Chapter 9

For many years the rocks below the oldest fossiliferous deposits received comparatively little attention. They were vaguely described as the “crystalline schists” and were often referred to as parts of the primeval crust in which no chronology was to be looked for. W.E. Logan (1798-1875) led the way, in Canada, by establishing there several vast series of rocks, partly of crystalline schists and gneisses (Laurentian) and partly of slates and conglomerates (Huronian). Later observers, both in Canada and the United States, have greatly increased our knowledge of these rocks, and have shown their structure to be much more complex than was at first supposed (seeArchean System).During the latter half of the 19th century the most important development of stratigraphical geology was the detailed working out and application of the principle of zonal classification to the fossiliferous formations—that is, the determination of the sequence and distribution of organic remains in these formations, and the arrangement of the strata into zones, each of which is distinguished by a peculiar assemblage of fossil species (see under Part VI.). The zones are usually named after one especially characteristic species. This system of classification was begun in Germany with reference to the members of the Jurassic system (q.v.) by A. Oppel (1856-1858) and F.A. von Quenstedt (1858), and it has since been extended through the other Mesozoic formations. It has even been found to be applicable to the Palaeozoic rocks, which are now subdivided into palaeontological zones. In the Silurian system, for example, the graptolites have been shown by C. Lapworth to furnish a useful basis for zonal subdivisions. The lowest fossiliferous horizon in the Cambrian rocks of Europe and North America is known as theOlenelluszone, from the prominence in it of that genus of trilobite.Another conspicuous feature in the progress of stratigraphy during the second half of the 19th century was displayed by the rise and rapid development of what is known as Glacial geology. The various deposits of “drift” spread over northern Europe, and the boulders scattered across the surface of the plains had long attracted notice, and had even found a place in popular legend and superstition. When men began to examine them with a view to ascertain their origin, they were naturally regarded as evidences of the Noachian deluge. The first observer who drew attention to the smoothed and striated surfaces of rock that underlie the Drifts was Hutton’s friend, Sir James Hall, who studied them in the lowlands of Scotland and referred them to the action of great debacles of water, which, in the course of some ancient terrestrial convulsion, had been launched across the face of the country. Playfair, however, pointed out that the most potent geological agents for the transportation of large blocks of stone are the glaciers. But no one was then bold enough to connect the travelled boulders with glaciers on the plains of Germany and of Britain. Yet the transporting agency of ice was invoked in explanation of their diffusion. It came to be the prevalent belief among the geologists of the first half of the 19th century, that the fall of temperature, indicated by the gradual increase in the number of northern species of shells in the English Crag deposits, reached its climax during the time of the Drift, and that much of the north and centre of Europe was then submerged beneath a sea, across which floating icebergs and floes transported the materials of the Drift and dropped the scattered boulders. As the phenomena are well developed around the Alps, it was necessary to suppose that the submergence involved the lowlands of the Continent up to the foot of that mountain chain—a geographical change so stupendous as to demand much more evidence than was adduced in its support. At last Louis Agassiz (1807-1873), who had varied his palaeontological studies at Neuchâtel by excursions into the Alps, was so much struck by the proofs of the former far greater extension of the Swiss glaciers, that he pursued the investigation and satisfied himself that the ice had formerly extended from the Alpine valleys right across the great plain of Switzerland, and had transported huge boulders from the central mountains to the flanks of the Jura. In the year 1840 he visited Britain and soon found evidence of similar conditions there. He showed that it was not by submergence in a sea cumbered with floating ice, but by the former presence of vast glaciers or sheets of ice that the Drift and erratic blocks had been distributed. The idea thus propounded by him did not at once command complete approval, though traces of ancient glaciers in Scotland and Wales were soon detected by native geologists, particularly by W. Buckland, Lyell, J.D. Forbes and Charles Maclaren. Robert Chambers (1802-1871) did good service in gathering additional evidence from Scotland and Norway in favour of Agassiz’s views, which steadily gained adherents until, after some quarter of a century, they were adopted by the great majority of geologists in Britain, and subsequently in other countries. Since that time the literature of geology has been swollen by a vast number of contributions in which the history of the Glacial period, and its records both in the Old and New World, have been fully discussed.Rise and Progress of Palaeontological Geology.—As this branch of the science deals with the evidence furnished by fossil organic remains as to former geographical conditions, it early attracted observers who, in the superficial beds of marine shells found at some distance from the coast, saw proofs of the former submergence of the land under the sea. But the occurrence of fossils embedded in the heart of the solid rocks of the mountains offered much greater difficulties of explanation, and further progress was consequently slow. Especially baneful was the belief that these objects were mere sports of nature, and had no connexion with any once living organisms. So long as the true organic origin of the fossil plants and animals contained in the rocks was in dispute, it was hardly possible that much advance could be made in their systematic study, or in the geological deductions to be drawn from them. One good result of the controversy, however, was to be seen in the large collections of these “formed stones” that were gathered together in the cabinets and museums of the 17th and 18th centuries. The accumulation and comparison of these objects naturally led to the production of treatises in which they were described and not unfrequently illustrated by good engravings. Switzerland was more particularlynoted for the number and merit of its works of this kind, such as that of K.N. Lang (Historia lapidum figuratorum Helvetiae, 1708) and those of Johann Jacob Scheuchzer (1672-1733). In England, also, illustrated treatises were published both by men who looked on fossils as mere freaks of nature, and by those who regarded them as proofs of Noah’s flood. Of the former type were the works of Martin Lister (1638-1712) and Robert Plot (Natural History of Oxfordshire, 1677). The Celtic scholar Edward Llwyd (1660-1709) wrote a Latin treatise containing good plates of a thousand fossils in the Ashmolean Museum, Oxford, and J. Woodward, in 1728-1729, published hisNatural History of the Fossils of England, already mentioned, wherein he described his own extensive collection, which he bequeathed to the University of Cambridge, where it is still carefully preserved. The most voluminous and important of all these works, however, appeared at a later date at Nuremberg. It was begun by G.W. Knorr (1705-1761), who himself engraved for it a series of plates, which for beauty and accuracy have seldom been surpassed. After his death the work was continued by J.E.I. Walch (1725-1778), and ultimately consisted of four massive folio volumes and nearly 300 plates under the title ofLapides diluvii universalis testes. Although the authors supposed their fossils to be relics of Noah’s flood, their work must be acknowledged to mark a distinct onward stage in the palaeontological department of geology.It was in France that palaeontological geology began to be cultivated in a scientific spirit. The potter Bernard Palissy, as far back as 1580, had dwelt on the importance of fossil shells as monuments of revolutions of the earth’s surface; but the observer who first undertook the detailed study of the subject was Jean Etienne Guettard, who began in 1751 to publish his descriptions of fossils in the form of memoirs presented to the Academy of Sciences of Paris. To him they were not only of deep interest as monuments of former types of existence, but they had an especial value as records of the changes which the country had undergone from sea to land and from land to sea. More especially noteworthy was a monograph by him which appeared in 1765 bearing the title “On the accidents that have befallen Fossil Shells compared with those which are found to happen to shells now living in the Sea.” In this treatise he showed that the fossils have been encrusted with barnacles and serpulae, have been bored into by other organisms, and have often been rounded or broken before final entombment; and he inferred that these fossils must have lived and died on the sea-floor under similar conditions to those which obtain on the sea-floor to-day. His argument was the most triumphant that had ever been brought against the doctrine oflusus naturae, and that of the efficacy of Noah’s flood—doctrines which still held their ground in Guettard’s day. When Soulavie, Cuvier and Brongniart in France, and William Smith in England, showed that the rock formations of the earth’s crust could be arranged in chronological order, and could be recognized far and wide by means of their enclosed organic remains, the vast significance of these remains in geological research was speedily realized, and palaeontological geology at once entered on a new and enlarged phase of development. But apart from their value as chronological monuments, and as witnesses of former conditions of geography, fossils presented in themselves a wide field of investigation as types of life that had formerly existed, but had now passed away. It was in France that this subject first took definite shape as an important branch of science. The mollusca of the Tertiary deposits of the Paris basin became, in the hands of Lamarck, the basis on which invertebrate palaeontology was founded. The same series of strata furnished to Cuvier the remains of extinct land animals, of which, by critical study of their fragmentary bones and skeletons, he worked out restorations that may be looked on as the starting-point of vertebrate palaeontology. These brilliant researches, rousing widespread interest in such studies, showed how great a flood of light could be thrown on the past history of the earth and its inhabitants. But the full significance of these extinct types of life could not be understood so long as the doctrine of the immutability of species, so strenuously upheld by Cuvier, maintained its sway among naturalists. Lamarck, as far back as the year 1800, had begun to propound his theory of evolution and the transformation of species; but his views, strongly opposed by Cuvier and the great body of naturalists of the day, fell into neglect. Not until after the publication in 1859 of theOrigin of Speciesby Charles Darwin were the barriers of old prejudice in this matter finally broken down. The possibility of tracing the ancestry of living forms back into the remotest ages was then perceived; the time-honoured fiction that the stratified formations record a series of catastrophes and re-creations was finally dissipated; and the earth’s crust was seen to contain a noble, though imperfect, record of the grand evolution of organic types of which our planet has been the theatre.Development of Petrographical Geology.—Theophrastus, the favourite pupil of Aristotle, wrote a treatiseOn Stones, which has come down to our own day, and may be regarded as the earliest work on petrography. At a subsequent period Pliny, in hisNatural History, collected all that was known in his day regarding the occurrence and uses of minerals and rocks. But neither of these works is of great scientific importance, though containing much interesting information. Minerals from their beauty and value attracted notice before much attention was paid to rocks, and their study gave rise to the science of mineralogy long before geology came into existence. When rocks began to be more particularly scrutinized, it was chiefly from the side of their usefulness for building and other economic purposes. The occurrence of marine shells in many of them had early attracted attention to them. But their varieties of composition and origin did not become the subject of serious study until after Linnaeus and J.G. Wallerius in the 18th century had made a beginning. The first important contribution to this department of the science was that of Werner, who in 1786 published a classification and description of rocks in which he arranged them in two divisions, simple and compound, and further distinguished them by various external characters and by their relative age. The publication of this scheme may be said to mark the beginning of scientific petrography. Werner’s system, however, had the serious defect that the chronological order in which he grouped the rocks, and the hypothesis by which he accounted for them as chemical precipitates from the original ocean, were both alike contrary to nature. It was hardly possible indeed that much progress could be made in this branch of geology until chemistry and mineralogy had made greater advances; and especially until it was possible to ascertain the intimate chemical and mineralogical composition, and the minute structure of rocks. The study, however, continued to be pursued in Germany, where the influence of Werner’s enthusiasm still led men to enter the petrographical rather than the palaeontological domain. The resources of modern chemistry were pressed into the service, and analyses were made and multiplied to such a degree that it seemed as if the ultimate chemical constitution of every type of rock had now been thoroughly revealed. The condition of the science in the middle of the 19th century was well shown by J.L.A. Roth, who in 1861 collected about 1000 trustworthy analyses which up to that time had been made. But though the chemical elements of the rocks had been fairly well determined, the manner in which they were combined in the compound rocks could for the most part be only more or less plausibly conjectured. As far back as 1831 an account was published of a process devised by William Nicol of Edinburgh, whereby sections of fossil wood could be cut, mounted on glass, and reduced to such a degree of transparency as to be easily examined under a microscope. Henry Sorby, of Sheffield, having seen Nicol’s preparations, perceived how admirably adapted the process was for the study of the minute structure and composition of rocks. In 1858 he published in theQuarterly Journal of the Geological Societya paper “On the Microscopical Structure of Crystals.” This essay led to a complete revolution of petrographical methods and gave a vast impetus to the study of rocks. Petrology entered upon a new and wider field of investigation. Not only were the mineralogical constituents of the rocks detected, but minute structures were revealed which shed new light on the origin and history of these mineral masses, and opened up new paths in theoretical geology. In the hands of H. Vogelsang, F. Zirkel, H. Rosenbusch, and a host of other workers in all civilized countries, the literature of this department of the science has grown to a remarkable extent. Armed with the powerful aid of modern optical instruments, geologists are now able with far more prospect of success to resume the experiments begun a century before by de Saussure and Hall. G.A. Daubrée, C. Friedel, E. Sarasin, F. Fouqué and A. Michel Lévy in France, C. Doelter y Cisterich and E. Hussak of Gratz, J. Morozewicz of Warsaw and others, have greatly advanced our knowledge by their synthetical analyses, and there is every reason to hope that further advances will be made in this field of research.Rise of Physiographical Geology.—Until stratigraphical geology had advanced so far as to show of what a vast succession of rocks the crust of the earth is built up, by what a long and complicated series of revolutions these rocks have come to assume their present positions, and how enormous has been the lapse of time which all these changes represent, it was not possible to make a scientific study of the surface features of our globe. From ancient times it had been known that many parts of the land had once been under the sea; but down even to the beginning of the 19th century the vaguest conceptions continued to prevail as to the operations concerned in the submergence and elevation of land, and as to the processes whereby the present outlines of terrestrial topography were determined. We have seen, for instance, that according to the teaching of Werner the oldest rocks were first precipitated from solution in the universal ocean to form the mountains, that the vertical position of their strata was original, that as the waters subsided successive formations were deposited and laid bare, and that finally the superfluous portion of the ocean was whisked away into space by some unexplained co-operation of another planetary body. Desmarest, in his investigation of the volcanic history of Auvergne, was the first observer to perceive by what a long process of sculpture the present configuration of the land has been brought about. He showed conclusively that the valleys have been carved out by the streams that flow in them, and that while they have sunk deeper and deeper into the framework of the land, the spaces of ground between them have been left as intervening ridges and hills. De Saussure learnt a similar lesson from his studies of the Alps, and Hutton and Playfair made it a cardinal feature in their theory of the earth. Nevertheless the idea encountered so much opposition that it made but little way until after the middle of the 19th century. Geologists preferred to believe in convulsions of nature, whereby valleys were opened and mountains wereupheaved. That the main features of the land, such as the great mountain-chains, had been produced by gigantic plication of the terrestrial crust was now generally admitted, and also that minor fractures and folds had probably initiated many of the valleys. But those who realized most vividly the momentous results achieved by ages of subaerial denudation perceived that, as Hutton showed, even without the aid of underground agency, the mere flow of water in streams across a mass of land must in course of time carve out just such a system of valleys as may anywhere be seen. It was J.B. Jukes who, in 1862, first revived the Huttonian doctrine, and showed how completely it explained the drainage-lines in the south of Ireland. Other writers followed in quick succession until, in a few years, the doctrine came to be widely recognized as one of the established principles of modern geology. Much help was derived from the admirable illustrations of land-sculpture and river-erosion supplied from the Western Territories and States of the American Union.Another branch of physiographical geology which could only come into existence after most of the other departments of the science had made large progress, deals with the evolution of the framework of each country and of the several continents and oceans of the globe. It is now possible, with more or less confidence, to trace backward the history of every terrestrial area, to see how sea and land have there succeeded each other, how rivers and lakes have come and gone, how the crust of the earth has been ridged up at widely separated intervals, each movement determining some line of mountains or plains, how the boundaries of the oceans have shifted again and again in the past, and thus how, after so prolonged a series of revolutions, the present topography of each country, and of the globe as a whole, has been produced. In the prosecution of this subject maps have been constructed to show what is conjectured to have been the distribution of sea and land during the various geological periods in different parts of the world, and thus to indicate the successive stages through which the architecture of the land has been gradually evolved. The most noteworthy contribution to this department of the science is theAntlitz der Erdeof Professor Suess of Vienna. This important and suggestive work has been translated into French and English.

For many years the rocks below the oldest fossiliferous deposits received comparatively little attention. They were vaguely described as the “crystalline schists” and were often referred to as parts of the primeval crust in which no chronology was to be looked for. W.E. Logan (1798-1875) led the way, in Canada, by establishing there several vast series of rocks, partly of crystalline schists and gneisses (Laurentian) and partly of slates and conglomerates (Huronian). Later observers, both in Canada and the United States, have greatly increased our knowledge of these rocks, and have shown their structure to be much more complex than was at first supposed (seeArchean System).

During the latter half of the 19th century the most important development of stratigraphical geology was the detailed working out and application of the principle of zonal classification to the fossiliferous formations—that is, the determination of the sequence and distribution of organic remains in these formations, and the arrangement of the strata into zones, each of which is distinguished by a peculiar assemblage of fossil species (see under Part VI.). The zones are usually named after one especially characteristic species. This system of classification was begun in Germany with reference to the members of the Jurassic system (q.v.) by A. Oppel (1856-1858) and F.A. von Quenstedt (1858), and it has since been extended through the other Mesozoic formations. It has even been found to be applicable to the Palaeozoic rocks, which are now subdivided into palaeontological zones. In the Silurian system, for example, the graptolites have been shown by C. Lapworth to furnish a useful basis for zonal subdivisions. The lowest fossiliferous horizon in the Cambrian rocks of Europe and North America is known as theOlenelluszone, from the prominence in it of that genus of trilobite.

Another conspicuous feature in the progress of stratigraphy during the second half of the 19th century was displayed by the rise and rapid development of what is known as Glacial geology. The various deposits of “drift” spread over northern Europe, and the boulders scattered across the surface of the plains had long attracted notice, and had even found a place in popular legend and superstition. When men began to examine them with a view to ascertain their origin, they were naturally regarded as evidences of the Noachian deluge. The first observer who drew attention to the smoothed and striated surfaces of rock that underlie the Drifts was Hutton’s friend, Sir James Hall, who studied them in the lowlands of Scotland and referred them to the action of great debacles of water, which, in the course of some ancient terrestrial convulsion, had been launched across the face of the country. Playfair, however, pointed out that the most potent geological agents for the transportation of large blocks of stone are the glaciers. But no one was then bold enough to connect the travelled boulders with glaciers on the plains of Germany and of Britain. Yet the transporting agency of ice was invoked in explanation of their diffusion. It came to be the prevalent belief among the geologists of the first half of the 19th century, that the fall of temperature, indicated by the gradual increase in the number of northern species of shells in the English Crag deposits, reached its climax during the time of the Drift, and that much of the north and centre of Europe was then submerged beneath a sea, across which floating icebergs and floes transported the materials of the Drift and dropped the scattered boulders. As the phenomena are well developed around the Alps, it was necessary to suppose that the submergence involved the lowlands of the Continent up to the foot of that mountain chain—a geographical change so stupendous as to demand much more evidence than was adduced in its support. At last Louis Agassiz (1807-1873), who had varied his palaeontological studies at Neuchâtel by excursions into the Alps, was so much struck by the proofs of the former far greater extension of the Swiss glaciers, that he pursued the investigation and satisfied himself that the ice had formerly extended from the Alpine valleys right across the great plain of Switzerland, and had transported huge boulders from the central mountains to the flanks of the Jura. In the year 1840 he visited Britain and soon found evidence of similar conditions there. He showed that it was not by submergence in a sea cumbered with floating ice, but by the former presence of vast glaciers or sheets of ice that the Drift and erratic blocks had been distributed. The idea thus propounded by him did not at once command complete approval, though traces of ancient glaciers in Scotland and Wales were soon detected by native geologists, particularly by W. Buckland, Lyell, J.D. Forbes and Charles Maclaren. Robert Chambers (1802-1871) did good service in gathering additional evidence from Scotland and Norway in favour of Agassiz’s views, which steadily gained adherents until, after some quarter of a century, they were adopted by the great majority of geologists in Britain, and subsequently in other countries. Since that time the literature of geology has been swollen by a vast number of contributions in which the history of the Glacial period, and its records both in the Old and New World, have been fully discussed.

Rise and Progress of Palaeontological Geology.—As this branch of the science deals with the evidence furnished by fossil organic remains as to former geographical conditions, it early attracted observers who, in the superficial beds of marine shells found at some distance from the coast, saw proofs of the former submergence of the land under the sea. But the occurrence of fossils embedded in the heart of the solid rocks of the mountains offered much greater difficulties of explanation, and further progress was consequently slow. Especially baneful was the belief that these objects were mere sports of nature, and had no connexion with any once living organisms. So long as the true organic origin of the fossil plants and animals contained in the rocks was in dispute, it was hardly possible that much advance could be made in their systematic study, or in the geological deductions to be drawn from them. One good result of the controversy, however, was to be seen in the large collections of these “formed stones” that were gathered together in the cabinets and museums of the 17th and 18th centuries. The accumulation and comparison of these objects naturally led to the production of treatises in which they were described and not unfrequently illustrated by good engravings. Switzerland was more particularlynoted for the number and merit of its works of this kind, such as that of K.N. Lang (Historia lapidum figuratorum Helvetiae, 1708) and those of Johann Jacob Scheuchzer (1672-1733). In England, also, illustrated treatises were published both by men who looked on fossils as mere freaks of nature, and by those who regarded them as proofs of Noah’s flood. Of the former type were the works of Martin Lister (1638-1712) and Robert Plot (Natural History of Oxfordshire, 1677). The Celtic scholar Edward Llwyd (1660-1709) wrote a Latin treatise containing good plates of a thousand fossils in the Ashmolean Museum, Oxford, and J. Woodward, in 1728-1729, published hisNatural History of the Fossils of England, already mentioned, wherein he described his own extensive collection, which he bequeathed to the University of Cambridge, where it is still carefully preserved. The most voluminous and important of all these works, however, appeared at a later date at Nuremberg. It was begun by G.W. Knorr (1705-1761), who himself engraved for it a series of plates, which for beauty and accuracy have seldom been surpassed. After his death the work was continued by J.E.I. Walch (1725-1778), and ultimately consisted of four massive folio volumes and nearly 300 plates under the title ofLapides diluvii universalis testes. Although the authors supposed their fossils to be relics of Noah’s flood, their work must be acknowledged to mark a distinct onward stage in the palaeontological department of geology.

It was in France that palaeontological geology began to be cultivated in a scientific spirit. The potter Bernard Palissy, as far back as 1580, had dwelt on the importance of fossil shells as monuments of revolutions of the earth’s surface; but the observer who first undertook the detailed study of the subject was Jean Etienne Guettard, who began in 1751 to publish his descriptions of fossils in the form of memoirs presented to the Academy of Sciences of Paris. To him they were not only of deep interest as monuments of former types of existence, but they had an especial value as records of the changes which the country had undergone from sea to land and from land to sea. More especially noteworthy was a monograph by him which appeared in 1765 bearing the title “On the accidents that have befallen Fossil Shells compared with those which are found to happen to shells now living in the Sea.” In this treatise he showed that the fossils have been encrusted with barnacles and serpulae, have been bored into by other organisms, and have often been rounded or broken before final entombment; and he inferred that these fossils must have lived and died on the sea-floor under similar conditions to those which obtain on the sea-floor to-day. His argument was the most triumphant that had ever been brought against the doctrine oflusus naturae, and that of the efficacy of Noah’s flood—doctrines which still held their ground in Guettard’s day. When Soulavie, Cuvier and Brongniart in France, and William Smith in England, showed that the rock formations of the earth’s crust could be arranged in chronological order, and could be recognized far and wide by means of their enclosed organic remains, the vast significance of these remains in geological research was speedily realized, and palaeontological geology at once entered on a new and enlarged phase of development. But apart from their value as chronological monuments, and as witnesses of former conditions of geography, fossils presented in themselves a wide field of investigation as types of life that had formerly existed, but had now passed away. It was in France that this subject first took definite shape as an important branch of science. The mollusca of the Tertiary deposits of the Paris basin became, in the hands of Lamarck, the basis on which invertebrate palaeontology was founded. The same series of strata furnished to Cuvier the remains of extinct land animals, of which, by critical study of their fragmentary bones and skeletons, he worked out restorations that may be looked on as the starting-point of vertebrate palaeontology. These brilliant researches, rousing widespread interest in such studies, showed how great a flood of light could be thrown on the past history of the earth and its inhabitants. But the full significance of these extinct types of life could not be understood so long as the doctrine of the immutability of species, so strenuously upheld by Cuvier, maintained its sway among naturalists. Lamarck, as far back as the year 1800, had begun to propound his theory of evolution and the transformation of species; but his views, strongly opposed by Cuvier and the great body of naturalists of the day, fell into neglect. Not until after the publication in 1859 of theOrigin of Speciesby Charles Darwin were the barriers of old prejudice in this matter finally broken down. The possibility of tracing the ancestry of living forms back into the remotest ages was then perceived; the time-honoured fiction that the stratified formations record a series of catastrophes and re-creations was finally dissipated; and the earth’s crust was seen to contain a noble, though imperfect, record of the grand evolution of organic types of which our planet has been the theatre.

Development of Petrographical Geology.—Theophrastus, the favourite pupil of Aristotle, wrote a treatiseOn Stones, which has come down to our own day, and may be regarded as the earliest work on petrography. At a subsequent period Pliny, in hisNatural History, collected all that was known in his day regarding the occurrence and uses of minerals and rocks. But neither of these works is of great scientific importance, though containing much interesting information. Minerals from their beauty and value attracted notice before much attention was paid to rocks, and their study gave rise to the science of mineralogy long before geology came into existence. When rocks began to be more particularly scrutinized, it was chiefly from the side of their usefulness for building and other economic purposes. The occurrence of marine shells in many of them had early attracted attention to them. But their varieties of composition and origin did not become the subject of serious study until after Linnaeus and J.G. Wallerius in the 18th century had made a beginning. The first important contribution to this department of the science was that of Werner, who in 1786 published a classification and description of rocks in which he arranged them in two divisions, simple and compound, and further distinguished them by various external characters and by their relative age. The publication of this scheme may be said to mark the beginning of scientific petrography. Werner’s system, however, had the serious defect that the chronological order in which he grouped the rocks, and the hypothesis by which he accounted for them as chemical precipitates from the original ocean, were both alike contrary to nature. It was hardly possible indeed that much progress could be made in this branch of geology until chemistry and mineralogy had made greater advances; and especially until it was possible to ascertain the intimate chemical and mineralogical composition, and the minute structure of rocks. The study, however, continued to be pursued in Germany, where the influence of Werner’s enthusiasm still led men to enter the petrographical rather than the palaeontological domain. The resources of modern chemistry were pressed into the service, and analyses were made and multiplied to such a degree that it seemed as if the ultimate chemical constitution of every type of rock had now been thoroughly revealed. The condition of the science in the middle of the 19th century was well shown by J.L.A. Roth, who in 1861 collected about 1000 trustworthy analyses which up to that time had been made. But though the chemical elements of the rocks had been fairly well determined, the manner in which they were combined in the compound rocks could for the most part be only more or less plausibly conjectured. As far back as 1831 an account was published of a process devised by William Nicol of Edinburgh, whereby sections of fossil wood could be cut, mounted on glass, and reduced to such a degree of transparency as to be easily examined under a microscope. Henry Sorby, of Sheffield, having seen Nicol’s preparations, perceived how admirably adapted the process was for the study of the minute structure and composition of rocks. In 1858 he published in theQuarterly Journal of the Geological Societya paper “On the Microscopical Structure of Crystals.” This essay led to a complete revolution of petrographical methods and gave a vast impetus to the study of rocks. Petrology entered upon a new and wider field of investigation. Not only were the mineralogical constituents of the rocks detected, but minute structures were revealed which shed new light on the origin and history of these mineral masses, and opened up new paths in theoretical geology. In the hands of H. Vogelsang, F. Zirkel, H. Rosenbusch, and a host of other workers in all civilized countries, the literature of this department of the science has grown to a remarkable extent. Armed with the powerful aid of modern optical instruments, geologists are now able with far more prospect of success to resume the experiments begun a century before by de Saussure and Hall. G.A. Daubrée, C. Friedel, E. Sarasin, F. Fouqué and A. Michel Lévy in France, C. Doelter y Cisterich and E. Hussak of Gratz, J. Morozewicz of Warsaw and others, have greatly advanced our knowledge by their synthetical analyses, and there is every reason to hope that further advances will be made in this field of research.

Rise of Physiographical Geology.—Until stratigraphical geology had advanced so far as to show of what a vast succession of rocks the crust of the earth is built up, by what a long and complicated series of revolutions these rocks have come to assume their present positions, and how enormous has been the lapse of time which all these changes represent, it was not possible to make a scientific study of the surface features of our globe. From ancient times it had been known that many parts of the land had once been under the sea; but down even to the beginning of the 19th century the vaguest conceptions continued to prevail as to the operations concerned in the submergence and elevation of land, and as to the processes whereby the present outlines of terrestrial topography were determined. We have seen, for instance, that according to the teaching of Werner the oldest rocks were first precipitated from solution in the universal ocean to form the mountains, that the vertical position of their strata was original, that as the waters subsided successive formations were deposited and laid bare, and that finally the superfluous portion of the ocean was whisked away into space by some unexplained co-operation of another planetary body. Desmarest, in his investigation of the volcanic history of Auvergne, was the first observer to perceive by what a long process of sculpture the present configuration of the land has been brought about. He showed conclusively that the valleys have been carved out by the streams that flow in them, and that while they have sunk deeper and deeper into the framework of the land, the spaces of ground between them have been left as intervening ridges and hills. De Saussure learnt a similar lesson from his studies of the Alps, and Hutton and Playfair made it a cardinal feature in their theory of the earth. Nevertheless the idea encountered so much opposition that it made but little way until after the middle of the 19th century. Geologists preferred to believe in convulsions of nature, whereby valleys were opened and mountains wereupheaved. That the main features of the land, such as the great mountain-chains, had been produced by gigantic plication of the terrestrial crust was now generally admitted, and also that minor fractures and folds had probably initiated many of the valleys. But those who realized most vividly the momentous results achieved by ages of subaerial denudation perceived that, as Hutton showed, even without the aid of underground agency, the mere flow of water in streams across a mass of land must in course of time carve out just such a system of valleys as may anywhere be seen. It was J.B. Jukes who, in 1862, first revived the Huttonian doctrine, and showed how completely it explained the drainage-lines in the south of Ireland. Other writers followed in quick succession until, in a few years, the doctrine came to be widely recognized as one of the established principles of modern geology. Much help was derived from the admirable illustrations of land-sculpture and river-erosion supplied from the Western Territories and States of the American Union.

Another branch of physiographical geology which could only come into existence after most of the other departments of the science had made large progress, deals with the evolution of the framework of each country and of the several continents and oceans of the globe. It is now possible, with more or less confidence, to trace backward the history of every terrestrial area, to see how sea and land have there succeeded each other, how rivers and lakes have come and gone, how the crust of the earth has been ridged up at widely separated intervals, each movement determining some line of mountains or plains, how the boundaries of the oceans have shifted again and again in the past, and thus how, after so prolonged a series of revolutions, the present topography of each country, and of the globe as a whole, has been produced. In the prosecution of this subject maps have been constructed to show what is conjectured to have been the distribution of sea and land during the various geological periods in different parts of the world, and thus to indicate the successive stages through which the architecture of the land has been gradually evolved. The most noteworthy contribution to this department of the science is theAntlitz der Erdeof Professor Suess of Vienna. This important and suggestive work has been translated into French and English.


Back to IndexNext