Chapter 3

The sharks have been referred to as possessing heterocercal tails, but, though this is true of the majority, within the limits of the group all three types of tail-fin occur, from the protocercal tail of the fossil Pleuracanthids and the livingChlamydoselachusto the highly developed, practically homocercal tail of the ancientCladoselache(fig. 2).

The sharks have been referred to as possessing heterocercal tails, but, though this is true of the majority, within the limits of the group all three types of tail-fin occur, from the protocercal tail of the fossil Pleuracanthids and the livingChlamydoselachusto the highly developed, practically homocercal tail of the ancientCladoselache(fig. 2).

The praecaudal portion of the fin-fold on the dorsal side of the body becomes broken into numerous finlets in living Crossopterygians, while in other fishes it disappears throughout part of its length, leaving only one, two or three enlarged portions—thedorsalfins (fig. 4,d.f.). Similarly the praecaudal part of the fin-fold ventrally becomes reduced to a singleanalfin (a.f.), occasionally continued backwards by a series of finlets (Scombridae). In the sucker-fishes (Remora,Eckeneis) the anterior dorsal fin is metamorphosed into a sucker by which the creature attaches itself to larger fishes, turtles, &c.

A, Side view.

B, First branchial arch.

a.f, Anal fin.

c.f, Caudal fin.

d.f, Dorsal fin.

g.f, Gill lamellae.

g.r, Gill rakers.

l.l, Lateral line organs.

n, Nasal opening.

p.f, Pelvic fin.

p.op, Preoperculum.

pt.f, Pectoral fin.

The paired fins—though more recent developments than the median—are yet of very great morphological interest, as in them we are compelled to recognize the homologues of the paired limbs of the higher vertebrates. We accordingly distinguish the two pairs of fins as pectoral or anterior and pelvic (= “ventral”) or posterior. There are two main types of paired fin—thearchipterygialtype, a paddle-like structure supported by a jointed axis which bears lateral rays and exists in an unmodified form inNeoceratodusalone amongst living fishes, and theactinopterygialtype, supported by fine raylike structures as seen in the fins of any ordinary fish. The relativelyless efficiency of the archipterygium and its predominance amongst the more ancient forms of fishes point to its being the more archaic of these two types.

In the less highly specialized groups of fishes the pectoral fins are close behind the head, the pelvic fins in the region of the cloacal opening. In the more specialized forms the pelvic fins frequently show a more or less extensive shifting towards the head, so that their position is described as thoracic (fig. 4) or jugular (Gadus—cod, haddock, &c., fig. 5).

The median fin, especially in its caudal section, is the main propelling organ: the paired fins in the majority of fishes serve for balancing. In the Dipneusti the paired fins are used for clambering about amidst vegetation, much in the same fashion as the limbs of Urodeles. InCeratodusthey also function as paddles. In various Teleosts the pectoral fins have acquired secondarily a leg-like function, being used for creeping or skipping over the mud (Periophthalmus; cf. also Trigloids, Scorpaenids and Pediculati). In the “flying” fishes the pectoral fins are greatly enlarged and are used as aeroplanes, their quivering movements frequently giving a (probably erroneous) impression of voluntary flapping movements. In the gobies and lumpsuckers (Cyclopteridae) the pelvic fins are fused to form an adhesive sucker; in theGobiesocidaethey take part in the formation of a somewhat similar sucker.The evolutionary history of the paired limbs forms a fascinating chapter in vertebrate morphology. As regards their origin two hypotheses have attracted special attention: (1) that enunciated by Gegenbaur, according to which the limb is a modified gill septum, and (2) that supported by James K. Thacher, F. M. Balfour, St George Mivart and others, that the paired fins are persisting and modified portions of a once continuous fin-fold on each side of the body. The majority of morphologists are now inclined to accept the second of these views. Each has been supported by plausible arguments, for which reference must be made to the literature of the subject.2Both views rest upon the assumed occurrence of stages for the existence of which there is no direct evidence, viz. in the case of (1) transitional stages between gill septum and limb, and in the case of (2) a continuous lateral fin-fold. (There is no evidence that the lateral row of spines in the acanthodianClimatiushas any other than a defensive significance.) In the opinion of the writer of this article, such assumptions are without justification, now that our knowledge of Dipnoan and Crossopterygian and Urodele embryology points towards the former possession by the primitive vertebrate of a series of projecting, voluntarily movable, and hence potentially motor structure on each side of the body. It must be emphasized that these—the true external gills—are theonlyorgans known actually to exist in vertebrates which might readily be transformed into limbs. When insuperable objections are adduced to this having actually taken place in the course of evolution, it will be time enough to fall back upon purely hypothetical ancestral structures on which to base the evolutionary history of the limbs.

The median fin, especially in its caudal section, is the main propelling organ: the paired fins in the majority of fishes serve for balancing. In the Dipneusti the paired fins are used for clambering about amidst vegetation, much in the same fashion as the limbs of Urodeles. InCeratodusthey also function as paddles. In various Teleosts the pectoral fins have acquired secondarily a leg-like function, being used for creeping or skipping over the mud (Periophthalmus; cf. also Trigloids, Scorpaenids and Pediculati). In the “flying” fishes the pectoral fins are greatly enlarged and are used as aeroplanes, their quivering movements frequently giving a (probably erroneous) impression of voluntary flapping movements. In the gobies and lumpsuckers (Cyclopteridae) the pelvic fins are fused to form an adhesive sucker; in theGobiesocidaethey take part in the formation of a somewhat similar sucker.

The evolutionary history of the paired limbs forms a fascinating chapter in vertebrate morphology. As regards their origin two hypotheses have attracted special attention: (1) that enunciated by Gegenbaur, according to which the limb is a modified gill septum, and (2) that supported by James K. Thacher, F. M. Balfour, St George Mivart and others, that the paired fins are persisting and modified portions of a once continuous fin-fold on each side of the body. The majority of morphologists are now inclined to accept the second of these views. Each has been supported by plausible arguments, for which reference must be made to the literature of the subject.2Both views rest upon the assumed occurrence of stages for the existence of which there is no direct evidence, viz. in the case of (1) transitional stages between gill septum and limb, and in the case of (2) a continuous lateral fin-fold. (There is no evidence that the lateral row of spines in the acanthodianClimatiushas any other than a defensive significance.) In the opinion of the writer of this article, such assumptions are without justification, now that our knowledge of Dipnoan and Crossopterygian and Urodele embryology points towards the former possession by the primitive vertebrate of a series of projecting, voluntarily movable, and hence potentially motor structure on each side of the body. It must be emphasized that these—the true external gills—are theonlyorgans known actually to exist in vertebrates which might readily be transformed into limbs. When insuperable objections are adduced to this having actually taken place in the course of evolution, it will be time enough to fall back upon purely hypothetical ancestral structures on which to base the evolutionary history of the limbs.

The ectoderm covering the general surface is highly glandular. In the case of the Dipneusti, flask-shaped multicellular glands like those of Amphibians occur in addition to the scattered gland cells.

A characteristic feature of glandular activity is the production of a slight electrical disturbance. In the case ofMalopterurusthis elsewhere subsidiary function of the skin has become so exaggerated as to lead to the conversion of the skin of each side of the body into a powerful electrical organ.3Each of these consists of some two million small chambers, each containing an electric disk and all deriving their nerve supply from the branches of a single enormous axis cylinder. This takes its origin from a gigantic ganglion cell situated latero-dorsally in the spinal cord between the levels of the first and second spinal nerves.

A characteristic feature of glandular activity is the production of a slight electrical disturbance. In the case ofMalopterurusthis elsewhere subsidiary function of the skin has become so exaggerated as to lead to the conversion of the skin of each side of the body into a powerful electrical organ.3Each of these consists of some two million small chambers, each containing an electric disk and all deriving their nerve supply from the branches of a single enormous axis cylinder. This takes its origin from a gigantic ganglion cell situated latero-dorsally in the spinal cord between the levels of the first and second spinal nerves.

Cement Organs.—The larvae of certain Teleostomes and Dipnoans possess special glandular organs in the head region for the secretion of a sticky cement by which the young fish is able to attach itself to water-plants or other objects. As a rule these are ectodermal in origin;e.g.inLepidosirenandProtopterus4the crescentic cement organ lying ventrally behind the mouth consists of a glandular thickening of the deep layer of the ectoderm. In young ganoid fishes preoral cement organs occur. In Crossopterygians there is one cup-shaped structure on each side immediately in front of the mouth. Here the glandular epithelium is endodermal, developed5as an outgrowth from the wall of the alimentary canal, closely resembling a gill pouch. InAmia6the same appears to be the case. In a few Teleosts similar organs occur,e.g.Sarcodaces,Hyperopisus,7where so far as is known they are ectodermal.

Photogenic Organs.—The slimy secretion produced by the epidermal glands of fishes contains in some cases substances which apparently readily undergo a slow process of oxidation, giving out light of low wave-length in the process and so giving rise to a phosphorescent appearance. In many deep-sea fishes this property of producing light-emitting secretion has undergone great development, leading to the existence of definite photogenic organs. These vary much in character, and much remains to be done in working out their minute structure. Good examples are seen in the Teleostean familyScopelidae, where they form brightly shining eye-like spots scattered about the surface of the body, especially towards the ventral side.

External Gills.—In young Crossopterygians and in the youngProtopterusandLepidosirentrue external gills occur of the same morphological nature as those of Urodele amphibians. In Crossopterygians a single one is present on each side on the hyoid arch; in the two Dipnoans mentioned four are present on each side—on visceral arches III., IV., V. and VI. (It may be recalled that in Urodeles they occur on arches III., IV. and V., with vestiges8on arches I. and II.). Each external gill develops as a projection of ectoderm with mesodermal core near the upper end of its visceral arch; the main aortic arch is prolonged into it as a loop. When fully developed it is pinnate, and is provided with voluntary muscles by which it can be moved freely to renew the water in contact with its respiratory surface. In the case ofPolypterusa short rod of cartilage projects from the hyoid arch into the base of the external gill. Their occurrence with identical main features in the three groups mentioned indicates that the external gills are important and archaic organs of the vertebrata. Their non-occurrence in at least some of the groups where they are absent is to be explained by the presence of a large vascular yolk sac, which necessarily fulfils in a very efficient way the respiratory function.

b.c, Opercular cavity.

b.l, Respiratory lamellae.

c, Coelom.

e.b.a, Opercular opening.

hy.a, Hyoid arch.

hy.c, Hyobranchial cleft.

l.s, Valvular outer edge of gill septum.

n, Nasal aperture.

oes, Oesophagus.

op, Operculum.

p.q, Palato quadrate cartilage.

Ph, Pharynx.

sp, Spiracle.

Alimentary Canal.—The alimentary canal forms a tube traversing the body from mouth to cloacal opening. Corresponding with structural and functional differences it is for descriptivepurposes divided into the following regions—(1) Buccal cavity or mouth cavity, (2) Pharynx, (3) Oesophagus or gullet, (4) Stomach, (5) Intestine, and (6) Cloaca. The buccal cavity or mouth cavity is morphologically a stomodaeum,i.e.it represents an inpushing of the external surface. Its opening to the exterior is wide and gaping in the embryo in certain groups (Selachians and Crossopterygians), and even in the adult among the Cyclostomata, but in the adult Gnathostome it can be voluntarily opened and shut in correlation with the presence of a hinged jaw apparatus. The mouth opening is less or more ventral in position in Cyclostomes and Selachians, while in Dipnoans and Teleostomes it is usually terminal.

In certain cases (e.g.Lepidosiren)9the buccal cavity arises by secondary excavation without any actual pushing in of ectoderm.

In certain cases (e.g.Lepidosiren)9the buccal cavity arises by secondary excavation without any actual pushing in of ectoderm.

It is highly characteristic of the vertebrata that the pharynx—the portion of the alimentary canal immediately behind the buccal cavity—communicates with the exterior by a series of paired clefts associated with the function of respiration and known as the visceral clefts. It is especially characteristic of fishes that a number of these clefts remain open as functional breathing organs in the adult.

The visceral clefts arise as hollow pouches (or at first solid projections) of the endoderm. Each pouch fuses with the ectoderm at its outer end and then becomes perforated so as to form a free communication between pharynx and exterior.

The mesenchymatous packing tissue between consecutive clefts forms the visceral arches, and local condensation within each gives rise to important skeletal elements—to which the name visceral arches is often restricted. From the particular skeletal structures which develop in the visceral arches bounding it the anterior cleft is known as the hyomandibular cleft, the next one as hyobranchial. In common usage the hyomandibular cleft is called the spiracle, and the series of clefts behind it the branchial clefts.

The typical functional gill cleft forms a vertical slit, having on each side a gill septum which separates it from its neighbours in the series. The lining of the gill cleft possesses over a less or greater extent of its area a richly developed network of capillary blood-vessels, through the thin covering of which the respiratory exchange takes place between the blood and the water which washes through the gill cleft. The area of respiratory surface tends to become increased by the development of outgrowths. Frequently these take the form of regular plate-like structures known as gill lamellae. In the Selachians these lamellae are strap-like structures (Elasmobranch) attached along nearly their whole length to the gill septum as shown in fig. 8, A. In the Holocephali and in the sturgeon the outer portions of the gill septa have disappeared and this leads to the condition seen in the higher Teleostomes (fig. 8, B), where the whole of the septum has disappeared except its thick inner edge containing the skeletal arch. It follows that in these higher Teleostomes—including the ordinary Teleosts—the gill lamellae are attached only at their extreme inner end.

In the young of Selachians and certain Teleosts (e.g.GymnarchusandHeterotis)10the gill lamellae are prolonged as filaments which project freely to the exterior. These must not be confused with true external gills.

In the young of Selachians and certain Teleosts (e.g.GymnarchusandHeterotis)10the gill lamellae are prolonged as filaments which project freely to the exterior. These must not be confused with true external gills.

The partial atrophy of the gill septa in the Teleostomes produces an important change in their appearance. Whereas in the Selachian a series of separate gill clefts is seen in external view each covered by a soft valvular backgrowth of its anterior lip, in the Teleostean fish, on the other hand, a single large opening is seen on each side (opercular opening) covered over by the enormously enlarged valvular flap belonging to the anterior lip of the hyobranchial cleft. This flap, an outgrowth of the hyoid arch, is known as the operculum.

In the Teleostomi there are usually five functional clefts, but these are the survivors of a formerly greater number. Evidence of reduction is seen at both ends of the series. In front of the first functional cleft (the hyobranchial) there is laid down in the embryo the rudiment of a spiracular cleft. In the less highly organized fishes this survives in many cases as an open cleft.

In many sharks and in sturgeons the spiracle forms a conspicuous opening just behind the eye. In rays and skates, which are modified in correlation with their ground feeding habit, the spiracle is a large opening which during the great widening out of the body during development comes to be situated on the dorsal side, while the branchial clefts come to be ventral in position. In existing Crossopterygians the spiracle is a slit-like opening on the dorsal side of the head which can be opened or closed at will. In Dipneusti, as in the higher Teleostomes, the spiracle is found as an embryonic rudiment, but in this case it gives rise in the adult to a remarkable sense organ of problematical function.11

In many sharks and in sturgeons the spiracle forms a conspicuous opening just behind the eye. In rays and skates, which are modified in correlation with their ground feeding habit, the spiracle is a large opening which during the great widening out of the body during development comes to be situated on the dorsal side, while the branchial clefts come to be ventral in position. In existing Crossopterygians the spiracle is a slit-like opening on the dorsal side of the head which can be opened or closed at will. In Dipneusti, as in the higher Teleostomes, the spiracle is found as an embryonic rudiment, but in this case it gives rise in the adult to a remarkable sense organ of problematical function.11

Traces of what appear to be pre-spiracular clefts exist in the embryos of various forms. Perhaps the most remarkable of these is to be found in the larval Crossopterygian,12and apparently also inAmia13at least, amongst the other ganoids, where a pair of entodermal pouches become cut off from the main entoderm and, establishing an opening to the exterior, give rise to the lining of the cement organs of the larva. Posteriorily there is evidence that the extension backwards of the series of gill clefts was much greater in the primitive fishes. In the surviving sharks (ChlamydoselachusandNotidanus cinereus), there still exist in the adult respectively six and seven branchial clefts, while in embryonic Selachians there are frequently to be seen pouch-like outgrowths of entoderm apparently representing rudimentary gill pouches but which never develop. Further evidence of the progressive reduction in the series of clefts is seen in the reduction of their functional activity at the two ends of the series. The spiracle, even where persisting in the adult, has lost its gill lamellae either entirely or excepting a few vestigial lamellae forming a “pseudobranch” on its anterior wall (Selachians, sturgeons). A similar reduction affects the lamellae on the anterior wall of the hyobranchial cleft (except in Selachians) and on the posterior wall of the last branchial cleft.

A pseudobranch is frequently present in Teleostomes on the anterior wall of the hyobranchial cleft,i.e.on the inner or posterior face of the operculum. It is believed by some morphologists to belong really to the cleft in front.14Phylogeny.—The phylogeny of the gill clefts or pouches is uncertain. The only organs of vertebrates comparable with them morphologically are the enterocoelic pouches of the entoderm whichgive rise to the mesoderm. It is possible that the respiratory significance of the wall of the gill cleft has been secondarily acquired. This is indicated by the fact that they appear in some cases to be lined by an ingrowth of ectoderm. This suggests that there may have been a spreading inwards of respiratory surface from the external gills. It is conceivable that before their walls became directly respiratory the gill clefts served for the pumping of fresh water over the external gills at the bases of which they lie.

A pseudobranch is frequently present in Teleostomes on the anterior wall of the hyobranchial cleft,i.e.on the inner or posterior face of the operculum. It is believed by some morphologists to belong really to the cleft in front.14

Phylogeny.—The phylogeny of the gill clefts or pouches is uncertain. The only organs of vertebrates comparable with them morphologically are the enterocoelic pouches of the entoderm whichgive rise to the mesoderm. It is possible that the respiratory significance of the wall of the gill cleft has been secondarily acquired. This is indicated by the fact that they appear in some cases to be lined by an ingrowth of ectoderm. This suggests that there may have been a spreading inwards of respiratory surface from the external gills. It is conceivable that before their walls became directly respiratory the gill clefts served for the pumping of fresh water over the external gills at the bases of which they lie.

Lung.—As in the higher vertebrates, there develops in all the main groups of gnathostomatous fishes, except the Selachians, an outgrowth of the pharyngeal wall intimately associated with gaseous interchange. In the Crossopterygians and Dipnoans this pharyngeal outgrowth agrees exactly in its mid-ventral origin and in its blood-supply with the lungs of the higher vertebrates, and there can be no question about its being morphologically the same structure as it is also in function.

In the Crossopterygian the ventrally placed slit-like glottis leads into a common chamber produced anteriorly into two horns and continued backwards into two “lungs.” These are smooth, thin-walled, saccular structures, the right one small, the left very large and extending to the hind end of the splanchnocoele. In the Dipnoans the lung has taken a dorsal position close under the vertebral column and above the splanchnocoele. Its walls are sacculated, almost spongy inLepidosirenandProtopterus, so as to give increase to the respiratory surface. InNexeratodus(fig. 9) an indication of division into two halves is seen in the presence of two prominent longitudinal ridges, one dorsal and one ventral. InLepidosirenandProtopterusthe organ is completely divided except at its anterior end into a right and a left lung. The anterior portion of the lung or lungs is connected with the median ventral glottis by a short wide vestibule which lies on the right side of the oesophagus.

In the Crossopterygian the ventrally placed slit-like glottis leads into a common chamber produced anteriorly into two horns and continued backwards into two “lungs.” These are smooth, thin-walled, saccular structures, the right one small, the left very large and extending to the hind end of the splanchnocoele. In the Dipnoans the lung has taken a dorsal position close under the vertebral column and above the splanchnocoele. Its walls are sacculated, almost spongy inLepidosirenandProtopterus, so as to give increase to the respiratory surface. InNexeratodus(fig. 9) an indication of division into two halves is seen in the presence of two prominent longitudinal ridges, one dorsal and one ventral. InLepidosirenandProtopterusthe organ is completely divided except at its anterior end into a right and a left lung. The anterior portion of the lung or lungs is connected with the median ventral glottis by a short wide vestibule which lies on the right side of the oesophagus.

In the Teleostei the representative of the lung, here termed the swimbladder, has for its predominant function a hydrostatic one; it acts as a float. It arises as a diverticulum of the gut-wall which may retain a tubular connexion with the gut (physostomatouscondition) or may in the adult completely lose such connexion (physoclistic). It shows two conspicuous differences from the lung of other forms: (1) it arises in the young fish as a dorsal instead of as a ventral diverticulum, and (2) it derives its blood-supply not from the sixth aortic arch but from branches of the dorsal aorta.

These differences are held by many to be sufficient to invalidate the homologizing of the swimbladder with the lung. The following facts, however, appear to do away with the force of such a contention. (1) In the Dipneusti (e.g.Neoceratodus) the lung apparatus has acquired a dorsal position, but its connexion with the mid-ventral glottis is asymmetrical, passing round the right side of the gut. Were the predominant function of the lung in such a form to become hydrostatic we might expect the course of evolution to lead to a shifting of the glottis dorsalwards so as to bring it nearer to the definitive situation of the lung. (2) InErythrinusand other Characinids the glottis is not mid-ventral but decidedly lateral in position, suggesting either a retention of, or a return to, ancestral stages in the dorsalward migration of the glottis. (3) The blood-supply of the Teleostean swimbladder is from branches of the dorsal aorta, which may be distributed over a long anteroposterior extent of that vessel. Embryology, however, shows that the swimbladder arises as a localized diverticulum. It follows that the blood-supply from a long stretch of the aorta can hardly be primitive. We should rather expect the primitive blood-supply to be from the main arteries of the pharyngeal wall,i.e.from the hinder aortic arch as is the case with the lungs of other forms. Now inAmiaat least we actually find such a blood-supply, there being here a pulmonary artery corresponding with that in lung-possessing forms. Taking these points into consideration there seems no valid reason for doubting that in lung and swimbladder we are dealing with the same morphological structure.

These differences are held by many to be sufficient to invalidate the homologizing of the swimbladder with the lung. The following facts, however, appear to do away with the force of such a contention. (1) In the Dipneusti (e.g.Neoceratodus) the lung apparatus has acquired a dorsal position, but its connexion with the mid-ventral glottis is asymmetrical, passing round the right side of the gut. Were the predominant function of the lung in such a form to become hydrostatic we might expect the course of evolution to lead to a shifting of the glottis dorsalwards so as to bring it nearer to the definitive situation of the lung. (2) InErythrinusand other Characinids the glottis is not mid-ventral but decidedly lateral in position, suggesting either a retention of, or a return to, ancestral stages in the dorsalward migration of the glottis. (3) The blood-supply of the Teleostean swimbladder is from branches of the dorsal aorta, which may be distributed over a long anteroposterior extent of that vessel. Embryology, however, shows that the swimbladder arises as a localized diverticulum. It follows that the blood-supply from a long stretch of the aorta can hardly be primitive. We should rather expect the primitive blood-supply to be from the main arteries of the pharyngeal wall,i.e.from the hinder aortic arch as is the case with the lungs of other forms. Now inAmiaat least we actually find such a blood-supply, there being here a pulmonary artery corresponding with that in lung-possessing forms. Taking these points into consideration there seems no valid reason for doubting that in lung and swimbladder we are dealing with the same morphological structure.

Function.—In the Crossopterygians and Dipnoans the lung is used for respiration, while at the same time fulfilling a hydrostatic function. Amongst the Actinopterygians a few forms still use it for respiration, but its main function is that of a float. In connexion with this function there exists an interesting compensatory mechanism whereby the amount of gas in the swimbladder may be diminished (by absorption), or, on the other hand, increased, so as to counteract alterations in specific gravity produced,e.g.by change of pressure with change of depth. This mechanism is specially developed in physoclistic forms, where there occur certain glandular patches (“red glands”) in the lining epithelium of the swimbladder richly stuffed with capillary blood-vessels and serving apparently to secrete gas into the swimbladder. That the gas in the swimbladder is produced by some vital process, such as secretion, is already indicated by its composition, as it may contain nearly 90% of oxygen in deep-sea forms or a similar proportion of nitrogen in fishes from deep lakes,i.e.its composition is quite different from what it would be were it accumulated within the swimbladder by mere ordinary diffusion processes. Further, the formation of gas is shown by experiment to be controlled by branches of the vagus and sympathetic nerves in an exactly similar fashion to the secretion of saliva in a salivary gland. (See below for relations of swimbladder to ear).

Of the important non-respiratory derivatives of the pharyngeal wall (thyroid, thymus, postbranchial bodies, &c.), only the thyroid calls for special mention, as important clues to its evolutionary history are afforded by the lampreys. In the larval lamprey the thyroid develops as a longitudinal groove on the pharyngeal floor. From the anterior end of this groove there pass a pair of peripharyngeal ciliated tracts to the dorsal side of the pharynx where they pass backwards to the hind end of the pharynx. Morphologically the whole apparatus corresponds closely with the endostyle and peripharyngeal and dorsal ciliated tracts of the pharynx ofAmphioxus. The correspondence extends to function, as the open thyroid groove secretes a sticky mucus which passes into the pharyngeal cavity for the entanglement of food particles exactly as inAmphioxus. Later on the thyroid groove becomes shut off from the pharynx; its secretion now accumulates in the lumina of its interior and it functions as a ductless gland as in the Gnathostomata. The only conceivable explanation of this developmental history of the thyroid in the lamprey is that it is a repetition of phylogenetic history.

Behind the pharynx comes the main portion of the alimentary canal concerned with the digestion and absorption of the food. This forms a tube varying greatly in length, more elongated and coiled in the higher Teleostomes, shorter and straighter in the Selachians, Dipnoans and lower Teleostomes. The oesophagus or gullet, usually forming a short, wide tube, leads into the glandular, more or less dilated stomach. This is frequently in the form of a letterJ, the longer limb being continuous with the gullet, the shorter with the intestine. The curve of theJmay be as inPolypterusand the perch produced backwards into a large pocket. The intestine is usually marked off from the stomach by a ring-like sphincter muscle forming thepyloric valve. In the lower gnathostomatous fishes (Selachians, Crossopterygians, Dipnoans, sturgeons) the intestine possesses the highly characteristic spiral valve, a shelf-like projection into its lumen which pursues a spiral course, and along the turns of which the food passes during the course of digestion. From its universal occurrence in the groups mentioned we conclude that it is a structure of a very archaic type, once characteristic of ancestral Gnathostomata; a hint as to its morphological significance is given by its method of development.15In an early stage of development the intestinal rudiment is coiled into a spiral and it is by the fusion together of the turns that the spiral valve arises. The only feasible explanation of this peculiar method of development seems to lie in the assumption that the ancestral gnathostome possessed an elongated, coiled intestine which subsequently became shortened with a fusion of its coils. In the higher fishes the spiral valve has disappeared—being still found, however, in a reduced condition inAmiaandLepidosteus, and possibly as a faint vestige in one or two Teleosts (certainClupeidae16andSalmonidae17). In the majority of the Teleosts the absence of spiral valves is coupled with a secondary elongation of the intestinal region, which in extreme cases (Loricariidae) may be accompanied by a secondary spiral coiling.

The terminal part of the alimentary canal—the cloaca—is characterized by the fact that into it open the two kidney ducts. In Teleostomes the cloaca is commonly flattened out, so that the kidney ducts and the alimentary canal come to open independently on the outer surface.

The lining of the alimentary canal is throughout the greater part of its extent richly glandular. And at certain points local enlargements of the secretory surface take place so as to form glandular diverticula. The most ancient of these as indicated by its occurrence even inAmphioxusappears to be theliver, which, originally—as we may assume—mainly a digestive gland, has in the existing Craniates developed important excretory and glycogen-storing functions. Arising in the embryo as a simple caecum, the liver becomes in the adult a compact gland of very large size, usually bi-lobed in shape and lying in the front portion of the splanchnocoele. The stalk of the liver rudiment becomes drawn out into a tubular bile duct, which may become subdivided into branches, and as a rule develops on its course a pocket-like expansion, the gall-bladder. This may hang freely in the splanchnocoele or may be, as in many Selachians, imbedded in the liver substance.

The pancreas also arises by localized bulging outwards of the intestinal lining—there being commonly three distinct rudiments in the embryo. In the Selachians the whitish compact pancreas of the adult opens into the intestine some little distance behind the opening of the bile duct, but in the Teleostomes it becomes involved in the liver outgrowth and mixed with its tissue, being frequently recognizable only by the study of microscopic sections. In the Dipnoans the pancreatic rudiment remains imbedded in the wall of the intestine: its duct is united with that of the liver.

Pyloric Caeca.—In the Teleostomi one or more glandular diverticula commonly occur at the commencement of the intestine and are known as the pyloric caeca. There may be a single caecum (crossopterygians,Ammodytesamongst Teleosts) or there may be nearly two hundred (mackerel). In the sturgeons the numerous caeca form a compact gland. In several families of Teleosts, on the other hand, there is no trace of these pyloric caeca.

In Selachians a small glandular diverticulum known as therectal glandopens into the terminal part of the intestine on its dorsal side.

Coelomic Organs.—The development of the mesoderm in the restricted sense (mesothelium) as seen in the fishes (lamprey,Lepidosiren,Protopterus,Polypterus) appears to indicate beyond doubt that the mesoderm segments of vertebrates are really enterocoelic pouches in which the development of the lumen is delayed. Either the inner, or both inner and outer (e.g.Lepidosiren) walls of the mesoderm segment pass through a myoepithelial condition and give rise eventually to the great muscle segments (myomeres, or myotomes) which lie in series on each side of the trunk. In the fishes these remain distinct throughout life. The fins, both median and paired, obtain their musculature by the ingrowth into them of muscle buds from the adjoining myotomes.

I, Fore-brain.

II, Mesencephalon.

III, Cerebellum.

IV, Electric lobe.

br, Common muscular sheath covering branchial clefts (on the left side this has been removed so as to expose the series of branchial sacs).

f, Spiracle.

o.e, Electric organ, on the left side the nerve-supply is shown.

o, Eye.

t, Sensory tubes of lateral line system.

Electrical Organs.18—It is characteristic of muscle that at the moment of contraction it produces a slight electrical disturbance. In certain fishes definite tracts of the musculature show a reduction of their previously predominant function of contraction and an increase of their previously subsidiary function of producing electrical disturbance; so that the latter function is now predominant.

In the skates (Raia) the electrical organ is a fusiform structure derived from the lateral musculature of the tail; inGymnotus—the electric eel—and inMormyrusit forms an enormous structure occupying the place of the ventral halves of the myotomes along nearly the whole length of the body; inTorpedoit forms a large, somewhat kidney-shaped structure as viewed from above lying on each side of the head and derived from the musculature of the anterior visceral arches. InTorpedothe nerve-supply is derived from cranial nerves VII. IX. and the anterior branchial branches of X.

In the skates (Raia) the electrical organ is a fusiform structure derived from the lateral musculature of the tail; inGymnotus—the electric eel—and inMormyrusit forms an enormous structure occupying the place of the ventral halves of the myotomes along nearly the whole length of the body; inTorpedoit forms a large, somewhat kidney-shaped structure as viewed from above lying on each side of the head and derived from the musculature of the anterior visceral arches. InTorpedothe nerve-supply is derived from cranial nerves VII. IX. and the anterior branchial branches of X.

The electric organ is composed of prismatic columns each built up of a row of compartments. Each compartment contains a lamellated electric disc representing the shortened-up and otherwise metamorphosed muscle fibre. On one face (ventral inTorpedo, anterior inRaia) of the electric disc is a gigantic end-plate supplied by a beautiful, dichotomously branched, terminal nervous arborization.

The development of the mesoderm of the head region is too obscure for treatment here.19The ventral portion of the trunk mesoderm gives rise to the splanchnocoel or general coelom. Except in the Myxinoids the anterior part of the splanchnocoel becomes separated off as a pericardiac cavity, though in adult Selachians the separation becomes incomplete, the two cavities being in communication by a pericardio-peritoneal canal.

Nephridial System.—-The kidney system in fishes consists of segmentally arranged tubes leading from the coelom into a longitudinal duct which opens within the hinder end of the enteron—the whole forming what is known as thearchinephros(Lankester) orholonephros(Price). Like the other segmentedorgans of the vertebrate the archinephros develops from before backwards. The sequence is, however, not regular. A small number of tubules at the head end of the series become specially enlarged and are able to meet the excretory needs during larval existence (Pronephros): the immediately succeeding tubules remain undeveloped, and then come the tubules of the rest of the series which form the functional kidney of the adult (Mesonephros).

The kidney tubules subserve the excretory function in two different ways. The wall of the tubule, bathed in blood from the posterior cardinal vein, serves to extract nitrogenous products of excretion from the blood and pass them into the lumen of the tubule. The open ciliated funnel or nephrostome at the coelomic end of the tubule serves for the passage outwards of coelomic fluid to flush the cavity of the tubule. The secretory activity of the coelomic lining is specially concentrated in certain limited areas in the neighbourhood of the nephrostomes, each such area ensheathing a rounded mass depending into the coelom and formed of a blood-vessel coiled into a kind of skein—a glomerulus. In the case of the pronephros the glomeruli are as a rule fused together into a single glomus. In the mesonephros they remain separate and in this case the portion of coelom surrounding the glomerulus tends to be nipped off from the general coelom—to form a Malpighian body. The separation may be incomplete—the Malpighian coelom remaining in connexion with the general coelom by a narrow peritoneal canal. The splanchnocoelic end of this is usually ciliated and is termed a peritoneal funnel: it is frequently confused with the nephrostome.

Mesonephros.—The kidney of the adult fish is usually a compact gland extending over a considerable distance in an anteroposterior direction and lying immediately dorsal to the coelomic cavity.

Peritoneal funnels are present in the adult of certain Selachians (e.g.Acanthias,Squatina), though apparently in at least some of these forms they no longer communicate with the Malpighian bodies or tubules. The kidneys of the two sides become fused together posteriorly inProtopterusand in some Teleosts. The mesonephric ducts undergo fusion posteriorly in many cases to form a median urinary or urinogenital sinus. In the Selachians this median sinus is prolonged forwards into a pair of horn-like continuations—the sperm sacs. In Dipnoans the sinus becomes greatly dilated and forms a large, rounded, dorsally placed cloacal caecum. In Actinopterygians a urinary bladder of similar morphological import is commonly present.

Gonads.—The portion of coelomic lining which gives rise to the reproductive cells retains its primitive relations most nearly in the female, where, as a rule, the genital cells are still shed into the splanchnocoele. Only in Teleostomes (Lepidosteusand most Teleosts) the modification occurs that the ovary is shut off from the splanchnocoele as a closed cavity continuous with its duct.

In a few Teleosts (Salmonidae,Muraenidae,Cobitis) the ovary is not a closed sac, its eggs being shed into the coelom as in other groups.

In a few Teleosts (Salmonidae,Muraenidae,Cobitis) the ovary is not a closed sac, its eggs being shed into the coelom as in other groups.

The appearance of the ovary naturally varies greatly with the character of the eggs.

The portion of coelomic lining which gives rise to the male genital cells (testis) is in nearly, if not quite, all cases, shut off from the splanchnocoele. The testes are commonly elongated in form. In Dipneusti20(LepidosirenandProtopterus) the hinder portion of the elongated testis has lost its sperm-producing function, though the spermatozoa produced in the anterior portion have to traverse it in order to reach the kidney. InPolypterus21the testis is continued backwards as a “testis ridge,” which appears to correspond with the posterior vesicular region of the testis inLepidosirenandProtopterus. Here also the spermatozoa pass back through the cavities of the testis ridge to reach the kidney duct. In the young Teleost22the rudiment of the duct forms a backward continuation of the testis containing a network of cavities and opening as a rule posteriorly into the kidney duct. It is difficult to avoid the conclusion that the testis duct of the Teleost is for the most part the equivalent morphologically of the posterior vesicular region of the testis ofPolypterusand the Dipneusti.

m.n.1, Anterior (genital) portion of mesonephros with its coiled duct.

m.n.2, Posterior (renal) portion of mesonephros.

s.s, Sperm sac.

T, Testis.

u, “Ureter” formed by fusion of collecting tubes of renal portion of mesonephros.

u.g.s, Urino-genital sinus;

v.s, Vesicula seminalis.

Relations of Renal and Reproductive Organs.(1)Female.—In the Selachians and Dipnoans the oviduct is of the type (Müllerian duct) present in the higher vertebrates and apparently representing a split-off portion of the archinephric duct. At its anterior end is a wide funnel-like coelomic opening. Its walls are glandular and secrete accessory coverings for the eggs. In the great majority of Teleosts and inLepidosteusthe oviduct possesses no coelomic funnel, its walls being in structural continuity with the wall of the ovary. In most of the more primitive Teleostomes (Crossopterygians, sturgeons,Amia) the oviduct has at its front end an open coelomic funnel, and it is difficult to find adequate reason for refusing to regard such oviducts as true Müllerian ducts. On this interpretation the condition characteristic of Teleosts would be due to the lips of the oviduct becoming fused with the ovarian wall, and the duct itself would be a Müllerian duct as elsewhere.

A departure from the normal arrangement is found in those Teleosts which shed their eggs into the splanchnocoele,e.g.amongstSalmonidae, the smelt (Osmerus) and capelin (Mallotus) possess a pair of oviducts resembling Müllerian ducts while the salmon possesses merely a pair of genital pores opening together behind the anus. It seems most probable that the latter condition has been derived from the former by reduction of the Müllerian ducts, though it has been argued that the converse process has taken place. The genital pores mentioned must not be confused with theabdominal pores, which in many adult fishes, particularly in those without open peritoneal funnels, lead from coelom directly to the exterior in the region of the cloacal opening. These appear to be recent developments, and to have nothing to do morphologically with the genitourinary system.23

A departure from the normal arrangement is found in those Teleosts which shed their eggs into the splanchnocoele,e.g.amongstSalmonidae, the smelt (Osmerus) and capelin (Mallotus) possess a pair of oviducts resembling Müllerian ducts while the salmon possesses merely a pair of genital pores opening together behind the anus. It seems most probable that the latter condition has been derived from the former by reduction of the Müllerian ducts, though it has been argued that the converse process has taken place. The genital pores mentioned must not be confused with theabdominal pores, which in many adult fishes, particularly in those without open peritoneal funnels, lead from coelom directly to the exterior in the region of the cloacal opening. These appear to be recent developments, and to have nothing to do morphologically with the genitourinary system.23

(2)Male.—It seems that primitively the male reproductive elements like the female were shed into the coelom and passed thence through the nephridial tubules. In correlation probably with the greatly reduced size of these elements they are commonly no longer shed into the splanchnocoele, but are conveyed from the testis through covered-in canals to the Malpighian bodies or kidney tubules. The system of covered-in canals forms the testicular network, the individual canals being termed vasa efferentia. In all probability the series of vasa efferentia was originally spread over the whole length of the elongated testis (cf.Lepidosteus), but in existing fishes the series is as a rulerestricted to a comparatively short anteroposterior extent. In Selachians the vasa efferentia are restricted to the anterior end of testis and kidney, and are connected by a longitudinal canal ending blindly in front and behind. The number of vasa efferentia varies and in the rays (Raia,Torpedo) may be reduced to a single one opening directly into the front end of the mesonephric duct. The anterior portion of the mesonephros is much reduced in size in correlation with the fact that it has lost its renal function. The hinder part, which is the functional kidney, is considerably enlarged. The primary tubules of this region of the kidney have undergone a modification of high morphological interest. Their distal portions have become much elongated, they are more or less fused, and their openings into the mesonephric duct have undergone backward migration until they open together either into the mesonephric duct at its posterior end or into the urinogenital sinus independently of the mesonephric duct. The mesonephric duct is now connected only with the anterior part of the kidney, and serves merely as a vas deferens or sperm duct. In correlation with this it is somewhat enlarged, especially in its posterior portion, to form a vesicula seminalis.


Back to IndexNext