Thomas Cavendish, emulous of Drake’s example, fitted out three vessels for an expedition to the South sea in 1586. He took the same route as Drake along the west coast of America. From Cape San Lucas Cavendish steered across the Pacific, seeing no land until he reached the Ladrone Islands. He returned to England in 1588. The third English voyage into the Pacific was not so fortunate. Sir Richard Hawkins (1593) on reaching the bay of Atacames, in 1°N. in 1594, was attacked by a Spanish fleet, and, after a desperate naval engagement, was forced to surrender. Hawkins declared his object to be discovery and the survey of unknown lands, and his voyage, though terminating in disaster, bore good fruit.The Observations of Sir Richard Hawkins in his Voyage into the South Sea, published in 1622, are very valuable. It was long before another British ship entered the Pacific Ocean. Sir John Narborough took two ships through the Strait of Magellan in 1670 and touched on the coast of Chile, but it was not until 1685 that Dampier sailed over the part of the Pacific where Hawkins met his defeat.The exploring enterprise of the Spanish nation did not wane after the conquest of Peru and Mexico, and the acquisition of the vast empire of the Indies. It was spurred into renewed activity by the audacity of Sir John Hawkins in the West Indies, and by the appearance of Drake, Cavendish and Richard Hawkins in the Pacific.In the interior of South America the Spanish conquerors had explored the region of the Andes from the isthmus of Panama to Chile. Pedro de Valdivia in 1540 made an expedition into the country of the Araucanian Indians of Chile, and was the first toexplore the eastern base of the Andes in what is now Argentine Patagonia. In 1541 Francisco de Orellana discovered the whole course of the Amazon from its source in the Andes to the Atlantic. A second voyage on the Amazon was made in 1561 by the mad pirate Lope de Aguirre; but it was not until 1639 that a full account was written of the great river by Father Cristoval de Acuña, who ascended it from its mouth and reached the city of Quito.The voyage of Drake across the Pacific was preceded by that of Alvaro de Mendaña, who was despatched from Peru in 1567 to discover the great Antarctic continent which was believed to extend far northward into the South sea, the searchSpaniards in the Pacific.for which now became one of the leading motives of exploration. After a voyage of eighty days across the Pacific, Mendaña discovered the Solomon Islands; and the expedition returned in safety to Callao. The appearance of Drake on the Peruvian coast led to an expedition being fitted out at Callao, to go in chase of him, under the command of Pedro Sarmiento. He sailed from Callao in October 1579, and made a careful survey of the Strait of Magellan, with the object of fortifying that entrance to the South sea. The colony which he afterwards took out from Spain was a complete failure, and is only remembered now from the name of “Port Famine,” which Cavendish gave to the site at which he found the starving remnant of Sarmiento’s settlers. In June 1595 Mendaña sailed from the coast of Peru in command of a second expedition to colonize the Solomon Islands. After discovering the Marquesas, he reached the island of Santa Cruz of evil memory, where he and many of the settlers died. His young widow took command of the survivors and brought them safely to Manila. The viceroys of Peru still persevered in their attempts to plant a colony in the hypothetical southern continent. Pedro Fernandez de Quiros, who was pilot under Mendaña and Luis Vaez de Torres, were sent in command of two ships to continue the work of exploration. They sailed from Callao in December 1605, and discovered several islands of the New Hebrides group. They anchored in a bay of a large island which Quiros named “Australia del Espiritu Santo.” From this place Quiros returned to America, but Torres continued the voyage, passed through the strait between Australia and New Guinea which bears his name, and explored and mapped the southern and eastern coasts of New Guinea.The Portuguese, in the early part of the 17th century (1578-1640), were under the dominion of Spain, and their enterprise was to some extent damped; but their missionaries extended geographical knowledge in Africa. Father Francisco Paez acquired great influence in Abyssinia, and explored its highlands from 1600 to 1622. Fathers Mendez and Lobo traversed the deserts between the coast of the Red sea and the mountains, became acquainted with Lake Tsana, and discovered the sources of the Blue Nile in 1624-1633.But the attention of the Portuguese was mainly devoted to vain attempts to maintain their monopoly of the trade of India against the powerful rivalry of the English and Dutch. The English enterprises were persevering, continuous andRivalry in the East.successful. James Lancaster made a voyage to the Indian Ocean from 1591 to 1594; and in 1599 the merchants and adventurers of London resolved to form a company, with the object of establishing a trade with the East Indies. On the 31st of December 1599 Queen Elizabeth granted the charter of incorporation to the East India Company, and Sir James Lancaster, one of the directors, was appointed general of their first fleet. He was accompanied by John Davis, the great Arctic navigator, as pilot-major. This voyage was eminently successful. The ships touched at Achin in Sumatra and at Java, returning with full ladings of pepper in 1603. The second voyage was commanded by Sir Henry Middleton; but it was in the third voyage, under Keelinge and Hawkins, that the mainland of India was first reached in 1607. Captain Hawkins landed at Surat and travelled overland to Agra, passing some time at the court of the Great Mogul. In the voyage of Sir Edward Michelborne in 1605, John Davis lost his life in a fight with a Japanese junk. The eighth voyage, led by Captain Saris, extended the operations of the company to Japan; and in 1613 the Japanese government granted privileges to the company; but the British retired in 1623, giving up their factory. The chief result of this early intercourse between Great Britain and Japan was the interesting series of letters written by William Adams from 1611 to 1617. From the tenth voyage of the East India Company, commanded by Captain Best, who left England in 1612, dates the establishment of permanent British factories on the coast of India. It was Captain Best who secured a regularfirmanfor trade from the Great Mogul. From that time a fleet was despatched every year, and the company’s operations greatly increased geographical knowledge of India and the Eastern Archipelago. British visits to Eastern countries, at this time, were not confined to the voyages of the company. Journeys were also made by land, and, among others, the entertaining author of theCrudities, Thomas Coryate, of Odcombe in Somersetshire, wandered on foot from France to India, and died (1617) in the company’s factory at Surat. In 1561 Anthony Jenkinson arrived in Persia with a letter from Queen Elizabeth to the shah. He travelled through Russia to Bokhara, and returned by the Caspian and Volga. In 1579 Christopher Burroughs built a ship at Nizhniy Novgorod and traded across the Caspian to Baku; and in 1598 Sir Anthony and Robert Shirley arrived in Persia, and Robert was afterwards sent by the shah to Europe as his ambassador. He was followed by a Spanish mission under Garcia de Silva, who wrote an interesting account of his travels; and to Sir Dormer Cotton’s mission, in 1628, we are indebted for Sir Thomas Herbert’s charming narrative. In like manner Sir Thomas Roe’s mission to India resulted not only in a large collection of valuable reports and letters of his own, but also in the detailed account of his chaplain Terry. But the most learned and intelligent traveller in the East, during the 17th century, was the German, Engelbrecht Kaempfer, who accompanied an embassy to Persia, in 1684, and was afterwards a surgeon in the service of the Dutch East India Company. He was in the Persian Gulf, India and Java, and resided for more than two years in Japan, of which he wrote a history.The Dutch nation, as soon as it was emancipated from Spanish tyranny, displayed an amount of enterprise, which, for a long time, was fully equal to that of the British. The Arctic voyages of Barents were quickly followed by the establishment ofDutch exploration, 16th-17th centuries.a Dutch East India Company; and the Dutch, ousting the Portuguese, not only established factories on the mainland of India and in Japan, but acquired a preponderating influence throughout the Malay Archipelago. In 1583 Jan Hugen van Linschoten made a voyage to India with a Portuguese fleet, and his full and graphic descriptions of India, Africa, China and the Malay Archipelago must have been of no small use to his countrymen in their distant voyages. The first of the Dutch Indian voyages was performed by ships which sailed in April 1595, and rounded the Cape of Good Hope. A second large Dutch fleet sailed in 1598; and, so eager was the republic to extend her commerce over the world that another fleet, consisting of five ships of Rotterdam, was sent in the same year by way of Magellan’s Strait, under Jacob Mahu as admiral, with William Adams as pilot. Mahu died on the passage out, and was succeeded by Simon de Cordes, who was killed on the coast of Chile. In September 1599 the fleet had entered the Pacific. The ships were then steered direct for Japan, and anchored off Bungo in April 1600. In the same year, 1598, a third expedition was despatched under Oliver van Noort, a native of Utrecht, but the voyage contributed nothing to geography. The Dutch Company in 1614 again resolved to send a fleet to the Moluccas by the westward route, and Joris Spilbergen was appointed to the command as admiral, with a commission from the States-General. He was furnished with four ships of Amsterdam, two of Rotterdam and one from Zeeland. On the 6th of May 1615 Spilbergen entered the Pacific Ocean, and touched at several places on the coast of Chile and Peru, defeating the Spanish fleet in a naval engagement off Chilca. After plundering Payta and making requisitions at Acapulco, the Dutch fleet crossed the Pacific and reached the Moluccas in March 1616.The Dutch now resolved to discover a passage into the Pacific to the south of Tierra del Fuego, the insular nature of which had been ascertained by Sir Francis Drake. The vessels fitted out for this purpose were the “Eendracht,” of 360 tons, commanded by Jacob Lemaire, and the “Hoorn,” of 110 tons, under Willem Schouten. They sailed from the Texel on the 14th of June 1615, and by the 20th of January 1616 they were south of the entrance of Magellan’s Strait. Passing through the strait of Lemaire they came to the southern extremity of Tierra del Fuego, which was named Cape Horn, in honour of the town of Hoorn in West Friesland, of which Schouten was a native. They passed the cape on the 31st of January, encountering the usual westerly winds. The great merit of this discovery of a second passage into the South sea lies in the fact that it was not accidental or unforeseen, but was due to the sagacity of those who designed the voyage. On the 1st of March the Dutch fleet sighted the island of Juan Fernandez; and, having crossed the Pacific, the explorers sailed along the north coast of New Guinea and arrived at the Moluccas on the 17th of September 1616.There were several early indications of the existence of the great Australian continent, and the Dutch endeavoured to obtain further knowledge concerning the country and its extent; but only its northern and western coasts had been visited before the time of Governor van Diemen. Dirk Hartog had been on the west coast in latitude 26° 30′ S. in 1616. Pelsert struck on a reef called “Houtman’s Abrolhos” on the 4th of June 1629. In 1697 the Dutch captain Vlamingh landed on the west coast of Australia, then called New Holland, in 31° 43′ S., and named the Swan river from the black swans he discovered there. In 1642 the governor and council of Batavia fitted out two ships to prosecute the discovery of the south land, then believed to be part of a vast Antarctic continent, and entrusted the command to Captain Abel Jansen Tasman. This voyage proved to be the most important to geography that had been undertaken since the first circumnavigation of the globe. Tasman sailed from Batavia in 1642, and on the 24th of November sighted high land in 42° 30′ S., which was named van Diemen’s Land, and after landing there proceeded to the discovery of the western coast of New Zealand; at first called Staten Land, and supposed to be connected with the Antarctic continent from which this voyage proved New Holland to be separated. He then reached Tongatabu, one of the Friendly Islands of Cook; and returned by the north coast of New Guinea to Batavia. In 1644 Tasman made a second voyage to effect a fuller discovery of New Guinea.The French directed their enterprise more in the direction of North America than of the Indies. One of their most distinguished explorers was Samuel Champlain, a captain in the navy,French in North America.who, after a remarkable journey through Mexico and the West Indies from 1599 to 1602, established his historic connexion with Canada, to the geographical knowledge of which he made a very large addition.The principles and methods of surveying and position finding had by this time become well advanced, and the most remarkable example of the early application of these improvements is to be found in the survey of China by Jesuit missionaries.Missionaries in the East.They first prepared a map of the country round Peking, which was submitted to the emperor Kang-hi, and, being satisfied with the accuracy of the European method of surveying, he resolved to have a survey made of the whole empire on the same principles. This great work was begun in July 1708, and the completed maps were presented to the emperor in 1718. The records preserved in each city were examined, topographical information was diligently collected, and the Jesuit fathers checked their triangulation by meridian altitudes of the sun and pole star and by a system of remeasurements. The result was a more accurate map of China than existed, at that time, of any country in Europe. Kang-hi next ordered a similar map to be made of Tibet, the survey being executed by two lamas who were carefully trained as surveyors by the Jesuits at Peking. From these surveys were constructed the well-known maps which were forwarded to Duhalde, and which D’Anville utilized for his atlas.Several European missionaries had previously found their way from India to Tibet. Antonio Andrada, in 1624, was the first European to enter Tibet since the visit of Friar OdoricThe 18th century.in 1325. The next journey was that of Fathers Grueber and Dorville about 1660, who succeeded in passing from China, through Tibet, into India. In 1715 Fathers Desideri and Freyre made their way from Agra, across the Himalayas, to Lhasa, and the Capuchin Friar Orazio della Penna resided in that city from 1735 until 1747. But the most remarkable journey in this direction was performed by a Dutch traveller named Samuel van de Putte. He left Holland in 1718, went by land through Persia to India, and eventually made his way to Lhasa, where he resided for a long time. He went thence to China, returned to Lhasa, and was in India in time to be an eye-witness of the sack of Delhi by NadirAsia.Shah in 1737. In 1743 he left India and died at Batavia on the 27th of September 1745. The premature death of this illustrious traveller is the more to be lamented because his vast knowledge died with him. Two English missions sent by Warren Hastings to Tibet, one led by George Bogle in 1774, and the other by Captain Turner in 1783, complete Tibetan exploration in the 18th century.From Persia much new information was supplied by Jean Chardin, Jean Tavernier, Charles Hamilton, Jean de Thévenot and Father Jude Krusinski, and by English traders on the Caspian. In 1738 John Elton traded between Astrakhan and the Persian port of Enzelî on the Caspian, and undertook to build a fleet for Nadir Shah. Another English merchant, named Jonas Hanway, arrived at Astrabad from Russia, and travelled to the camp of Nadir at Kazvin. One lasting and valuable result of Hanway’s wanderings was a charming book of travels. In 1700 Guillaume Delisle published his map of the continents of the Old World; and his successor D’Anville produced his map of India in 1752. D’Anville’s map contained all that was then known, but ten years afterwards Major Rennell began his surveying labours, which extended over the period from 1763 to 1782. His survey covered an area 900 m. long by 300 wide, from the eastern confines of Bengal to Agra, and from the Himalayas to Calpi. Rennell was indefatigable in collecting geographical information; his Bengal atlas appeared in 1781, his famous map of India in 1788 and the memoir in 1792. Surveys were also made along the Indian coasts.Arabia received very careful attention, in the 18th century, from the Danish scientific mission, which included Carsten Niebuhr among its members. Niebuhr landed at Loheia, on the coast of Yemen, in December 1762, and went by land to Sana. All the other members of the mission died, but he proceeded from Mokha to Bombay. He then made a journey through Persia and Syria to Constantinople, returning to Copenhagen in 1767. His valuable work, theDescription of Arabia, was published in 1772, and was followed in 1774-1778 by two volumes of travels in Asia. The great traveller survived until 1815, when he died at the age of eighty-two.James Bruce of Kinnaird, the contemporary of Niebuhr, was equally devoted to Eastern travel; and his principal geographical work was the tracing of the Blue Nile from its source to its junction with the White Nile. Before the death ofAfrica.Bruce an African Association was formed, in 1788, for collecting information respecting the interior of that continent, with Major Rennell and Sir Joseph Banks as leading members. The association first employed John Ledyard (who had previously made an extraordinary journey into Siberia) to cross Africa from east to west on the parallel of the Niger, and William Lucas to cross the Sahara to Fezzan. Lucas went from Tripoli to Mesurata, obtained some information respecting Fezzan and returned in 1789. One of the chief problems the association wished to solve was that of the existence and course of the river Niger, which was believed by some authorities to be identical with the Congo. Mungo Park, then an assistant surgeon of an Indiaman, volunteered his services, which were accepted by the association, and in 1795 he succeeded in reaching the town of Segu on the Niger, but was prevented from continuing his journey to Timbuktu. Five years later he accepted an offer from the government to command an expedition into the interior of Africa, the plan being to cross from the Gambia to the Niger and descend the latter river to the sea. After losing most of his companions he himself and the rest perished in a rapid on the Niger at Busa, having been attacked from the shore by order of a chief who thought he had not received suitable presents. His work, however, had established the fact that the Niger was not identical with the Congo.While the British were at work in the direction of the Niger, the Portuguese were not unmindful of their old exploring fame. In 1798 Dr F.J.M. de Lacerda, an accomplished astronomer, was appointed to command a scientific expedition of discovery to the north of the Zambesi. He started in July, crossed the Muchenja Mountains, and reached the capital of the Cazembe, where he died of fever. Lacerda left a valuable record of his adventurous journey; but with Mungo Park and Lacerda the history of African exploration in the 18th century closes.In South America scientific exploration was active during this period. The great geographical event of the century, as regards that continent, was the measurement of an arc of the meridian. The undertaking was proposed by the FrenchSouth America.Academy as part of an investigation with the object of ascertaining the length of the degree near the equator and near the pole respectively so as to determine the figure of the earth. A commission left Paris in 1735, consisting of Charles Marie de la Condamine, Pierre Bouguer, Louis Godin and Joseph de Jussieu the naturalist. Spain appointed two accomplished naval officers, the brothers Ulloa, as coadjutors. The operations were carried on during eight years on a plain to the south of Quito; and, in addition to his memoir on this memorable measurement, La Condamine collected much valuable geographical information during a voyage down the Amazon. The arc measured was 3° 7′ 3″ in length; and the work consisted of two measured bases connected by a series of triangles, one north and the other south of the equator, on the meridian of Quito. Contemporaneously, in 1738, Pierre Louis Moreau de Maupertuis, Alexis Claude Clairaut, Charles Etienne Louis Camus, Pierre Charles Lemonnier and the Swedish physicist Celsius measured an arc of the meridian in Lapland.The British and French governments despatched several expeditions of discovery into the Pacific and round the world during the 18th century. They were preceded by the wonderful and romantic voyages of the buccaneers. The narrativesThe Pacific Ocean.of such men as Woodes Rogers, Edward Davis, George Shelvocke, Clipperton and William Dampier, can never fail to interest, while they are not without geographical value. The works of Dampier are especially valuable, and the narratives of William Funnell and Lionel Wafer furnished the best accounts then extant of the Isthmus of Darien. Dampier’s literary ability eventually secured for him a commission in the king’s service; and he was sent on a voyage of discovery, during which he explored part of the coasts of Australia and New Guinea, and discovered the strait which bears his name between New Guinea and New Britain, returning in 1701. In 1721 Jacob Roggewein was despatched on a voyage of some importance across the Pacific by the Dutch West India Company, during which he discovered Easter Island on the 6th of April 1722.The voyage of Lord Anson to the Pacific in 1740-1744 was of a predatory character, and he lost more than half his men from scurvy; while it is not pleasant to reflect that at the very time when the French and Spaniards were measuring an arc of the meridian at Quito, the British under Anson were pillaging along the coast of the Pacific and burning the town of Payta. But a romantic interest attaches to the wreck of the “Wager,” one of Anson’s fleet, on a desert island near Chiloe, for it bore fruit in the charming narrative of Captain John Byron, which will endure for all time. In 1764 Byron himself was sent on a voyage of discovery round the world, which led immediately after his return to the despatch of another to complete his work, under the command of Captain Samuel Wallis.The expedition, consisting of the “Dolphin” commanded by Wallis, and the “Swallow” under Captain Philip Carteret, sailed in September 1766, but the ships were separated on entering the Pacific from the Strait of Magellan. Wallis discovered Tahiti on the 19th of June 1767, and he gave a detailed account of that island. He returned to England in May 1768. Carteret discovered the Charlotte and Gloucester Islands, and Pitcairn Island on the 2nd of July 1767; revisited the Santa Cruz group, which was discovered by Mendaña and Quiros; and discovered the strait separating New Britain from New Ireland. He reached Spithead again in February 1769. Wallis and Carteret were followed very closely by the French expedition of Bougainville, which sailed from Nantes in November 1766. Bougainville had first to perform the unpleasant task of delivering up the Falkland Islands, where he had encouraged the formation of a French settlement, to the Spaniards. He then entered the Pacific, and reached Tahiti in April 1768. Passing through the NewHebrides group he touched at Batavia, and arrived at St Malo after an absence of two years and four months.The three voyages of Captain James Cook form an era in the history of geographical discovery. In 1767 he sailed for Tahiti, with the object of observing the transit of Venus, accompanied by two naturalists, Sir Joseph Banks and Dr Solander,Captain Cook.a pupil of Linnaeus, as well as by two astronomers. The transit was observed on the 3rd of June 1769. After exploring Tahiti and the Society group, Cook spent six months surveying New Zealand, which he discovered to be an island, and the coast of New South Wales from latitude 38° S. to the northern extremity. The belief in a vast Antarctic continent stretching far into the temperate zone had never been abandoned, and was vehemently asserted by Charles Dalrymple, a disappointed candidate nominated by the Royal Society for the command of the Transit expedition of 1769. In 1772 the French explorer Yves Kerguelen de Tremarec had discovered the land that bears his name in the South Indian Ocean without recognizing it to be an island, and naturally believed it to be part of the southern continent.Cook’s second voyage was mainly intended to settle the question of the existence of such a continent once for all, and to define the limits of any land that might exist in navigable seas towards the Antarctic circle. James Cook at his first attempt reached a south latitude of 57° 15′. On a second cruise from the Society Islands, in 1773, he, first of all men, crossed the Antarctic circle, and was stopped by ice in 71° 10′ S. During the second voyage Cook visited Easter Island, discovered several islands of the New Hebrides and New Caledonia; and on his way home by Cape Horn, in March 1774, he discovered the Sandwich Island group and described South Georgia. He proved conclusively that any southern continent that might exist lay under the polar ice. The third voyage was intended to attempt the passage from the Pacific to the Atlantic by the north-east. The “Resolution” and “Discovery” sailed in 1776, and Cook again took the route by the Cape of Good Hope. On reaching the North American coast, he proceeded northward, fixed the position of the western extremity of America and surveyed Bering Strait. He was stopped by the ice in 70° 41′ N., and named the farthest visible point on the American shore Icy Cape. He then visited the Asiatic shore and discovered Cape North. Returning to Hawaii, Cook was murdered by the natives. On the 14th of February 1779, his second, Captain Edward Clerke, took command, and proceeding to Petropavlovsk in the following summer, he again examined the edge of the ice, but only got as far as 70° 33′ N. The ships returned to England in October 1780.In 1785 the French government carefully fitted out an expedition of discovery at Brest, which was placed under the command of François La Pérouse, an accomplished and experienced officer. After touching at Concepcion in Chile and at Easter Island, La Pérouse proceeded to Hawaii and thence to the coast of California, of which he has given a very interesting account. He then crossed the Pacific to Macao, and in July 1787 he proceeded to explore the Gulf of Tartary and the shores of Sakhalin, remaining some time at Castries Bay, so named after the French minister of marine. Thence he went to the Kurile Islands and Kamchatka, and sailed from the far north down the meridian to the Navigator and Friendly Islands. He was in Botany Bay in January 1788; and sailing thence, the explorer, his ship and crew were never seen again. Their fate was long uncertain. In September 1791 Captain Antoine d’Entrecasteaux sailed from Brest with two vessels to seek for tidings. He visited the New Hebrides, Santa Cruz, New Caledonia and Solomon Islands, and made careful though rough surveys of the Louisiade Archipelago, islands north of New Britain and part of New Guinea. D’Entrecasteaux died on board his ship on the 20th of July 1793, without ascertaining the fate of La Pérouse. Captain Peter Dillon at length ascertained, in 1828, that the ships of La Pérouse had been wrecked on the island of Vanikoro during a hurricane.The work of Captain Cook bore fruit in many ways. His master, Captain William Bligh, was sent in the “Bounty” to convey breadfruit plants from Tahiti to the West Indies. He reached Tahiti in October 1788, and in April 1789 a mutiny broke out, and he, with several officers and men, was thrust into an open boat in mid-ocean. During the remarkable voyage he then made to Timor, Bligh passed amongst the northern islands of the New Hebrides, which he named the Banks Group, and made several running surveys. He reached England in March 1790. The “Pandora,” under Captain Edwards, was sent out in search of the “Bounty,” and discovered the islands of Cherry and Mitre, east of the Santa Cruz group, but she was eventually lost on a reef in Torres Strait. In 1796-1797 Captain Wilson, in the missionary ship “Duff,” discovered the Gambier and other islands, and rediscovered the islands known to and seen by Quiros, but since called the Duff Group. Another result of Captain Cook’s work was the colonization of Australia. On the 18th of January 1788 Admiral Phillip and Captain Hunter arrived in Botany Bay in the “Supply” and “Sirius,” followed by six transports, and established a colony at Port Jackson. Surveys were then undertaken in several directions. In 1795 and 1796 Matthew Flinders and George Bass were engaged on exploring work in a small boat called the “Tom Thumb.” In 1797 Bass, who had been a surgeon, made an expedition southwards, continued the work of Cook from Ram Head, and explored the strait which bears his name, and in 1798 he and Flinders were surveying on the east coast of Van Diemen’s land.Yet another outcome of Captain Cook’s work was the voyage of George Vancouver, who had served as a midshipman in Cook’s second and third voyages. The Spaniards under Quadra had begun a survey of north-western America and occupied Nootka Sound, which their government eventually agreed to surrender. Captain Vancouver was sent out to receive the cession, and to survey the coast from Cape Mendocino northwards. He commanded the old “Discovery,” and was at work during the seasons of 1792, 1793 and 1794, wintering at Hawaii. Returning home in 1795, he completed his narrative and a valuable series of charts.The 18th century saw the Arctic coast of North America reached at two points, as well as the first scientific attempt to reach the North Pole. The Hudson Bay Company had been incorporated in 1670, and its servants soon extended theirArctic regions.operations over a wide area to the north and west of Canada. In 1741 Captain Christopher Middleton was ordered to solve the question of a passage from Hudson Bay to the westward. Leaving Fort Churchill in July 1742, he discovered the Wager river and Repulse Bay. He was followed by Captain W. Moor in 1746, and Captain Coats in 1751, who examined the Wager Inlet up to the end. In November 1769 Samuel Hearne was sent by the Hudson Bay Company to discover the sea on the north side of America, but was obliged to return. In February 1770 he set out again from Fort Prince of Wales; but, after great hardships, he was again forced to return to the fort. He started once more in December 1771, and at length reached the Coppermine river, which he surveyed to its mouth, but his observations are unreliable. With the same object Alexander Mackenzie, with a party of Canadians, set out from Fort Chippewyan on the 3rd of June 1789, and descending the great river which now bears the explorer’s name reached the Arctic sea.In February 1773 the Royal Society submitted a proposal to the king for an expedition towards the North Pole. The expedition was fitted out under Captains Constantine Phipps and Skeffington Lutwidge, and the highest latitude reached was 80° 48′ N., but no opening was discovered in the heavy Polar pack. The most important Arctic work in the 18th century was performed by the Russians, for they succeeded in delineating the whole of the northern coast of Siberia. Some of this work was possibly done at a still earlier date. The Cossack Simon Dezhneff is thought to have made a voyage, in the summer of 1648, from the river Kolyma, through Bering Strait (which was rediscovered by Vitus Bering in 1728) to Anadyr. Between 1738 and 1750 Manin and Sterlegoff made their way in small sloops from the mouth of the Yenesei as far north as 75° 15′ N. The land from Taimyr to Cape Chelyuskin, the most northern extremity of Siberia, was mapped in many years of patient exploration by Chelyuskin, who reached the extreme point (77° 34′ N.) in May 1742. To the east of Cape Chelyuskin the Russians encountered greater difficulties. They built small vessels at Yakutsk on the Lena, 900 m. from its mouth, whence the first expedition was despatched under Lieut. Prontschichev in 1735. He sailed from the mouth of the Lena to the mouth of the Olonek, where he wintered, and on the 1st of September 1736 he got as far as 77° 29′ N., within 5 m. of Cape Chelyuskin. Both he and his young wife died of scurvy, and the vessel returned. A second expedition, under Lieut. Laptyev, started from the Lena in 1739, but encountered masses of drift ice in Chatanga bay, and with this ended the voyages to the westward of the Lena. Several attempts were also made to navigate the sea from the Lena to the Kolyma. In 1736 Lieut. Laptyev sailed, but was stopped by the drift ice in August, and in 1739, during another trial, he reached the mouth of the Indigirka, where he wintered. In the season of 1740 he continued his voyage to beyond the Kolyma, wintering at Nizhni Kolymsk. In September 1740 Vitus Bering sailed from Okhotsk on a second Arctic voyage with George William Steller on board as naturalist. In June 1741 he named the magnificent peak on the coast of North America Mount St Elias and explored the Aleutian Islands. In November the ship was wrecked on Bering Island; and the gallant Dane, worn out with scurvy, died there on the 8th of December 1741. In March 1770 a merchant named Liakhov saw a large herd of reindeer coming from the north to the Siberian coast, which induced him to start in a sledge in the direction whence they came. Thus he reached the New Siberian or Liakhov Islands, and for years afterwards the seekers for fossil ivory resorted to them. The Russian Captain Vassili Chitschakov in 1765 and 1766 made two persevering attempts to penetrate the ice north of Spitsbergen, and reached 80° 30′ N., while Russian parties twice wintered at Bell Sound.In reviewing the progress of geographical discovery thus far, it has been possible to keep fairly closely to a chronological order. But in the 19th century and after exploring work was so generally and steadily maintained in all directions, andGeographical societies.was in so many cases narrowed down from long journeys to detailed surveys within relatively small areas, that it becomes desirable to cover the whole period at one view for certain great divisions of the world. (SeeAfrica;Asia;Australia;Polar Regions; &c.) Here, however, may be noticed the development of geographical societies devoted to the encouragement of exploration and research. The first of the existing geographical societies wasthat of Paris, founded in 1825 under the title of La Société de Géographie. The Berlin Geographical Society (Gesellschaft für Erdkunde) is second in order of seniority, having been founded in 1827. The Royal Geographical Society, which was founded in London in 1830, comes third on the list; but it may be viewed as a direct result of the earlier African Association founded in 1788. Sir John Barrow, Sir John Cam Hobhouse (Lord Broughton), Sir Roderick Murchison, Mr Robert Brown and Mr Bartle Frere formed the foundation committee of the Royal Geographical Society, and the first president was Lord Goderich. The action of the society in supplying practical instruction to intending travellers, in astronomy, surveying and the various branches of science useful to collectors, has had much to do with advancement of discovery. Since the war of 1870 many geographical societies have been established on the continent of Europe. At the close of the 19th century there were upwards of 100 such societies in the world, with more than 50,000 members, and over 150 journals were devoted entirely to geographical subjects.11The great development of photography has been a notable aid to explorers, not only by placing at their disposal a faithful and ready means of recording the features of a country and the types of inhabitants, but by supplying a method of quick and accurate topographical surveying.The Principles of GeographyAs regards the scope of geography, the order of the various departments and their inter-relation, there is little difference of opinion, and the principles of geography12are now generally accepted by modern geographers. The order in which the various subjects are treated in the following sketch is the natural succession from fundamental to dependent facts, which corresponds also to the evolution of the diversities of the earth’s crust and of its inhabitants.The fundamental geographical conceptions are mathematical, the relations of space and form. The figure and dimensions of the earth are the first of these. They are ascertained by a combination of actual measurement of the highestMathematical geography.precision on the surface and angular observations of the positions of the heavenly bodies. The science of geodesy is part of mathematical geography, of which the arts of surveying and cartography are applications. The motions of the earth as a planet must be taken into account, as they render possible the determination of position and direction by observations of the heavenly bodies. The diurnal rotation of the earth furnishes two fixed points or poles, the axis joining which is fixed or nearly so in its direction in space. The rotation of the earth thus fixes the directions of north and south and defines those of east and west. The angle which the earth’s axis makes with the plane in which the planet revolves round the sun determines the varying seasonal distribution of solar radiation over the surface and the mathematical zones of climate. Another important consequence of rotation is the deviation produced in moving bodies relatively to the surface. In the form known as Ferrell’s Law this runs: “If a body moves in any direction on the earth’s surface, there is a deflecting force which arises from the earth’s rotation which tends to deflect it to the right in the northern hemisphere but to the left in the southern hemisphere.” The deviation is of importance in the movement of air, of ocean currents, and to some extent of rivers.13In popular usage the words “physical geography” have come to mean geography viewed from a particular standpoint rather than any special department of the subject. The popular meaning is better conveyed by the word physiography, aPhysical geography.term which appears to have been introduced by Linnaeus, and was reinvented as a substitute for the cosmography of the middle ages by Professor Huxley. Although the term has since been limited by some writers to one particular part of the subject, it seems best to maintain the original and literal meaning. In the stricter sense, physical geography is that part of geography which involves the processes of contemporary change in the crust and the circulation of the fluid envelopes. It thus draws upon physics for the explanation of the phenomena with the space-relations of which it is specially concerned. Physical geography naturally falls into three divisions, dealing respectively with the surface of the lithosphere—geomorphology; the hydrosphere—oceanography; and the atmosphere—climatology. All these rest upon the facts of mathematical geography, and the three are so closely inter-related that they cannot be rigidly separated in any discussion.Geomorphology is the part of geography which deals with terrestrial relief, including the submarine as well as the subaërial portions of the crust. The history of the origin of the various forms belongs to geology, and can be completely studied only by geologicalGeomorphology.methods. But the relief of the crust is not a finished piece of sculpture; the forms are for the most part transitional, owing their characteristic outlines to the process by which they are produced; therefore the geographer must, for strictly geographical purposes, take some account of the processes which are now in action modifying the forms of the crust. Opinion still differs as to the extent to which the geographer’s work should overlap that of the geologist.The primary distinction of the forms of the crust is that between elevations and depressions. Granting that the geoid or mean surface of the ocean is a uniform spheroid, the distribution of land and water approximately indicates a division of the surface of the globe into two areas, one of elevation and one of depression. The increasing number of measurements of the height of land in all continents and islands, and the very detailed levellings in those countries which have been thoroughly surveyed, enable the average elevation of the land above sea-level to be fairly estimated, although many vast gaps in accurate knowledge remain, and the estimate is not an exact one. The only part of the sea-bed the configuration of which is at all well known is the zone bordering the coasts where the depth is less than about 100 fathoms or 200 metres,i.e.those parts which sailors speak of as “in soundings.” Actual or projected routes for telegraph cables across the deep sea have also been sounded with extreme accuracy in many cases; but beyond these lines of sounding the vast spaces of the ocean remain unplumbed save for the rare researches of scientific expeditions, such as those of the “Challenger,” the “Valdivia,” the “Albatross” and the “Scotia.” Thus the best approximation to the average depth of the ocean is little more than an expert guess; yet a fair approximation is probable for the features of sub-oceanic relief are so much more uniform than those of the land that a smaller number of fixed points is required to determine them.The chief element of uncertainty as to the largest features of the relief of the earth’s crust is due to the unexplored area in the Arctic region and the larger regions of the Antarctic, of which we know nothing. We know that the earth’s surface ifCrustal relief.unveiled of water would exhibit a great region of elevation arranged with a certain rough radiate symmetry round the north pole, and extending southwards in three unequal arms which taper to points in the south. A depression surrounds the little-known south polar region in a continuous ring and extends northwards in three vast hollows lying between the arms of the elevated area. So far only is it possible to speak with certainty, but it is permissible to take a few steps into the twilight of dawning knowledge and indicate the chief subdivisions which are likely to be established in the great crust-hollow and the great crust-heap. The boundary between these should obviously be the mean surface of the sphere.Sir John Murray deduced the mean height of the land of the globe as about 2250 ft. above sea-level, and the mean depth of the oceans as 2080 fathoms or 12,480 ft. below sea-level.14Calculating the area of the land at 55,000,000 sq. m. (or 28.6% of the surface), and that of the oceans as 137,200,000 sq. m. (or 71.4% of the surface), he found that the volume of the land above sea-level was 23,450,000 cub. m., the volume of water below sea-level 323,800,000, and the total volume of the water equal to about1⁄666th of the volume of the whole globe. From these data, as revised by A. Supan,15H.R. Mill calculated the position of mean sphere-level at about 10,000 ft. or 1700 fathoms below sea-level. He showed that an imaginary spheroidal shell, concentric with the earth and cutting the slope between the elevated and depressed areas at the contour-line of 1700 fathoms, would not only leave above it a volume of the crust equal to the volume of the hollow left below it, but would also divide the surface of the earth so that the area of the elevated region was equal to that of the depressed region.16A similar observation was made almost simultaneously by Romieux,17who further speculated on the equilibrium between the weight of the elevated land mass and that of the total waters of the ocean, and deduced some interesting relationsAreas of the crust according to Murray.between them. Murray, as the result of his study, divided the earth’s surface into three zones—thecontinental areacontaining all dry land, thetransitional areaincluding the submarine slopes down to 1000 fathoms, and theabysmal areaconsisting of the floor of the ocean beyond that depth; and Mill proposed to take the line of mean-sphere level, instead of the empirical depth of 1000 fathoms, as the boundary between the transitional and abysmal areas.An elaborate criticism of all the existing data regarding the volume relations of the vertical relief of the globe was made in 1894 by Professor Hermann Wagner, whose recalculations of volumesand mean heights—the best results which have yet been obtained—led to the following conclusions.18The area of the dry land was taken as 28.3% of the surface of the globe, and that of the oceans as 71.7%. The mean height deduced for the land was 2300 ft. above sea-level, the mean depth of the sea 11,500 ft. below, while the position of mean-sphereAreas of the crust according to Wagner.level comes out as 7500 ft. (1250 fathoms) below sea-level. From this it would appear that 43% of the earth’s surface was above and 57% below the mean level. It must be noted, however, that since 1895 the soundings of Nansen in the north polar area, of the “Valdivia,” “Belgica,” “Gauss” and “Scotia” in the Southern Ocean, and of various surveying ships in the North and South Pacific, have proved that the mean depth of the ocean is considerably greater than had been supposed, and mean-sphere level must therefore lie deeper than the calculations of 1895 show; possibly not far from the position deduced from the freer estimate of 1888. The whole of the available data were utilized by the prince of Monaco in 1905 in the preparation of a complete bathymetrical map of the oceans on a uniform scale, which must long remain the standard work for reference on ocean depths.By the device of a hypsographic curve co-ordinating the vertical relief and the areas of the earth’s surface occupied by each zone of elevation, according to the system introduced by Supan,19Wagner showed his results graphically.This curve with the values reduced from metres to feet is reproduced below.Wagner subdivides the earth’s surface, according to elevation, into the following five regions:Wagner’s Divisions of the Earth’s Crust:Name.Per cent ofSurface.FromToDepressed area3Deepest.−16,400 feet.Oceanic plateau54−16,400 feet.− 7,400 feet.Continental slope9− 7,400 feet.− 660 feet.Continental plateau28− 660 feet.+ 3,000 feet.Culminating area6+ 3,300 feet.Highest.The continental plateau might for purposes of detailed study be divided into thecontinental shelffrom -660 ft. to sea-level, andlowlandsfrom sea-level to +660 ft. (corresponding to the mean level of the whole globe).20Uplandsreaching from 660 ft. to 2300 (the approximate mean level of the land), andhighlands, from 2300 upwards, might also be distinguished.
Thomas Cavendish, emulous of Drake’s example, fitted out three vessels for an expedition to the South sea in 1586. He took the same route as Drake along the west coast of America. From Cape San Lucas Cavendish steered across the Pacific, seeing no land until he reached the Ladrone Islands. He returned to England in 1588. The third English voyage into the Pacific was not so fortunate. Sir Richard Hawkins (1593) on reaching the bay of Atacames, in 1°N. in 1594, was attacked by a Spanish fleet, and, after a desperate naval engagement, was forced to surrender. Hawkins declared his object to be discovery and the survey of unknown lands, and his voyage, though terminating in disaster, bore good fruit.The Observations of Sir Richard Hawkins in his Voyage into the South Sea, published in 1622, are very valuable. It was long before another British ship entered the Pacific Ocean. Sir John Narborough took two ships through the Strait of Magellan in 1670 and touched on the coast of Chile, but it was not until 1685 that Dampier sailed over the part of the Pacific where Hawkins met his defeat.
The exploring enterprise of the Spanish nation did not wane after the conquest of Peru and Mexico, and the acquisition of the vast empire of the Indies. It was spurred into renewed activity by the audacity of Sir John Hawkins in the West Indies, and by the appearance of Drake, Cavendish and Richard Hawkins in the Pacific.
In the interior of South America the Spanish conquerors had explored the region of the Andes from the isthmus of Panama to Chile. Pedro de Valdivia in 1540 made an expedition into the country of the Araucanian Indians of Chile, and was the first toexplore the eastern base of the Andes in what is now Argentine Patagonia. In 1541 Francisco de Orellana discovered the whole course of the Amazon from its source in the Andes to the Atlantic. A second voyage on the Amazon was made in 1561 by the mad pirate Lope de Aguirre; but it was not until 1639 that a full account was written of the great river by Father Cristoval de Acuña, who ascended it from its mouth and reached the city of Quito.
The voyage of Drake across the Pacific was preceded by that of Alvaro de Mendaña, who was despatched from Peru in 1567 to discover the great Antarctic continent which was believed to extend far northward into the South sea, the searchSpaniards in the Pacific.for which now became one of the leading motives of exploration. After a voyage of eighty days across the Pacific, Mendaña discovered the Solomon Islands; and the expedition returned in safety to Callao. The appearance of Drake on the Peruvian coast led to an expedition being fitted out at Callao, to go in chase of him, under the command of Pedro Sarmiento. He sailed from Callao in October 1579, and made a careful survey of the Strait of Magellan, with the object of fortifying that entrance to the South sea. The colony which he afterwards took out from Spain was a complete failure, and is only remembered now from the name of “Port Famine,” which Cavendish gave to the site at which he found the starving remnant of Sarmiento’s settlers. In June 1595 Mendaña sailed from the coast of Peru in command of a second expedition to colonize the Solomon Islands. After discovering the Marquesas, he reached the island of Santa Cruz of evil memory, where he and many of the settlers died. His young widow took command of the survivors and brought them safely to Manila. The viceroys of Peru still persevered in their attempts to plant a colony in the hypothetical southern continent. Pedro Fernandez de Quiros, who was pilot under Mendaña and Luis Vaez de Torres, were sent in command of two ships to continue the work of exploration. They sailed from Callao in December 1605, and discovered several islands of the New Hebrides group. They anchored in a bay of a large island which Quiros named “Australia del Espiritu Santo.” From this place Quiros returned to America, but Torres continued the voyage, passed through the strait between Australia and New Guinea which bears his name, and explored and mapped the southern and eastern coasts of New Guinea.
The Portuguese, in the early part of the 17th century (1578-1640), were under the dominion of Spain, and their enterprise was to some extent damped; but their missionaries extended geographical knowledge in Africa. Father Francisco Paez acquired great influence in Abyssinia, and explored its highlands from 1600 to 1622. Fathers Mendez and Lobo traversed the deserts between the coast of the Red sea and the mountains, became acquainted with Lake Tsana, and discovered the sources of the Blue Nile in 1624-1633.
But the attention of the Portuguese was mainly devoted to vain attempts to maintain their monopoly of the trade of India against the powerful rivalry of the English and Dutch. The English enterprises were persevering, continuous andRivalry in the East.successful. James Lancaster made a voyage to the Indian Ocean from 1591 to 1594; and in 1599 the merchants and adventurers of London resolved to form a company, with the object of establishing a trade with the East Indies. On the 31st of December 1599 Queen Elizabeth granted the charter of incorporation to the East India Company, and Sir James Lancaster, one of the directors, was appointed general of their first fleet. He was accompanied by John Davis, the great Arctic navigator, as pilot-major. This voyage was eminently successful. The ships touched at Achin in Sumatra and at Java, returning with full ladings of pepper in 1603. The second voyage was commanded by Sir Henry Middleton; but it was in the third voyage, under Keelinge and Hawkins, that the mainland of India was first reached in 1607. Captain Hawkins landed at Surat and travelled overland to Agra, passing some time at the court of the Great Mogul. In the voyage of Sir Edward Michelborne in 1605, John Davis lost his life in a fight with a Japanese junk. The eighth voyage, led by Captain Saris, extended the operations of the company to Japan; and in 1613 the Japanese government granted privileges to the company; but the British retired in 1623, giving up their factory. The chief result of this early intercourse between Great Britain and Japan was the interesting series of letters written by William Adams from 1611 to 1617. From the tenth voyage of the East India Company, commanded by Captain Best, who left England in 1612, dates the establishment of permanent British factories on the coast of India. It was Captain Best who secured a regularfirmanfor trade from the Great Mogul. From that time a fleet was despatched every year, and the company’s operations greatly increased geographical knowledge of India and the Eastern Archipelago. British visits to Eastern countries, at this time, were not confined to the voyages of the company. Journeys were also made by land, and, among others, the entertaining author of theCrudities, Thomas Coryate, of Odcombe in Somersetshire, wandered on foot from France to India, and died (1617) in the company’s factory at Surat. In 1561 Anthony Jenkinson arrived in Persia with a letter from Queen Elizabeth to the shah. He travelled through Russia to Bokhara, and returned by the Caspian and Volga. In 1579 Christopher Burroughs built a ship at Nizhniy Novgorod and traded across the Caspian to Baku; and in 1598 Sir Anthony and Robert Shirley arrived in Persia, and Robert was afterwards sent by the shah to Europe as his ambassador. He was followed by a Spanish mission under Garcia de Silva, who wrote an interesting account of his travels; and to Sir Dormer Cotton’s mission, in 1628, we are indebted for Sir Thomas Herbert’s charming narrative. In like manner Sir Thomas Roe’s mission to India resulted not only in a large collection of valuable reports and letters of his own, but also in the detailed account of his chaplain Terry. But the most learned and intelligent traveller in the East, during the 17th century, was the German, Engelbrecht Kaempfer, who accompanied an embassy to Persia, in 1684, and was afterwards a surgeon in the service of the Dutch East India Company. He was in the Persian Gulf, India and Java, and resided for more than two years in Japan, of which he wrote a history.
The Dutch nation, as soon as it was emancipated from Spanish tyranny, displayed an amount of enterprise, which, for a long time, was fully equal to that of the British. The Arctic voyages of Barents were quickly followed by the establishment ofDutch exploration, 16th-17th centuries.a Dutch East India Company; and the Dutch, ousting the Portuguese, not only established factories on the mainland of India and in Japan, but acquired a preponderating influence throughout the Malay Archipelago. In 1583 Jan Hugen van Linschoten made a voyage to India with a Portuguese fleet, and his full and graphic descriptions of India, Africa, China and the Malay Archipelago must have been of no small use to his countrymen in their distant voyages. The first of the Dutch Indian voyages was performed by ships which sailed in April 1595, and rounded the Cape of Good Hope. A second large Dutch fleet sailed in 1598; and, so eager was the republic to extend her commerce over the world that another fleet, consisting of five ships of Rotterdam, was sent in the same year by way of Magellan’s Strait, under Jacob Mahu as admiral, with William Adams as pilot. Mahu died on the passage out, and was succeeded by Simon de Cordes, who was killed on the coast of Chile. In September 1599 the fleet had entered the Pacific. The ships were then steered direct for Japan, and anchored off Bungo in April 1600. In the same year, 1598, a third expedition was despatched under Oliver van Noort, a native of Utrecht, but the voyage contributed nothing to geography. The Dutch Company in 1614 again resolved to send a fleet to the Moluccas by the westward route, and Joris Spilbergen was appointed to the command as admiral, with a commission from the States-General. He was furnished with four ships of Amsterdam, two of Rotterdam and one from Zeeland. On the 6th of May 1615 Spilbergen entered the Pacific Ocean, and touched at several places on the coast of Chile and Peru, defeating the Spanish fleet in a naval engagement off Chilca. After plundering Payta and making requisitions at Acapulco, the Dutch fleet crossed the Pacific and reached the Moluccas in March 1616.
The Dutch now resolved to discover a passage into the Pacific to the south of Tierra del Fuego, the insular nature of which had been ascertained by Sir Francis Drake. The vessels fitted out for this purpose were the “Eendracht,” of 360 tons, commanded by Jacob Lemaire, and the “Hoorn,” of 110 tons, under Willem Schouten. They sailed from the Texel on the 14th of June 1615, and by the 20th of January 1616 they were south of the entrance of Magellan’s Strait. Passing through the strait of Lemaire they came to the southern extremity of Tierra del Fuego, which was named Cape Horn, in honour of the town of Hoorn in West Friesland, of which Schouten was a native. They passed the cape on the 31st of January, encountering the usual westerly winds. The great merit of this discovery of a second passage into the South sea lies in the fact that it was not accidental or unforeseen, but was due to the sagacity of those who designed the voyage. On the 1st of March the Dutch fleet sighted the island of Juan Fernandez; and, having crossed the Pacific, the explorers sailed along the north coast of New Guinea and arrived at the Moluccas on the 17th of September 1616.
There were several early indications of the existence of the great Australian continent, and the Dutch endeavoured to obtain further knowledge concerning the country and its extent; but only its northern and western coasts had been visited before the time of Governor van Diemen. Dirk Hartog had been on the west coast in latitude 26° 30′ S. in 1616. Pelsert struck on a reef called “Houtman’s Abrolhos” on the 4th of June 1629. In 1697 the Dutch captain Vlamingh landed on the west coast of Australia, then called New Holland, in 31° 43′ S., and named the Swan river from the black swans he discovered there. In 1642 the governor and council of Batavia fitted out two ships to prosecute the discovery of the south land, then believed to be part of a vast Antarctic continent, and entrusted the command to Captain Abel Jansen Tasman. This voyage proved to be the most important to geography that had been undertaken since the first circumnavigation of the globe. Tasman sailed from Batavia in 1642, and on the 24th of November sighted high land in 42° 30′ S., which was named van Diemen’s Land, and after landing there proceeded to the discovery of the western coast of New Zealand; at first called Staten Land, and supposed to be connected with the Antarctic continent from which this voyage proved New Holland to be separated. He then reached Tongatabu, one of the Friendly Islands of Cook; and returned by the north coast of New Guinea to Batavia. In 1644 Tasman made a second voyage to effect a fuller discovery of New Guinea.
The French directed their enterprise more in the direction of North America than of the Indies. One of their most distinguished explorers was Samuel Champlain, a captain in the navy,French in North America.who, after a remarkable journey through Mexico and the West Indies from 1599 to 1602, established his historic connexion with Canada, to the geographical knowledge of which he made a very large addition.
The principles and methods of surveying and position finding had by this time become well advanced, and the most remarkable example of the early application of these improvements is to be found in the survey of China by Jesuit missionaries.Missionaries in the East.They first prepared a map of the country round Peking, which was submitted to the emperor Kang-hi, and, being satisfied with the accuracy of the European method of surveying, he resolved to have a survey made of the whole empire on the same principles. This great work was begun in July 1708, and the completed maps were presented to the emperor in 1718. The records preserved in each city were examined, topographical information was diligently collected, and the Jesuit fathers checked their triangulation by meridian altitudes of the sun and pole star and by a system of remeasurements. The result was a more accurate map of China than existed, at that time, of any country in Europe. Kang-hi next ordered a similar map to be made of Tibet, the survey being executed by two lamas who were carefully trained as surveyors by the Jesuits at Peking. From these surveys were constructed the well-known maps which were forwarded to Duhalde, and which D’Anville utilized for his atlas.
Several European missionaries had previously found their way from India to Tibet. Antonio Andrada, in 1624, was the first European to enter Tibet since the visit of Friar OdoricThe 18th century.in 1325. The next journey was that of Fathers Grueber and Dorville about 1660, who succeeded in passing from China, through Tibet, into India. In 1715 Fathers Desideri and Freyre made their way from Agra, across the Himalayas, to Lhasa, and the Capuchin Friar Orazio della Penna resided in that city from 1735 until 1747. But the most remarkable journey in this direction was performed by a Dutch traveller named Samuel van de Putte. He left Holland in 1718, went by land through Persia to India, and eventually made his way to Lhasa, where he resided for a long time. He went thence to China, returned to Lhasa, and was in India in time to be an eye-witness of the sack of Delhi by NadirAsia.Shah in 1737. In 1743 he left India and died at Batavia on the 27th of September 1745. The premature death of this illustrious traveller is the more to be lamented because his vast knowledge died with him. Two English missions sent by Warren Hastings to Tibet, one led by George Bogle in 1774, and the other by Captain Turner in 1783, complete Tibetan exploration in the 18th century.
From Persia much new information was supplied by Jean Chardin, Jean Tavernier, Charles Hamilton, Jean de Thévenot and Father Jude Krusinski, and by English traders on the Caspian. In 1738 John Elton traded between Astrakhan and the Persian port of Enzelî on the Caspian, and undertook to build a fleet for Nadir Shah. Another English merchant, named Jonas Hanway, arrived at Astrabad from Russia, and travelled to the camp of Nadir at Kazvin. One lasting and valuable result of Hanway’s wanderings was a charming book of travels. In 1700 Guillaume Delisle published his map of the continents of the Old World; and his successor D’Anville produced his map of India in 1752. D’Anville’s map contained all that was then known, but ten years afterwards Major Rennell began his surveying labours, which extended over the period from 1763 to 1782. His survey covered an area 900 m. long by 300 wide, from the eastern confines of Bengal to Agra, and from the Himalayas to Calpi. Rennell was indefatigable in collecting geographical information; his Bengal atlas appeared in 1781, his famous map of India in 1788 and the memoir in 1792. Surveys were also made along the Indian coasts.
Arabia received very careful attention, in the 18th century, from the Danish scientific mission, which included Carsten Niebuhr among its members. Niebuhr landed at Loheia, on the coast of Yemen, in December 1762, and went by land to Sana. All the other members of the mission died, but he proceeded from Mokha to Bombay. He then made a journey through Persia and Syria to Constantinople, returning to Copenhagen in 1767. His valuable work, theDescription of Arabia, was published in 1772, and was followed in 1774-1778 by two volumes of travels in Asia. The great traveller survived until 1815, when he died at the age of eighty-two.
James Bruce of Kinnaird, the contemporary of Niebuhr, was equally devoted to Eastern travel; and his principal geographical work was the tracing of the Blue Nile from its source to its junction with the White Nile. Before the death ofAfrica.Bruce an African Association was formed, in 1788, for collecting information respecting the interior of that continent, with Major Rennell and Sir Joseph Banks as leading members. The association first employed John Ledyard (who had previously made an extraordinary journey into Siberia) to cross Africa from east to west on the parallel of the Niger, and William Lucas to cross the Sahara to Fezzan. Lucas went from Tripoli to Mesurata, obtained some information respecting Fezzan and returned in 1789. One of the chief problems the association wished to solve was that of the existence and course of the river Niger, which was believed by some authorities to be identical with the Congo. Mungo Park, then an assistant surgeon of an Indiaman, volunteered his services, which were accepted by the association, and in 1795 he succeeded in reaching the town of Segu on the Niger, but was prevented from continuing his journey to Timbuktu. Five years later he accepted an offer from the government to command an expedition into the interior of Africa, the plan being to cross from the Gambia to the Niger and descend the latter river to the sea. After losing most of his companions he himself and the rest perished in a rapid on the Niger at Busa, having been attacked from the shore by order of a chief who thought he had not received suitable presents. His work, however, had established the fact that the Niger was not identical with the Congo.
While the British were at work in the direction of the Niger, the Portuguese were not unmindful of their old exploring fame. In 1798 Dr F.J.M. de Lacerda, an accomplished astronomer, was appointed to command a scientific expedition of discovery to the north of the Zambesi. He started in July, crossed the Muchenja Mountains, and reached the capital of the Cazembe, where he died of fever. Lacerda left a valuable record of his adventurous journey; but with Mungo Park and Lacerda the history of African exploration in the 18th century closes.
In South America scientific exploration was active during this period. The great geographical event of the century, as regards that continent, was the measurement of an arc of the meridian. The undertaking was proposed by the FrenchSouth America.Academy as part of an investigation with the object of ascertaining the length of the degree near the equator and near the pole respectively so as to determine the figure of the earth. A commission left Paris in 1735, consisting of Charles Marie de la Condamine, Pierre Bouguer, Louis Godin and Joseph de Jussieu the naturalist. Spain appointed two accomplished naval officers, the brothers Ulloa, as coadjutors. The operations were carried on during eight years on a plain to the south of Quito; and, in addition to his memoir on this memorable measurement, La Condamine collected much valuable geographical information during a voyage down the Amazon. The arc measured was 3° 7′ 3″ in length; and the work consisted of two measured bases connected by a series of triangles, one north and the other south of the equator, on the meridian of Quito. Contemporaneously, in 1738, Pierre Louis Moreau de Maupertuis, Alexis Claude Clairaut, Charles Etienne Louis Camus, Pierre Charles Lemonnier and the Swedish physicist Celsius measured an arc of the meridian in Lapland.
The British and French governments despatched several expeditions of discovery into the Pacific and round the world during the 18th century. They were preceded by the wonderful and romantic voyages of the buccaneers. The narrativesThe Pacific Ocean.of such men as Woodes Rogers, Edward Davis, George Shelvocke, Clipperton and William Dampier, can never fail to interest, while they are not without geographical value. The works of Dampier are especially valuable, and the narratives of William Funnell and Lionel Wafer furnished the best accounts then extant of the Isthmus of Darien. Dampier’s literary ability eventually secured for him a commission in the king’s service; and he was sent on a voyage of discovery, during which he explored part of the coasts of Australia and New Guinea, and discovered the strait which bears his name between New Guinea and New Britain, returning in 1701. In 1721 Jacob Roggewein was despatched on a voyage of some importance across the Pacific by the Dutch West India Company, during which he discovered Easter Island on the 6th of April 1722.
The voyage of Lord Anson to the Pacific in 1740-1744 was of a predatory character, and he lost more than half his men from scurvy; while it is not pleasant to reflect that at the very time when the French and Spaniards were measuring an arc of the meridian at Quito, the British under Anson were pillaging along the coast of the Pacific and burning the town of Payta. But a romantic interest attaches to the wreck of the “Wager,” one of Anson’s fleet, on a desert island near Chiloe, for it bore fruit in the charming narrative of Captain John Byron, which will endure for all time. In 1764 Byron himself was sent on a voyage of discovery round the world, which led immediately after his return to the despatch of another to complete his work, under the command of Captain Samuel Wallis.
The expedition, consisting of the “Dolphin” commanded by Wallis, and the “Swallow” under Captain Philip Carteret, sailed in September 1766, but the ships were separated on entering the Pacific from the Strait of Magellan. Wallis discovered Tahiti on the 19th of June 1767, and he gave a detailed account of that island. He returned to England in May 1768. Carteret discovered the Charlotte and Gloucester Islands, and Pitcairn Island on the 2nd of July 1767; revisited the Santa Cruz group, which was discovered by Mendaña and Quiros; and discovered the strait separating New Britain from New Ireland. He reached Spithead again in February 1769. Wallis and Carteret were followed very closely by the French expedition of Bougainville, which sailed from Nantes in November 1766. Bougainville had first to perform the unpleasant task of delivering up the Falkland Islands, where he had encouraged the formation of a French settlement, to the Spaniards. He then entered the Pacific, and reached Tahiti in April 1768. Passing through the NewHebrides group he touched at Batavia, and arrived at St Malo after an absence of two years and four months.
The three voyages of Captain James Cook form an era in the history of geographical discovery. In 1767 he sailed for Tahiti, with the object of observing the transit of Venus, accompanied by two naturalists, Sir Joseph Banks and Dr Solander,Captain Cook.a pupil of Linnaeus, as well as by two astronomers. The transit was observed on the 3rd of June 1769. After exploring Tahiti and the Society group, Cook spent six months surveying New Zealand, which he discovered to be an island, and the coast of New South Wales from latitude 38° S. to the northern extremity. The belief in a vast Antarctic continent stretching far into the temperate zone had never been abandoned, and was vehemently asserted by Charles Dalrymple, a disappointed candidate nominated by the Royal Society for the command of the Transit expedition of 1769. In 1772 the French explorer Yves Kerguelen de Tremarec had discovered the land that bears his name in the South Indian Ocean without recognizing it to be an island, and naturally believed it to be part of the southern continent.
Cook’s second voyage was mainly intended to settle the question of the existence of such a continent once for all, and to define the limits of any land that might exist in navigable seas towards the Antarctic circle. James Cook at his first attempt reached a south latitude of 57° 15′. On a second cruise from the Society Islands, in 1773, he, first of all men, crossed the Antarctic circle, and was stopped by ice in 71° 10′ S. During the second voyage Cook visited Easter Island, discovered several islands of the New Hebrides and New Caledonia; and on his way home by Cape Horn, in March 1774, he discovered the Sandwich Island group and described South Georgia. He proved conclusively that any southern continent that might exist lay under the polar ice. The third voyage was intended to attempt the passage from the Pacific to the Atlantic by the north-east. The “Resolution” and “Discovery” sailed in 1776, and Cook again took the route by the Cape of Good Hope. On reaching the North American coast, he proceeded northward, fixed the position of the western extremity of America and surveyed Bering Strait. He was stopped by the ice in 70° 41′ N., and named the farthest visible point on the American shore Icy Cape. He then visited the Asiatic shore and discovered Cape North. Returning to Hawaii, Cook was murdered by the natives. On the 14th of February 1779, his second, Captain Edward Clerke, took command, and proceeding to Petropavlovsk in the following summer, he again examined the edge of the ice, but only got as far as 70° 33′ N. The ships returned to England in October 1780.
In 1785 the French government carefully fitted out an expedition of discovery at Brest, which was placed under the command of François La Pérouse, an accomplished and experienced officer. After touching at Concepcion in Chile and at Easter Island, La Pérouse proceeded to Hawaii and thence to the coast of California, of which he has given a very interesting account. He then crossed the Pacific to Macao, and in July 1787 he proceeded to explore the Gulf of Tartary and the shores of Sakhalin, remaining some time at Castries Bay, so named after the French minister of marine. Thence he went to the Kurile Islands and Kamchatka, and sailed from the far north down the meridian to the Navigator and Friendly Islands. He was in Botany Bay in January 1788; and sailing thence, the explorer, his ship and crew were never seen again. Their fate was long uncertain. In September 1791 Captain Antoine d’Entrecasteaux sailed from Brest with two vessels to seek for tidings. He visited the New Hebrides, Santa Cruz, New Caledonia and Solomon Islands, and made careful though rough surveys of the Louisiade Archipelago, islands north of New Britain and part of New Guinea. D’Entrecasteaux died on board his ship on the 20th of July 1793, without ascertaining the fate of La Pérouse. Captain Peter Dillon at length ascertained, in 1828, that the ships of La Pérouse had been wrecked on the island of Vanikoro during a hurricane.
The work of Captain Cook bore fruit in many ways. His master, Captain William Bligh, was sent in the “Bounty” to convey breadfruit plants from Tahiti to the West Indies. He reached Tahiti in October 1788, and in April 1789 a mutiny broke out, and he, with several officers and men, was thrust into an open boat in mid-ocean. During the remarkable voyage he then made to Timor, Bligh passed amongst the northern islands of the New Hebrides, which he named the Banks Group, and made several running surveys. He reached England in March 1790. The “Pandora,” under Captain Edwards, was sent out in search of the “Bounty,” and discovered the islands of Cherry and Mitre, east of the Santa Cruz group, but she was eventually lost on a reef in Torres Strait. In 1796-1797 Captain Wilson, in the missionary ship “Duff,” discovered the Gambier and other islands, and rediscovered the islands known to and seen by Quiros, but since called the Duff Group. Another result of Captain Cook’s work was the colonization of Australia. On the 18th of January 1788 Admiral Phillip and Captain Hunter arrived in Botany Bay in the “Supply” and “Sirius,” followed by six transports, and established a colony at Port Jackson. Surveys were then undertaken in several directions. In 1795 and 1796 Matthew Flinders and George Bass were engaged on exploring work in a small boat called the “Tom Thumb.” In 1797 Bass, who had been a surgeon, made an expedition southwards, continued the work of Cook from Ram Head, and explored the strait which bears his name, and in 1798 he and Flinders were surveying on the east coast of Van Diemen’s land.
Yet another outcome of Captain Cook’s work was the voyage of George Vancouver, who had served as a midshipman in Cook’s second and third voyages. The Spaniards under Quadra had begun a survey of north-western America and occupied Nootka Sound, which their government eventually agreed to surrender. Captain Vancouver was sent out to receive the cession, and to survey the coast from Cape Mendocino northwards. He commanded the old “Discovery,” and was at work during the seasons of 1792, 1793 and 1794, wintering at Hawaii. Returning home in 1795, he completed his narrative and a valuable series of charts.
The 18th century saw the Arctic coast of North America reached at two points, as well as the first scientific attempt to reach the North Pole. The Hudson Bay Company had been incorporated in 1670, and its servants soon extended theirArctic regions.operations over a wide area to the north and west of Canada. In 1741 Captain Christopher Middleton was ordered to solve the question of a passage from Hudson Bay to the westward. Leaving Fort Churchill in July 1742, he discovered the Wager river and Repulse Bay. He was followed by Captain W. Moor in 1746, and Captain Coats in 1751, who examined the Wager Inlet up to the end. In November 1769 Samuel Hearne was sent by the Hudson Bay Company to discover the sea on the north side of America, but was obliged to return. In February 1770 he set out again from Fort Prince of Wales; but, after great hardships, he was again forced to return to the fort. He started once more in December 1771, and at length reached the Coppermine river, which he surveyed to its mouth, but his observations are unreliable. With the same object Alexander Mackenzie, with a party of Canadians, set out from Fort Chippewyan on the 3rd of June 1789, and descending the great river which now bears the explorer’s name reached the Arctic sea.
In February 1773 the Royal Society submitted a proposal to the king for an expedition towards the North Pole. The expedition was fitted out under Captains Constantine Phipps and Skeffington Lutwidge, and the highest latitude reached was 80° 48′ N., but no opening was discovered in the heavy Polar pack. The most important Arctic work in the 18th century was performed by the Russians, for they succeeded in delineating the whole of the northern coast of Siberia. Some of this work was possibly done at a still earlier date. The Cossack Simon Dezhneff is thought to have made a voyage, in the summer of 1648, from the river Kolyma, through Bering Strait (which was rediscovered by Vitus Bering in 1728) to Anadyr. Between 1738 and 1750 Manin and Sterlegoff made their way in small sloops from the mouth of the Yenesei as far north as 75° 15′ N. The land from Taimyr to Cape Chelyuskin, the most northern extremity of Siberia, was mapped in many years of patient exploration by Chelyuskin, who reached the extreme point (77° 34′ N.) in May 1742. To the east of Cape Chelyuskin the Russians encountered greater difficulties. They built small vessels at Yakutsk on the Lena, 900 m. from its mouth, whence the first expedition was despatched under Lieut. Prontschichev in 1735. He sailed from the mouth of the Lena to the mouth of the Olonek, where he wintered, and on the 1st of September 1736 he got as far as 77° 29′ N., within 5 m. of Cape Chelyuskin. Both he and his young wife died of scurvy, and the vessel returned. A second expedition, under Lieut. Laptyev, started from the Lena in 1739, but encountered masses of drift ice in Chatanga bay, and with this ended the voyages to the westward of the Lena. Several attempts were also made to navigate the sea from the Lena to the Kolyma. In 1736 Lieut. Laptyev sailed, but was stopped by the drift ice in August, and in 1739, during another trial, he reached the mouth of the Indigirka, where he wintered. In the season of 1740 he continued his voyage to beyond the Kolyma, wintering at Nizhni Kolymsk. In September 1740 Vitus Bering sailed from Okhotsk on a second Arctic voyage with George William Steller on board as naturalist. In June 1741 he named the magnificent peak on the coast of North America Mount St Elias and explored the Aleutian Islands. In November the ship was wrecked on Bering Island; and the gallant Dane, worn out with scurvy, died there on the 8th of December 1741. In March 1770 a merchant named Liakhov saw a large herd of reindeer coming from the north to the Siberian coast, which induced him to start in a sledge in the direction whence they came. Thus he reached the New Siberian or Liakhov Islands, and for years afterwards the seekers for fossil ivory resorted to them. The Russian Captain Vassili Chitschakov in 1765 and 1766 made two persevering attempts to penetrate the ice north of Spitsbergen, and reached 80° 30′ N., while Russian parties twice wintered at Bell Sound.
In reviewing the progress of geographical discovery thus far, it has been possible to keep fairly closely to a chronological order. But in the 19th century and after exploring work was so generally and steadily maintained in all directions, andGeographical societies.was in so many cases narrowed down from long journeys to detailed surveys within relatively small areas, that it becomes desirable to cover the whole period at one view for certain great divisions of the world. (SeeAfrica;Asia;Australia;Polar Regions; &c.) Here, however, may be noticed the development of geographical societies devoted to the encouragement of exploration and research. The first of the existing geographical societies wasthat of Paris, founded in 1825 under the title of La Société de Géographie. The Berlin Geographical Society (Gesellschaft für Erdkunde) is second in order of seniority, having been founded in 1827. The Royal Geographical Society, which was founded in London in 1830, comes third on the list; but it may be viewed as a direct result of the earlier African Association founded in 1788. Sir John Barrow, Sir John Cam Hobhouse (Lord Broughton), Sir Roderick Murchison, Mr Robert Brown and Mr Bartle Frere formed the foundation committee of the Royal Geographical Society, and the first president was Lord Goderich. The action of the society in supplying practical instruction to intending travellers, in astronomy, surveying and the various branches of science useful to collectors, has had much to do with advancement of discovery. Since the war of 1870 many geographical societies have been established on the continent of Europe. At the close of the 19th century there were upwards of 100 such societies in the world, with more than 50,000 members, and over 150 journals were devoted entirely to geographical subjects.11The great development of photography has been a notable aid to explorers, not only by placing at their disposal a faithful and ready means of recording the features of a country and the types of inhabitants, but by supplying a method of quick and accurate topographical surveying.
The Principles of Geography
As regards the scope of geography, the order of the various departments and their inter-relation, there is little difference of opinion, and the principles of geography12are now generally accepted by modern geographers. The order in which the various subjects are treated in the following sketch is the natural succession from fundamental to dependent facts, which corresponds also to the evolution of the diversities of the earth’s crust and of its inhabitants.
The fundamental geographical conceptions are mathematical, the relations of space and form. The figure and dimensions of the earth are the first of these. They are ascertained by a combination of actual measurement of the highestMathematical geography.precision on the surface and angular observations of the positions of the heavenly bodies. The science of geodesy is part of mathematical geography, of which the arts of surveying and cartography are applications. The motions of the earth as a planet must be taken into account, as they render possible the determination of position and direction by observations of the heavenly bodies. The diurnal rotation of the earth furnishes two fixed points or poles, the axis joining which is fixed or nearly so in its direction in space. The rotation of the earth thus fixes the directions of north and south and defines those of east and west. The angle which the earth’s axis makes with the plane in which the planet revolves round the sun determines the varying seasonal distribution of solar radiation over the surface and the mathematical zones of climate. Another important consequence of rotation is the deviation produced in moving bodies relatively to the surface. In the form known as Ferrell’s Law this runs: “If a body moves in any direction on the earth’s surface, there is a deflecting force which arises from the earth’s rotation which tends to deflect it to the right in the northern hemisphere but to the left in the southern hemisphere.” The deviation is of importance in the movement of air, of ocean currents, and to some extent of rivers.13
In popular usage the words “physical geography” have come to mean geography viewed from a particular standpoint rather than any special department of the subject. The popular meaning is better conveyed by the word physiography, aPhysical geography.term which appears to have been introduced by Linnaeus, and was reinvented as a substitute for the cosmography of the middle ages by Professor Huxley. Although the term has since been limited by some writers to one particular part of the subject, it seems best to maintain the original and literal meaning. In the stricter sense, physical geography is that part of geography which involves the processes of contemporary change in the crust and the circulation of the fluid envelopes. It thus draws upon physics for the explanation of the phenomena with the space-relations of which it is specially concerned. Physical geography naturally falls into three divisions, dealing respectively with the surface of the lithosphere—geomorphology; the hydrosphere—oceanography; and the atmosphere—climatology. All these rest upon the facts of mathematical geography, and the three are so closely inter-related that they cannot be rigidly separated in any discussion.
Geomorphology is the part of geography which deals with terrestrial relief, including the submarine as well as the subaërial portions of the crust. The history of the origin of the various forms belongs to geology, and can be completely studied only by geologicalGeomorphology.methods. But the relief of the crust is not a finished piece of sculpture; the forms are for the most part transitional, owing their characteristic outlines to the process by which they are produced; therefore the geographer must, for strictly geographical purposes, take some account of the processes which are now in action modifying the forms of the crust. Opinion still differs as to the extent to which the geographer’s work should overlap that of the geologist.
The primary distinction of the forms of the crust is that between elevations and depressions. Granting that the geoid or mean surface of the ocean is a uniform spheroid, the distribution of land and water approximately indicates a division of the surface of the globe into two areas, one of elevation and one of depression. The increasing number of measurements of the height of land in all continents and islands, and the very detailed levellings in those countries which have been thoroughly surveyed, enable the average elevation of the land above sea-level to be fairly estimated, although many vast gaps in accurate knowledge remain, and the estimate is not an exact one. The only part of the sea-bed the configuration of which is at all well known is the zone bordering the coasts where the depth is less than about 100 fathoms or 200 metres,i.e.those parts which sailors speak of as “in soundings.” Actual or projected routes for telegraph cables across the deep sea have also been sounded with extreme accuracy in many cases; but beyond these lines of sounding the vast spaces of the ocean remain unplumbed save for the rare researches of scientific expeditions, such as those of the “Challenger,” the “Valdivia,” the “Albatross” and the “Scotia.” Thus the best approximation to the average depth of the ocean is little more than an expert guess; yet a fair approximation is probable for the features of sub-oceanic relief are so much more uniform than those of the land that a smaller number of fixed points is required to determine them.
The chief element of uncertainty as to the largest features of the relief of the earth’s crust is due to the unexplored area in the Arctic region and the larger regions of the Antarctic, of which we know nothing. We know that the earth’s surface ifCrustal relief.unveiled of water would exhibit a great region of elevation arranged with a certain rough radiate symmetry round the north pole, and extending southwards in three unequal arms which taper to points in the south. A depression surrounds the little-known south polar region in a continuous ring and extends northwards in three vast hollows lying between the arms of the elevated area. So far only is it possible to speak with certainty, but it is permissible to take a few steps into the twilight of dawning knowledge and indicate the chief subdivisions which are likely to be established in the great crust-hollow and the great crust-heap. The boundary between these should obviously be the mean surface of the sphere.
Sir John Murray deduced the mean height of the land of the globe as about 2250 ft. above sea-level, and the mean depth of the oceans as 2080 fathoms or 12,480 ft. below sea-level.14Calculating the area of the land at 55,000,000 sq. m. (or 28.6% of the surface), and that of the oceans as 137,200,000 sq. m. (or 71.4% of the surface), he found that the volume of the land above sea-level was 23,450,000 cub. m., the volume of water below sea-level 323,800,000, and the total volume of the water equal to about1⁄666th of the volume of the whole globe. From these data, as revised by A. Supan,15H.R. Mill calculated the position of mean sphere-level at about 10,000 ft. or 1700 fathoms below sea-level. He showed that an imaginary spheroidal shell, concentric with the earth and cutting the slope between the elevated and depressed areas at the contour-line of 1700 fathoms, would not only leave above it a volume of the crust equal to the volume of the hollow left below it, but would also divide the surface of the earth so that the area of the elevated region was equal to that of the depressed region.16
A similar observation was made almost simultaneously by Romieux,17who further speculated on the equilibrium between the weight of the elevated land mass and that of the total waters of the ocean, and deduced some interesting relationsAreas of the crust according to Murray.between them. Murray, as the result of his study, divided the earth’s surface into three zones—thecontinental areacontaining all dry land, thetransitional areaincluding the submarine slopes down to 1000 fathoms, and theabysmal areaconsisting of the floor of the ocean beyond that depth; and Mill proposed to take the line of mean-sphere level, instead of the empirical depth of 1000 fathoms, as the boundary between the transitional and abysmal areas.
An elaborate criticism of all the existing data regarding the volume relations of the vertical relief of the globe was made in 1894 by Professor Hermann Wagner, whose recalculations of volumesand mean heights—the best results which have yet been obtained—led to the following conclusions.18
The area of the dry land was taken as 28.3% of the surface of the globe, and that of the oceans as 71.7%. The mean height deduced for the land was 2300 ft. above sea-level, the mean depth of the sea 11,500 ft. below, while the position of mean-sphereAreas of the crust according to Wagner.level comes out as 7500 ft. (1250 fathoms) below sea-level. From this it would appear that 43% of the earth’s surface was above and 57% below the mean level. It must be noted, however, that since 1895 the soundings of Nansen in the north polar area, of the “Valdivia,” “Belgica,” “Gauss” and “Scotia” in the Southern Ocean, and of various surveying ships in the North and South Pacific, have proved that the mean depth of the ocean is considerably greater than had been supposed, and mean-sphere level must therefore lie deeper than the calculations of 1895 show; possibly not far from the position deduced from the freer estimate of 1888. The whole of the available data were utilized by the prince of Monaco in 1905 in the preparation of a complete bathymetrical map of the oceans on a uniform scale, which must long remain the standard work for reference on ocean depths.
By the device of a hypsographic curve co-ordinating the vertical relief and the areas of the earth’s surface occupied by each zone of elevation, according to the system introduced by Supan,19Wagner showed his results graphically.
This curve with the values reduced from metres to feet is reproduced below.
Wagner subdivides the earth’s surface, according to elevation, into the following five regions:
Wagner’s Divisions of the Earth’s Crust:
The continental plateau might for purposes of detailed study be divided into thecontinental shelffrom -660 ft. to sea-level, andlowlandsfrom sea-level to +660 ft. (corresponding to the mean level of the whole globe).20Uplandsreaching from 660 ft. to 2300 (the approximate mean level of the land), andhighlands, from 2300 upwards, might also be distinguished.