe is open and vice versa. Below the entry W of the air-blast there is a throttle valve d which is closed as soon as the damper S opens the gas canal; thus a second security against the production of a mixture of air and gas is afforded. The water-cooled ring channel K protects the bottom outlet of the generator and causes the cinders to solidify, so that they can be easily removed. But sometimes no such cooling is effected, in which case the cinders run away in the liquid form. Below K the fuel is lying in a conical heap, leaving the ring channel A free. During the period of hot-blowing (heating-up) S is turned so that the air-blast communicates with the generator;dand G are open;g(the damper connected with the scrubber) and V are closed. During the period of gas-making G anddare closed, S now closes the air-blast and connects the generator with the scrubber; V is opened, and the gas passes from the scrubber into the gas-holder, the inletwbeing under a pressure of 4 in. All these various changes in the opening of the valves and dampers are automatically performed in the proper order by means of a hand-wheel H, the shaft m resting on the standardstand shaftv. This hand-wheel has merely to be turned one way for starting the hot-blowing, and the opposite way for gas-making, to open and shut all the connexions, without any mistake being possible on the part of the attendant. The feeding-hopper E is so arranged that, when the cone e2opens, e1is shut, and vice versa, thus no more gas can escape, on feeding fresh coke into the generator, than that which is contained in E. G is the pipe through which the blowing-up gas (Siemens gas) is carried away, either into the open air (where it is at once burned) or into a pre-heater for the blast, or into some place where it can be utilized as fuel. This gas, which is made for 10 or 11 minutes, contains from 23 to 32% carbon monoxide, 7 to 1.5% carbon dioxide, 2 to 3% hydrogen, a little methane, 64 to 66% nitrogen, and has a heating value of 950 calories per cub. metre. The water-gas itself is made for 7 minutes, and has an average composition of 3.3% carbon dioxide, 44% carbon monoxide, 0.4% methane, 48.6% hydrogen, 3.7% nitrogen, and a heating value of 2970 calories per cub. metre. 1 kilogram coke yields 1.13 cub. metre water-gas and 3.13 Siemens gas. 100 parts coke (of 7000 calories) furnish 42% of their heat value as water-gas and 42% as Siemens gas.

Lastly we give a section of the Dellwik-Fleischer gas-producer (fig. 21). The feeding-hoppers A are alternately charged every half-hour, so that the layer of fuel in the generator always remains 4 ft. deep. B is the chimney-damper, C the grate, D the door for removing the slags, E the ash-door, F the inlet of the air-blast, G the upper, G1the lower outlet for the water-gas which is removed alternately at top and bottom by means of an outside valve, steam being always admitted at the opposite end. The blowing-up generally lasts 1¾ minutes, the gas-making 8 or 10 minutes. The air-blast works under a pressure of 8 or 9 in. below the grate, or 4 to 4½ in. above the coke. The blowing-up gas contains 17 or 18% carbon dioxide and 1.5% oxygen, with mere traces of carbon monoxide. The water-gas shows 4 to 5% carbon dioxide, 40% carbon monoxide, 0.8% methane, 48 to 51% hydrogen, 4 or 5% nitrogen. About 2.5 cub. metres is obtained per kilogram of best coke.

See Mills and Rowan,Fuel and its Application(London, 1889); Samuel S. Wyer,Producer-Gas and Gas-Producers, published by theEngineering and Mining Journal(New York); F. Fischer,Chemische Technologie der Brennstoffe(1897-1901);Gasförmige Heizstoffe, in Stohmann and Kerl’sHandbuch der technischen Chemie, 4th edition, iii. 642 et seq.

(G. L.)

1Liquor condensed from gas alone, without wash water.2Figs. 12, 13, 14, 15, 16, 18, 19, 20, 21 of this article are from Lunge’sCoal-tar and Ammonia, by permission of Friedr. Vieweg u. Sohn.

1Liquor condensed from gas alone, without wash water.

2Figs. 12, 13, 14, 15, 16, 18, 19, 20, 21 of this article are from Lunge’sCoal-tar and Ammonia, by permission of Friedr. Vieweg u. Sohn.

GASCOIGNE, GEORGE(c.1535-1577), English poet, eldest son of Sir John Gascoigne of Cardington, Bedfordshire, was born probably between 1530 and 1535. He was educated at Trinity College, Cambridge, and on leaving the university is supposed to have joined the Middle Temple. He became a member of Gray’s Inn in 1555. He has been identified without much show of evidence with a lawyer named Gastone who was in prison in 1548 under very discreditable circumstances. There is no doubt that his escapades were notorious, and that he was imprisoned for debt. George Whetstone says that Sir John Gascoigne disinherited his son on account of his follies, but by his own account he was obliged to sell his patrimony to pay the debts contracted at court. He was M.P. for Bedford in 1557-1558 and 1558-1559, but when he presented himself in 1572 for election at Midhurst he was refused on the charges of being “a defamed person and noted for manslaughter,” “a common Rymer and a deviser of slaunderous Pasquelles,” “a notorious ruffianne,” an atheist and constantly in debt. His poems, with the exception of some commendatory verses, were not published before 1572, but they were probably circulated in MS. before that date. He tells us that his friends at Gray’s Inn importuned him to write on Latin themes set by them, and there two of his plays were acted. He repaired his fortunes by marrying the wealthy widow of William Breton, thus becoming step-father to the poet, Nicholas Breton. In 1568 an inquiry into the disposition of William Breton’s property with a view to the protection of the children’s rights was instituted before the lord mayor, but the matter was probably settled in a friendly manner, for Gascoigne continued to hold the Walthamstow estate, which he had from his wife, until his death. He sailed as a soldier of fortune to the Low Countries in 1572, and was driven by stress of weather to Brill, which luckily for him had just fallen into the hands of the Dutch. He obtained a captain’s commission, and took an active part in the campaigns of the next two years, during which he acquired a profound dislike of the Dutch, and a great admiration for William of Orange, who had personally intervened on his behalf in a quarrel with his colonel, and secured him against the suspicion caused by his clandestine visits to a lady at the Hague. Taken prisoner after the evacuation of Valkenburg by the English troops, he was sent to England in the autumn of 1574. He dedicated to Lord Grey of Wilton the story of his adventures, “The Fruites of Warres” (printed in the edition of 1575) and “Gascoigne’s Voyage into Hollande.” In 1575 he had a share in devising the masques, published in the next year asThe Princely Pleasures at the Courte at Kenelworth, which celebrated the queen’s visit to the Earl of Leicester. At Woodstock in 1575 he delivered a prose speech before Elizabeth, and presented her with thePleasant Tale of Hemetes the Heremite1in four languages. Most of his works were actually published during the last years of his life, after his return from the wars. He died at Bernack, near Stamford, where he was the guest of George Whetstone, on the 7th of October 1577. George Whetstone wrote a long dull poem in honour of his friend, entitled “A Remembrance of the wel-imployed life and godly end of George Gaskoigne, Esquire.”

His theory of metrical composition is explained in a short critical treatise, “Certayne Notes of Instruction concerning the making of verse or ryme in English, written at the request of Master Edouardo Donati,”2prefixed to hisPosies(1575). He acknowledged Chaucer as his master, and differed from the earlier poets of the school of Surrey and Wyatt chiefly in the added smoothness and sweetness of his verse. His poems were published in 1572 during his absence in Holland, surreptitiously, according to his own account, but it seems probable that the “editor” who supplied the running comment was none other than Gascoigne himself.A hundreth Sundrie Floures bound up in one small Posie. Gathered partely (by translation) in the fyne outlandish Gardens of Euripides, Ovid, Petrarke, Ariosto and others; and partely by Invention out of our owne fruitfull Orchardes in Englande, Yelding Sundrie Savours of tragical, comical and moral discourse, bothe pleasaunt and profitable, to the well-smellingnoses of learned Readers, was followed in 1575 by an authorized edition,The Posies of G.G. Esquire... (not dated).

Gascoigne had an adventurous and original mind, and was a pioneer in more than one direction. In 1576 he publishedThe Steele Glas, sometimes called the earliest regular English satire. Although this poem is Elizabethan in form and manner, it is written in the spirit ofPiers Plowman. Gascoigne begins with a comparison between the sister arts of Satire and Poetry, and under a comparison between the old-fashioned “glas of trustie steele,” and the new-fangled crystal mirrors which he takes as a symbol of the “Italianate” corruption of the time, he attacks the amusements of the governing classes, the evils of absentee landlordism, the corruption of the clergy, and pleads for the restoration of the feudal ideal.3

His dramatic work belongs to the period of his residence at Gray’s Inn, bothJocasta(of which Acts i. and iv. were contributed by Francis Kinwelmersh) andSupposesbeing played there in 1566.Jocastawas said by J.P. Collier (Hist. of Dram. Poetryiii. 8) to be the “first known attempt to introduce a Greek play upon the English stage,” but it turns out that Gascoigne was only very indirectly acquainted with Euripides. His play is a literal version of Lodovico Dolce’sGiocasta, which was derived probably from thePhoenissaein the Latin translation of R. Winter.Supposes,4a version of Ariosto’sI Suppositi, is notable as an early and excellent adaptation of Italian comedy, and moreover, as “the earliest play in English prose acted in public or private.” Udal’sRalph Roister Doisterhad been inspired directly by Latin comedy;Gammer Gurton’s Needlewas a purely native product; butSupposesis the first example of the acclimatization of the Italian models that were to exercise so prolonged an influence on the English stage. A third play of Gascoigne’s,The Glasse of Government(published in 1575), is a school drama of the “Prodigal Son” type, familiar on the continent at the time, but rare in England. It is defined by Mr C.H. Herford as an attempt “to connectTerentian situationwith aChristian moralin a picture ofschool life,” and it may be assumed that Gascoigne was familiar with the didactic drama of university life in vogue on the continent. The scene is laid at Antwerp, and the two prodigals meet with retribution in Geneva and Heidelberg respectively.

The Spoyle of Antwerpe, written by an eyewitness of the sack of the city in 1576, has sometimes been attributed to Gascoigne, but although a George Gascoigne was employed in that year to carry letters for Walsingham, internal evidence is against Gascoigne’s authorship. A curious editorial preface by Gascoigne to Sir Humphrey Gilbert’sDiscourse of a Discoverie for a new Passage to Cataia(1576) has led to the assertion that Gascoigne printed the tract against its author’s wish, but it is likely that he was really serving Gilbert, who desired the publication, but dared not avow it. TheWyll of the Devill... (reprinted for private circulation by Dr F.J. Furnivall, 1871), an anti-popish tract, once attributed, on slender evidence, to Gascoigne, is almost certainly by another hand.

Gascoigne’s works not already mentioned include: “G. G. in commendation of the noble Arte of Venerie,” prefixed toThe Noble Art of Venerie or Hunting(1575);The Complaynte of Phylomene, bound up with The Steele Glas(1576);The Droomme of Doomes-day(1576), a prose compilation from various authors, especially from theDe contemptu mundi sive de miseria humanae conditionisof Pope Innocent III., printed with varying titles, earliest ed. (1470?);A Delicate Diet for daintie mouthde droonkardes ...(1576), a free version of St Augustine’sDe ebrietate. The Posies(1572) includedSupposes, Jocasta, A Discourse of the Adventures of Master F[erdinando]J[eronimi], in imitation of an Italian novella, a partly autobiographicalDon Bartholomew of Bath, and miscellaneous poems. Real personages, some of whom were well known at court, were supposed to be concealed under fictitious names inThe Adventures of Master F. J., and the poem caused considerable scandal, so that the names are disguised in the second edition. A more comprehensive collection,The Whole Workes of G. G.... appeared in 1587. In 1868-1870The Complete Poems of G. G.... were edited for the Roxburghe Library by Mr W.C. Hazlitt. In hisEnglish ReprintsProf. E. Arber includedCertayne Notes of Instruction, The Steele Glasand theComplaynt of Philomene.The Steele Glaswas also edited for theLibrary of English Literature, by Henry Morley, vol. i. p. 184 (1889). A new edition,The Works of George Gascoigne(The Cambridge English Classics, 1907, &c.) is edited by Dr J.W. Cunliffe. See alsoThe Life and Writings of George Gascoigne, by Prof. Felix E. Schelling (Publications of the Univ. of Pennsylvania series in Philology, vol. ii. No. 4 [1894]); C.H. Herford,Studies in the Literary Relations of England and Germany in the Sixteenth Century, pp. 149-164 (1886); C.H. Herford, “Gascoigne’s Glasse of Government,” inEnglische Studien, vol. ix. (Halle, 1877, &c.).

Gascoigne’s works not already mentioned include: “G. G. in commendation of the noble Arte of Venerie,” prefixed toThe Noble Art of Venerie or Hunting(1575);The Complaynte of Phylomene, bound up with The Steele Glas(1576);The Droomme of Doomes-day(1576), a prose compilation from various authors, especially from theDe contemptu mundi sive de miseria humanae conditionisof Pope Innocent III., printed with varying titles, earliest ed. (1470?);A Delicate Diet for daintie mouthde droonkardes ...(1576), a free version of St Augustine’sDe ebrietate. The Posies(1572) includedSupposes, Jocasta, A Discourse of the Adventures of Master F[erdinando]J[eronimi], in imitation of an Italian novella, a partly autobiographicalDon Bartholomew of Bath, and miscellaneous poems. Real personages, some of whom were well known at court, were supposed to be concealed under fictitious names inThe Adventures of Master F. J., and the poem caused considerable scandal, so that the names are disguised in the second edition. A more comprehensive collection,The Whole Workes of G. G.... appeared in 1587. In 1868-1870The Complete Poems of G. G.... were edited for the Roxburghe Library by Mr W.C. Hazlitt. In hisEnglish ReprintsProf. E. Arber includedCertayne Notes of Instruction, The Steele Glasand theComplaynt of Philomene.The Steele Glaswas also edited for theLibrary of English Literature, by Henry Morley, vol. i. p. 184 (1889). A new edition,The Works of George Gascoigne(The Cambridge English Classics, 1907, &c.) is edited by Dr J.W. Cunliffe. See alsoThe Life and Writings of George Gascoigne, by Prof. Felix E. Schelling (Publications of the Univ. of Pennsylvania series in Philology, vol. ii. No. 4 [1894]); C.H. Herford,Studies in the Literary Relations of England and Germany in the Sixteenth Century, pp. 149-164 (1886); C.H. Herford, “Gascoigne’s Glasse of Government,” inEnglische Studien, vol. ix. (Halle, 1877, &c.).

1Printed in 1579 in a pamphlet calledThe Paradoxe, the author of which, Abraham Fleming, does not mention Gascoigne’s name.2Reprinted in vol. ii. of J. Haslewood’sAncient Critical Essays(1811-1815), and in Gregory Smith’sElizabethan Critical Essays(1904).3“Againe I see, within my glasse of SteeleBut foure estates, to serve each country soyle,The King, the Knight, the Pesant, and the Priest.The King should care for al the subjects still,The Knight should fight, for to defend the same,The Pesant, he shoulde labor for their ease,And Priests shuld pray, for them and for themselves.”—(Arber’s ed. p. 57.)4The influence of this play on the ShakespearianTaming of the Shrewis dealt with by Prof. A.H. Tolman inShakespeare’s Part in the Taming of the Shrew(Pub. of the Mod. Lang. Assoc. vol. v. No. 4, pp. 215, 216, 1890).

1Printed in 1579 in a pamphlet calledThe Paradoxe, the author of which, Abraham Fleming, does not mention Gascoigne’s name.

2Reprinted in vol. ii. of J. Haslewood’sAncient Critical Essays(1811-1815), and in Gregory Smith’sElizabethan Critical Essays(1904).

3

“Againe I see, within my glasse of SteeleBut foure estates, to serve each country soyle,The King, the Knight, the Pesant, and the Priest.The King should care for al the subjects still,The Knight should fight, for to defend the same,The Pesant, he shoulde labor for their ease,And Priests shuld pray, for them and for themselves.”—(Arber’s ed. p. 57.)

“Againe I see, within my glasse of Steele

But foure estates, to serve each country soyle,

The King, the Knight, the Pesant, and the Priest.

The King should care for al the subjects still,

The Knight should fight, for to defend the same,

The Pesant, he shoulde labor for their ease,

And Priests shuld pray, for them and for themselves.”—

(Arber’s ed. p. 57.)

4The influence of this play on the ShakespearianTaming of the Shrewis dealt with by Prof. A.H. Tolman inShakespeare’s Part in the Taming of the Shrew(Pub. of the Mod. Lang. Assoc. vol. v. No. 4, pp. 215, 216, 1890).

GASCOIGNE, SIR WILLIAM(c.1350-1419), chief justice of England in the reign of Henry IV. Both history and tradition testify to the fact that he was one of the great lawyers who in times of doubt and danger have asserted the principle that the head of the state is subject to law, and that the traditional practice of public officers, or the expressed voice of the nation in parliament, and not the will of the monarch or any part of the legislature, must guide the tribunals of the country. He was a descendant of an ancient Yorkshire family. The date of his birth is uncertain, but it appears from the year-books that he practised as an advocate in the reigns of Edward III. and Richard II. On the banishment of Henry of Lancaster Gascoigne was appointed one of his attorneys, and soon after Henry’s accession to the throne was made chief justice of the court of king’s bench. After the suppression of the rising in the north in 1405, Henry eagerly pressed the chief justice to pronounce sentence upon Scrope, the archbishop of York, and the earl marshal Thomas Mowbray, who had been implicated in the revolt. This he absolutely refused to do, asserting the right of the prisoners to be tried by their peers. Although both were afterwards executed, the chief justice had no part in the transaction. It has been very much doubted, however, whether Gascoigne could have displayed such independence of action without prompt punishment or removal from office following. The oft-told tale of his committing the prince of Wales to prison must also be regarded as unauthentic, though it is both picturesque and characteristic. The judge had directed the punishment of one of the prince’s riotous companions, and the prince, who was present and enraged at the sentence, struck or grossly insulted the judge. Gascoigne immediately committed him to prison, using firm and forcible language, which brought him to a more reasonable mood, and secured his voluntary obedience to the sentence. The king is said to have approved of the act, but there appears to be good ground for the supposition that Gascoigne was removed from his post or resigned soon after the accession of Henry V. He died in 1419, and was buried in the parish church of Harewood in Yorkshire. Some biographies of the judge have stated that he died in 1412, but this is clearly disproved by Foss in hisLives of the Judges; and although it is clear that Gascoigne did not hold office long under Henry V., it is not absolutely impossible that the scene in the fifth act of the second part of Shakespeare’sHenry IV.has some historical basis, and that the judge’s resignation was voluntary.

GASCONY(Wasconia), an old province in the S.W. of France. It takes its name from the Vascones, a Spanish tribe which in 580 and 587 crossed the Pyrenees and invaded the district known to the Romans as Novempopulana or Aquitania tertia. Basque, the national language of the Vascones, took root only in a few of the high valleys of the Pyrenees, such as Soule and Labourd; in the plains Latin dialects prevailed, Gascon being a Romance language. In the 7th century the name of Vasconia was substituted for that of Novempopulana. The Vascones readily recognized the sovereignty of the Merovingian kings. In 602 they consented to be governed by a duke called Genialis, but in reality they remained independent. They even appointed national dukes, against whom Charlemagne had to fight at the beginning of his reign. Finally Duke Lupus II. made hissubmission in 819, and the Carolingians were able to establish Frankish dukes in the country. Three of these are known: Séguin (Sighivinus), William (Guillaume), and Arnaud (Arnaldus). They were at the same time counts of Bordeaux, and succumbed to the Normans. After the death of Arnaud in 864 the history of Gascony falls into the profoundest obscurity. The lists of the 10th-century dukes prepared by ancient and modern historians can only be established by means of hypotheses based in many cases on spurious documents (e.g.the charter of Alaon), and little confidence can be placed in them. During this troubled period Gascony was from time to time attached to one or other of the other Vascon states which had been formed on the southern slope of the Pyrenees, but in the reign of Hugh Capet it was considered as forming part of France, from which it has never been separated. Disputed in the 11th century by the counts of Poitiers, who were also dukes of Aquitaine, and by the counts of Armagnac, the duchy finally passed to the house of Poitiers in 1073, when the title of duke of Gascony was merged in that of duke of Aquitaine and disappeared. In the feudal period Gascony comprised a great number of countships (including Armagnac, Bigorre, Fézensac, Gaure and Pardiac), viscountships (including Béarn, Lomagne, Dax, Juliac, Soule, Marsan, Tartas, Labourd and Maremne), and seigneuries (e.g.Albret, &c.). From the ecclesiastical point of view, it corresponded nearly to the archbishopric of Auch.

From about 1073 to 1137 Gascony was governed by the dukes of Aquitaine and counts of Poitiers, one of whom, William IX., gave the first charter of privileges to the town of Bayonne; but the duchy was weakened by the increasing independence of its great feudatories, especially the viscounts of Béarn and the counts of Armagnac. In 1137, the year of her father’s death, Eleanor, the daughter and heiress of Duke William X., married the king of France, Louis VII., and with the rest of Aquitaine Gascony passed under his direct rule. In 1151, however, this marriage was annulled, and almost at once Eleanor married Henry of Anjou, who three years later became king of England as Henry II. Thus was the house of Plantagenet introduced into Gascony and a fresh bone of contention was thrown between the kings of England and of France. Having established himself in the duchy by force of arms, Henry handed it over to his son Richard, against whom many of the great Gascon lords revolted, and from Richard it passed to his brother John. The crusade against the Albigenses was carried into Gascony, and this warfare gave a new impetus to the process of disintegration which was already at work in the duchy. King John and his successor Henry III. were weak; the neighbouring counts of Toulouse were powerful and aggressive; and the house of Béarn was growing in strength. Gascony served Henry III. as headquarters during his two short and disastrous wars (1230 and 1242) with Louis IX., and in 1259 he did homage for it to this king; his son, Edward I., lost and then regained the duchy.

During the Hundred Years’ War Gascony was obviously a battle-field for the forces of England and of France. The French seized the duchy, but, aided by the rivalry between the powerful houses of Foix and Armagnac, Edward III. was able to recover it, and by the treaty of Bretigny in 1360 John II. recognized the absolute sovereignty of England therein. Handed over as a principality by Edward to his son, the Black Prince, it was used by its new ruler as a base during his expedition into Spain, in which he received substantial help from the Gascon nobles. The renewal of the war between England and France, which took place in 1369, was due in part to a dispute over the sovereignty of Gascony, and during its course the position of the English was seriously weakened, the whole of the duchy save a few towns and fortresses being lost; but the victories of Henry V. in northern France postponed for a time the total expulsion of the foreigner. This was reserved for the final stage of the war and was one result of the efforts of Joan of Arc, the year 1451 witnessing the capture of Bayonne and the final retreat of the English troops from the duchy. During this time the inhabitants of Gascony suffered severely from the ravages of both parties, and the nobles ruled or misruled without restraint.

The French kings, especially Louis XI., managed to restore the royal authority in the duchy, although this was not really accomplished until the close of the 15th century when the house of Armagnac was overthrown. It was by means of administrative measures that these kings attained their object. Gascony was governed on the same lines as other parts of France and from the time of Henry IV., who was prince of Béarn, and who united his hereditary lands with the crown, its history differs very slightly from that of the rest of the country. The Renaissance inspired the foundation of educational institutions and the Reformation was largely accepted in Béarn, but not in other parts of Gascony. The wars of religion swept over the land, which was the scene of some of the military exploits of Henry IV., and Louis XIV. made some slight changes in its government. As may be surmised the boundaries of Gascony varied from time to time, but just before the outbreak of the Revolution they were the Atlantic Ocean, Guienne, Languedoc and the Pyrenees, and from east to west the duchy at its greatest extent measured 170 m.

At the end of theancien régimeGascony was united with Guienne to form a great military government. After the division of France into departments, Gascony, together with Béarn, French Navarre and the Basque country, formed the departments of Basses-Pyrénées, Landes, Hautes-Pyrénées and Gers. Parts of Gascony also now form arrondissements and cantons of the departments of Lot-et-Garonne, Haute-Garonne, Ariège and Tarn-et-Garonne.

See Arnaud Oïhénart,Notitia utriusque Vasconiae, tam Ibericae quam Aquitanicae(1637); L’Abbé Monlezun,Histoire de la Gascogne(1846-1850), comprising a number of useful but uncritically edited documents; and Jean de Jaurgain,La Vasconie, étude historique et critique sur les origines ... du duché de Gascogne ... et des grands fiefs du duché de Gascogne(1898-1902), a learned and ingenious work, but characterized by unbridled genealogical fancy. This last work was rectified by Ferdinand Lot in hisÉtudes sur le règne de Hugues Capet(1903; see especially appendix x.). See also Barrau-Dihigo, “La Gascogne,” a bibliography of manuscript sources and of printed works published in theRevue de synthèse historique(1903).

See Arnaud Oïhénart,Notitia utriusque Vasconiae, tam Ibericae quam Aquitanicae(1637); L’Abbé Monlezun,Histoire de la Gascogne(1846-1850), comprising a number of useful but uncritically edited documents; and Jean de Jaurgain,La Vasconie, étude historique et critique sur les origines ... du duché de Gascogne ... et des grands fiefs du duché de Gascogne(1898-1902), a learned and ingenious work, but characterized by unbridled genealogical fancy. This last work was rectified by Ferdinand Lot in hisÉtudes sur le règne de Hugues Capet(1903; see especially appendix x.). See also Barrau-Dihigo, “La Gascogne,” a bibliography of manuscript sources and of printed works published in theRevue de synthèse historique(1903).

(C. B.*)

GAS ENGINE.A gas engine is a heat engine in which the working fluid is atmospheric air and the fuel an inflammable gas. It differs from a hot-air or a steam engine in that the heat is given to the working fluid by combustion within the motive power cylinder. In most gas engines—in fact, in all those at present on the market—the working fluid and the fuel that supplies it with heat are mixed with each other before the combustion of the fuel. The fuel—which in the steam and in most hot-air engines is burned in a separate furnace—is, in the gas engine, introduced directly to the motor cylinder and burned there; it is, indeed, part of the working fluid. A gas engine, therefore, is an internal combustion engine using gaseous fuel.

The commercial history of the gas engine dates from 1876, when Dr N.A. Otto patented the well-known engine now in extensive use, but long before that year inventors had been at work, attempting to utilize gas for producing motive power. The first proposal made in Great Britain is found in Street’s Patent No. 1983 of 1794, where an explosion engine is suggested, the explosion to be caused by vaporizing spirits of turpentine on a heated metal surface, mixing the vapour with air in a cylinder, firing the mixture, and driving a piston by the explosion produced. Most of the early engines were suggested by the fact that a mixture of an inflammable gas and atmospheric air gives an explosion when ignited—that is, produces pressure which can be applied in a cylinder to propel a piston. Lebon, in France, proposed a gas engine in which the gas and air were raised to a pressure above that of the atmosphere before use in the cylinder, but he did not appear to be clear in his ideas.Some interesting particulars of early experiments are given in a paper read at the Cambridge Philosophical Society in 1820 entitled, “On the Application of Hydrogen Gas to produce a Moving Power in Machinery, with a description of an Engine which is moved by the pressure of the Atmosphere upon a Vacuum caused by Explosions of Hydrogen Gas and Atmospheric Air.” In that paper the Rev. W. Cecil describes an engine of his invention constructed to operate on the explosion vacuum method. This engine was stated to run with perfect regularity at 60 revolutions per minute, consuming 17.6 cub. ft. of hydrogen gas per hour. The hydrogen explosion, however, does not seem to have been noiseless, because Mr Cecil states that in building a larger engine “... to remedy the noise which is occasioned by the explosion, the lower end of the cylinder A, B, C, D may be buried in a well or it may be enclosed in a large air-tight vessel.” Mr Cecil also mentions previous experiments atCambridge by Prof. Farish, who exhibited at his lectures on mechanics an engine actuated by the explosion of a mixture of gas and air within a cylinder, the explosion taking place from atmospheric pressure. Prof. Farish is also stated to have operated an engine by gunpowder. These engines of Farish and Cecil appear to be the very earliest in actual operation in the world.Samuel Brown, in patents dated 1823 and 1826, proposed to fill a closed chamber with a gas flame, and so expel the air; then he condensed the flame by injecting water, and operated an air engine by exhausting into the partial vacuum so obtained. The idea was evidently suggested by Watt’s condensing steam engine, flame being employed instead of steam to obtain a vacuum. Brown’s engine is said to have been actually employed to pump water, drive a boat on the Thames, and propel a road carriage. L.W. Wright in 1833 described an explosion engine working at atmospheric pressure and exploding on both sides of the piston. The cylinder is shown as water-jacketed. In William Barnett’s engine of 1838 two great advances were made. The engine was so constructed that the mixture of gas and air was compressed to a considerable extent in the motor cylinder before ignition. The method of igniting the compressed charge was also effective. The problem of transferring a flame to the interior of a cylinder when the pressure is much in excess of that of the external air was solved by means of a hollow plug cock having a gas jet burning within the hollow. In one position the hollow was opened to the atmosphere, and a gas jet issuing within it was lit by an external flame, so that it burned within the hollow. The plug was then quickly rotated, so that it closed to the external air and opened to the engine cylinder; the flame continued to burn with the air contained in the cock, until the compressed inflammable mixture rushed into the space from the cylinder and ignited at the flame. This mode of ignition is in essentials the one adopted by Otto about thirty years later. To Barnett belongs the credit of being the first to realize clearly the great idea of compression before explosion in gas engines, and to show one way of carrying out the idea in practice. Barnett appears to have constructed an engine, but he attained no commercial success. Several attempts to produce gas engines were made between 1838 and 1860, but they were all failures. Several valuable ideas were published in 1855. Drake, an American, described a mode of igniting a combustible gaseous mixture by raising a thimble-shaped piece of metal to incandescence. In 1857 Barsanti and Matteucci proposed a free-piston engine, in which the explosion propelled a free piston against the atmosphere, and the work was done on the return stroke by the atmospheric pressure, a partial vacuum being produced under the piston. The engine never came into commercial use, although the fundamental idea was good.Previous to 1860 the gas engine was entirely in the experimental stage, and in spite of many attempts no practical success was attained. E. Lenoir, whose patent is dated 1860, was the inventor of the first gas engine that was brought into general use. The piston, moving forward for a portion of its stroke by the energy stored in the fly-wheel, drew into the cylinder a charge of gas and air at the ordinary atmospheric pressure. At about half stroke the valves closed, and an explosion, caused by an electric spark, propelled the piston to the end of its stroke. On the return stroke the burnt gases were discharged, just as a steam engine exhausts. These operations were repeated on both sides of the piston, and the engine was thus double-acting. Four hundred of these engines were said to be at work in Paris in 1865, and the Reading Iron Works Company Limited built and sold one hundred of them in Great Britain. They were quiet, and smooth in running; the gas consumption, however, was excessive, amounting to about 100 cub. ft. per indicated horse-power per hour. The electrical ignition also gave trouble. Hugon improved on the engine in 1865 by the introduction of a flame ignition, but no real commercial success was attained till 1867, when Otto and Langen exhibited their free-piston engine in the Paris Exhibition of that year. This engine was identical in principle with the Barsanti and Matteucci, but Otto succeeded where those inventors failed. He worked out the engine in a very perfect manner, used flame ignition, and designed a practical clutch, which allowed the piston free movement in one direction but engaged with the fly-wheel shaft when moved in the other; it consisted of rollers and wedge-shaped pockets—the same clutch, in fact, as has since been so much used in free-wheel bicycles. This engine consumed about 40 cub. ft. of gas per brake horse-power per hour—less than half as much as the Lenoir. Several thousands were made and sold, but its strange appearance and unmechanical operation raised many objections. Several inventors meanwhile again advocated compression of the gaseous mixture before ignition, among them being Schmidt, a German, and Million, a Frenchman, both in 1861.To a Frenchman, Alph. Beau de Rochas, belongs the credit of proposing, with perfect clearness, the cycle of operations now widely used in compression gas engines. In a pamphlet published in Paris in 1862, he stated that to obtain economy with an explosion engine four conditions are requisite: (1) The greatest possible cylinder volume with the least possible cooling surface; (2) the greatest possible rapidity of explosion; (3) the greatest possible expansion; and (4) the greatest possible pressure at the beginning of the expansion. The sole arrangement capable of satisfying these conditions he stated would be found in an engine operating as follows: (1) Suction during an entire out-stroke of the piston; (2) compression during the following in-stroke; (3) ignition at the dead point, and expansion during the third stroke; (4) forcing out of the burnt gases from the cylinder on the fourth and last return stroke. Beau de Rochas thus exactly contemplated, in theory at least, the engine produced by Dr Otto fourteen years later. He did not, however, put his engine into practice, and probably had no idea of the practical difficulties to be overcome before realizing his conception in iron and steel. To Dr Otto belongs the honour of independently inventing the same cycle, now correctly known as the Otto cycle, and at the same time overcoming all practical difficulties and making the gas engine of world-wide application. This he did in 1876, and his type of engine very rapidly surpassed all others, so that now the Otto-cycle engine is manufactured over the whole world by hundreds of makers. In 1876 Dr Otto used low compression, only about 30 ℔ per sq. in. above atmosphere. Year by year compression was increased and greater power and economy were obtained, and at present compressions of more than 100 ℔ per sq. in. are commonly used with most satisfactory results.

The commercial history of the gas engine dates from 1876, when Dr N.A. Otto patented the well-known engine now in extensive use, but long before that year inventors had been at work, attempting to utilize gas for producing motive power. The first proposal made in Great Britain is found in Street’s Patent No. 1983 of 1794, where an explosion engine is suggested, the explosion to be caused by vaporizing spirits of turpentine on a heated metal surface, mixing the vapour with air in a cylinder, firing the mixture, and driving a piston by the explosion produced. Most of the early engines were suggested by the fact that a mixture of an inflammable gas and atmospheric air gives an explosion when ignited—that is, produces pressure which can be applied in a cylinder to propel a piston. Lebon, in France, proposed a gas engine in which the gas and air were raised to a pressure above that of the atmosphere before use in the cylinder, but he did not appear to be clear in his ideas.

Some interesting particulars of early experiments are given in a paper read at the Cambridge Philosophical Society in 1820 entitled, “On the Application of Hydrogen Gas to produce a Moving Power in Machinery, with a description of an Engine which is moved by the pressure of the Atmosphere upon a Vacuum caused by Explosions of Hydrogen Gas and Atmospheric Air.” In that paper the Rev. W. Cecil describes an engine of his invention constructed to operate on the explosion vacuum method. This engine was stated to run with perfect regularity at 60 revolutions per minute, consuming 17.6 cub. ft. of hydrogen gas per hour. The hydrogen explosion, however, does not seem to have been noiseless, because Mr Cecil states that in building a larger engine “... to remedy the noise which is occasioned by the explosion, the lower end of the cylinder A, B, C, D may be buried in a well or it may be enclosed in a large air-tight vessel.” Mr Cecil also mentions previous experiments atCambridge by Prof. Farish, who exhibited at his lectures on mechanics an engine actuated by the explosion of a mixture of gas and air within a cylinder, the explosion taking place from atmospheric pressure. Prof. Farish is also stated to have operated an engine by gunpowder. These engines of Farish and Cecil appear to be the very earliest in actual operation in the world.

Samuel Brown, in patents dated 1823 and 1826, proposed to fill a closed chamber with a gas flame, and so expel the air; then he condensed the flame by injecting water, and operated an air engine by exhausting into the partial vacuum so obtained. The idea was evidently suggested by Watt’s condensing steam engine, flame being employed instead of steam to obtain a vacuum. Brown’s engine is said to have been actually employed to pump water, drive a boat on the Thames, and propel a road carriage. L.W. Wright in 1833 described an explosion engine working at atmospheric pressure and exploding on both sides of the piston. The cylinder is shown as water-jacketed. In William Barnett’s engine of 1838 two great advances were made. The engine was so constructed that the mixture of gas and air was compressed to a considerable extent in the motor cylinder before ignition. The method of igniting the compressed charge was also effective. The problem of transferring a flame to the interior of a cylinder when the pressure is much in excess of that of the external air was solved by means of a hollow plug cock having a gas jet burning within the hollow. In one position the hollow was opened to the atmosphere, and a gas jet issuing within it was lit by an external flame, so that it burned within the hollow. The plug was then quickly rotated, so that it closed to the external air and opened to the engine cylinder; the flame continued to burn with the air contained in the cock, until the compressed inflammable mixture rushed into the space from the cylinder and ignited at the flame. This mode of ignition is in essentials the one adopted by Otto about thirty years later. To Barnett belongs the credit of being the first to realize clearly the great idea of compression before explosion in gas engines, and to show one way of carrying out the idea in practice. Barnett appears to have constructed an engine, but he attained no commercial success. Several attempts to produce gas engines were made between 1838 and 1860, but they were all failures. Several valuable ideas were published in 1855. Drake, an American, described a mode of igniting a combustible gaseous mixture by raising a thimble-shaped piece of metal to incandescence. In 1857 Barsanti and Matteucci proposed a free-piston engine, in which the explosion propelled a free piston against the atmosphere, and the work was done on the return stroke by the atmospheric pressure, a partial vacuum being produced under the piston. The engine never came into commercial use, although the fundamental idea was good.

Previous to 1860 the gas engine was entirely in the experimental stage, and in spite of many attempts no practical success was attained. E. Lenoir, whose patent is dated 1860, was the inventor of the first gas engine that was brought into general use. The piston, moving forward for a portion of its stroke by the energy stored in the fly-wheel, drew into the cylinder a charge of gas and air at the ordinary atmospheric pressure. At about half stroke the valves closed, and an explosion, caused by an electric spark, propelled the piston to the end of its stroke. On the return stroke the burnt gases were discharged, just as a steam engine exhausts. These operations were repeated on both sides of the piston, and the engine was thus double-acting. Four hundred of these engines were said to be at work in Paris in 1865, and the Reading Iron Works Company Limited built and sold one hundred of them in Great Britain. They were quiet, and smooth in running; the gas consumption, however, was excessive, amounting to about 100 cub. ft. per indicated horse-power per hour. The electrical ignition also gave trouble. Hugon improved on the engine in 1865 by the introduction of a flame ignition, but no real commercial success was attained till 1867, when Otto and Langen exhibited their free-piston engine in the Paris Exhibition of that year. This engine was identical in principle with the Barsanti and Matteucci, but Otto succeeded where those inventors failed. He worked out the engine in a very perfect manner, used flame ignition, and designed a practical clutch, which allowed the piston free movement in one direction but engaged with the fly-wheel shaft when moved in the other; it consisted of rollers and wedge-shaped pockets—the same clutch, in fact, as has since been so much used in free-wheel bicycles. This engine consumed about 40 cub. ft. of gas per brake horse-power per hour—less than half as much as the Lenoir. Several thousands were made and sold, but its strange appearance and unmechanical operation raised many objections. Several inventors meanwhile again advocated compression of the gaseous mixture before ignition, among them being Schmidt, a German, and Million, a Frenchman, both in 1861.

To a Frenchman, Alph. Beau de Rochas, belongs the credit of proposing, with perfect clearness, the cycle of operations now widely used in compression gas engines. In a pamphlet published in Paris in 1862, he stated that to obtain economy with an explosion engine four conditions are requisite: (1) The greatest possible cylinder volume with the least possible cooling surface; (2) the greatest possible rapidity of explosion; (3) the greatest possible expansion; and (4) the greatest possible pressure at the beginning of the expansion. The sole arrangement capable of satisfying these conditions he stated would be found in an engine operating as follows: (1) Suction during an entire out-stroke of the piston; (2) compression during the following in-stroke; (3) ignition at the dead point, and expansion during the third stroke; (4) forcing out of the burnt gases from the cylinder on the fourth and last return stroke. Beau de Rochas thus exactly contemplated, in theory at least, the engine produced by Dr Otto fourteen years later. He did not, however, put his engine into practice, and probably had no idea of the practical difficulties to be overcome before realizing his conception in iron and steel. To Dr Otto belongs the honour of independently inventing the same cycle, now correctly known as the Otto cycle, and at the same time overcoming all practical difficulties and making the gas engine of world-wide application. This he did in 1876, and his type of engine very rapidly surpassed all others, so that now the Otto-cycle engine is manufactured over the whole world by hundreds of makers. In 1876 Dr Otto used low compression, only about 30 ℔ per sq. in. above atmosphere. Year by year compression was increased and greater power and economy were obtained, and at present compressions of more than 100 ℔ per sq. in. are commonly used with most satisfactory results.

The history of the subject since 1876 is one of gradual improvement in detail of construction, enabling higher compressions to be used with safety, and of gradual but accelerating increase in dimensions and power. In the same period light and heavy oil engines have been developed, mostly using the Otto cycle (seeOil Engine).

Gas engines may be divided, so far as concerns their working process, into three well-defined types:—

(1) Engines igniting at constant volume, but without previous compression.

(2) Engines igniting at constant pressure, with previous compression.

(3) Engines igniting at constant volume, with previous compression.

For practical purposes engines of the first type may be disregarded. Gas engines without compression are now considered to be much too wasteful of gas to be of commercial importance. Those of the second type have never reached the stage of extended commercial application; they are scientifically interesting, however, and may take an important place in the future development of the gas engine. The expectations of Sir William Siemens with regard to them have not been realized, although he spent many years in experiments. Of other engineers who also devoted much thought and work to this second type may be mentioned Brayton (1872); Foulis (1878); Crowe (1883); Hargreaves (1888); Clerk (1889); and Diesel (1892). Diesel’s engines are proving successful as oil engines but have not been introduced as gas engines.


Back to IndexNext