Chapter 12

(A. E. H. L.)

INFINITIVE,a form of the verb, properly a noun with verbal functions, but usually taken as a mood (seeGrammar). The Latin grammarians gave it the name ofinfinitusorinfinitivus modus,i.e.indefinite, unlimited mood, as not having definite persons or numbers.

INFLEXION(from Lat.inflectere, to bend), the action of bending inwards, or turning towards oneself, or the condition of being bent or curved. In optics, the term “inflexion” was used by Newton for what is now known as “diffraction of light” (q.v.). For inflexion in geometry seeCurve. Inflexion when used of the voice, in speaking or singing, indicates a change in tone, pitch or expression. In grammar (q.v.) inflexion indicates the changes which a word undergoes to bring it into correct relations with the other words with which it is used. In English grammar nouns, pronouns, adjectives (in their degrees of comparison), verbs and adverbs are inflected. Some grammarians, however, regard the inflexions of adverbs more as an actual change in word-formation.

INFLUENCE(Late Lat.influentia, frominfluere, to flow in), a word whose principal modern meaning is that of power, control or action affecting others, exercised either covertly or without visible means or direct physical agency. It is one of those numerous terms of astrology (q.v.) which have established themselves in current language. From the stars was supposed to flow an ethereal stream which affected the course of events on the earth and the fortunes and characters of men. For the law as to “undue influence” seeContract.

INFLUENZA(syn. “grip,”la grippe), a term applied to an infectious febrile disorder due to a specific bacillus, characterized specially by catarrh of the respiratory passages and alimentary canal, and occurring mostly as an epidemic. The Italians in the 17th century ascribed it to the influence of the stars, and hence the name “influenza.” The French namegrippecame into use in 1743, and those ofpetite posteandpetit courierin 1762, whilegénéralbecame another synonym in 1780. Apparently the scourge was common; in 1403 and 1557 the sittings of the Paris law courts had to be suspended through it, and in 1427 sermons had to be abandoned through the coughing and sneezing; in 1510 masses could not be sung. Epidemics occurred in 1580, 1676, 1703, 1732 and 1737, and their cessation was supposed to be connected with earthquakes and volcanic eruptions.

The disease is referred to in the works of the ancient physicians, and accurate descriptions of it have been given by medical writers during the last three centuries. These various accounts agree substantially in their narration of the phenomena and course of the disease, and influenza has in all times been regarded as fulfilling all the conditions of an epidemic in its sudden invasion, and rapid and extensive spread. Among the chief epidemics were those of 1762, 1782, 1787, 1803, 1833, 1837 and 1847. It appeared in fleets at sea away from all communication with land, and to such an extent as to disable them temporarily for service. This happened in 1782 in the case of the squadron of Admiral Richard Kempenfelt (1718-1782), which had to return to England from the coast of France in consequence of influenza attacking his crews.

Like cholera and plague, influenza reappeared in the last quarter of the 19th century, after an interval of many years, in epidemic or rather pandemic form. After the year 1848, in which 7963 deaths were directly attributed to influenza in England and Wales, the disease continued prevalent until 1860, with distinct but minor epidemic exacerbations in 1851, 1855 and 1858; during the next decade the mortality dropped rapidly though not steadily, and the diminution continued down to the year 1889, In which only 55 deaths were ascribed to this cause. It is not clear whether the disease ever disappears wholly, and the deaths registered in 1889 are the lowest recorded in any year since the registrar-general’s returns began. Occasionally local outbreaks of illness resembling epidemic influenza have been observed during the period of abeyance, as in Norfolk in 1878 and in Yorkshire in 1887; but whether such outbreaks and the so-called “sporadic” cases are nosologically identical with epidemic influenza is open to doubt. The relation seems rather to be similar to that between Asiatic cholera and “cholera nostras.” Individual cases may be indistinguishable, but as a factor in the public health the difference between sporadic and epidemic influenza is as great and unmistakable as that between the two forms of cholera. This fact, which had been forgotten by some since 1847 and never learnt by others, was brought home forcibly to all by the visitation of 1889.

According to the exhaustive report drawn up by Dr H. Franklin Parsons for the Local Government Board, the earliest appearances were observed in May 1889, and three localities are mentioned as affected at the same time, all widely separated from each other—namely, Bokhara in Central Asia, Athabasca in the north-west Territories of Canada and Greenland. About the middle of October it was reported at Tomsk in Siberia, and by the end of the month at St Petersburg. During November Russia became generally affected, and cases were noticed in Paris, Berlin, Vienna, London and Jamaica (?). In December epidemic influenza became established over the whole of Europe, along the Mediterranean, in Egypt and over a large area in the United States. It appeared in several towns in England, beginning with Portsmouth, but did not become generallyepidemic until the commencement of the new year. In London the full onset of unmistakable influenza dated from the 1st of January 1890. Everywhere it seems to have exhibited the same explosive character when once fully established. In St Petersburg, out of a government staff of 260 men, 220 were taken ill in one night, the 15th of November. During January 1890 the epidemic reached its height in London, and appeared in a large number of towns throughout the British Islands, though it was less prevalent in the north and north-west than in the south. January witnessed a great extension of the disease in Germany, Holland, Switzerland, Austria-Hungary, Italy, Spain and Portugal; but in Russia, Scandinavia and France it was already declining. The period of greatest activity in Europe was the latter half of December and the earlier half of January, with the change of the year for a central point. Other parts of the world affected in January 1890 were Cape Town, Canada, the United States generally, Algiers, Tunis, Cairo, Corsica, Sardinia, Sicily, Honolulu, Mexico, the West Indies and Montevideo. In February the provincial towns of England were most severely affected, the death-rate rising to 27.4, but in London it fell from 28.1 to 21.2, and for Europe generally the back of the epidemic was broken. At the same time, however, it appeared in Ceylon, Penang, Japan, Hong Kong and India; also in West Africa, attacking Sierra Leone, and Gambia in the middle of the month; and finally in the west, where Newfoundland and Buenos Aires were invaded. In March influenza became widely epidemic in India, particularly in Bengal and Bombay, and made its appearance in Australia and New Zealand. In April and May it was epidemic all over Australasia, in Central America, Brazil, Peru, Arabia and Burma. During the summer and autumn it reached a number of isolated islands, such as Iceland, St Helena, Mauritius and Réunion. Towards the close of the year it was reported from Yunnan in the interior of China, from the Shiré Highlands in Central Africa, Shoa in Abyssinia, and Gilgit in Kashmir. In the course of fifteen months, beginning with its undoubted appearance in Siberia in October 1889, it had traversed the entire globe.

The localities attacked by influenza in 1889-1890 appear in no case to have suffered severely for more than a month or six weeks. Thus in Europe and North America generally the visitation had come to an end in the first quarter of 1890. The earliest signs of an epidemic revival on a large scale occurred in March 1891, in the United States and the north of England. It was reported from Chicago and other large towns in the central states, whence it spread eastwards, reaching New York about the end of March. In England it began in the Yorkshire towns, particularly in Hull, and also independently in South Wales. In London influenza became epidemic for the second time about the end of April, and soon afterwards was widely distributed in England and Wales. The large towns in the north, together with London and Wales, suffered much more heavily in mortality than in the previous attack, but the south-west of England, Scotland and Ireland escaped with comparatively little sickness. The same may be said of the European continent generally, except parts of Russia, Scandinavia and perhaps the north of Germany. This second epidemic coincided with the spring and early summer; it had subsided in London by the end of June. The experience of Sheffield is interesting. In 1890 the attack, contrary to general experience, had been undecided, lingering and mild; in 1891 it was very sudden and extremely severe, the death-rate rising to 73.4 during the month of April, and subsiding with equal rapidity. During the third quarter of the year, while Europe was free, the antipodes had their second attack, which was more severe than the first. As in England, it reversed the previous order of things, beginning in the provinces and spreading thence to the capital towns. The last quarter of the year was signalized by another recrudescence in Europe, which reached its height during the winter. All parts, including Great Britain, were severely affected. In England those parts which had borne the brunt of the epidemic in the early part of the year escaped. In fact, these two revivals may be regarded as one, temporarily interrupted by the summer quarter.

The recrudescence at the end of 1891 lasted through mid-winter, and in many places, notably in London, it only reached its height in January 1892, subsiding slowly and irregularly in February and March. Brighton suffered with exceptional severity. The continent of Europe seems to have been similarly affected. In Italy the notifications of influenza were as follow: 1891—January to October, 0; November, 30; December, 6461; 1892—January, 84,543; February, 55,352; March, 28,046; April, 7962; May, 1468; June, 223. Other parts of the world affected were the West Indies, Tunis, Egypt, Sudan, Cape Town Teheran, Tongking and China. In August 1892 influenza was reported from Peru, and later in the year from various places in Europe.

A fourth recrudescence, but of a milder character, occurred in Great Britain in the spring of 1893, and a fifth in the following winter, but the year 1894 was freer from influenza than any since 1890. In 1895 another extensive epidemic took place. In 1896 influenza seemed to have spent its strength, but there was an increased prevalence of the disease in 1897, which was repeated on a larger scale in 1898, and again in 1899, when 12,417 deaths were recorded in England and Wales. This was the highest death-rate since 1892. After this the death-rate declined to half that amount and remained there with the slight upward variations until 1907, in which the total death-rate was 9257. The experience of other countries has been very similar; they have all been subjected to periodical revivals of epidemic influenza at irregular intervals and of varying intensity since its reappearance in 1889, but there has been a general though not a steady decline in its activity and potency. Its behaviour is, in short, quite in keeping with the experience of 1847-1860, though the later visitation appears to have been more violent and more fatal than the former. Its diffusion was also more rapid and probably more extensive.

The foregoing general summary may be supplemented by some further details of the incidence in Great Britain. The number of deaths directly attributed to influenza, and the death-rates per million in each year in England and Wales, are as follow:—

It is interesting to compare these figures with the corresponding ones for the previous visitation:—

The two sets of figures are not strictly comparable, because, during the first period, notification of the cause of death was not compulsory; but it seems clear that the later wave was much the more deadly. The average annual death-rate for the nine years is 320 in the one case against 162 in the other, or as nearly as possible double. In both epidemic periods the second year was far more fatal than the first, and in both a marked revival took place in the ninth year; in both also an intermediate recrudescence occurred, in the fifth year in one case, in the sixth in the other. The chief point of difference is the sudden and marked drop in 1849-1850, against a persistent high mortality in 1892-1893, especially in 1892, which was nearly as fatal as 1891.

To make the significance of these epidemic figures clear, it should be added that in the intervening period 1861-1889 the average annual death-rate from influenza was only fifteen, and in the ten years immediately preceding the 1890 outbreak it was only three. Moreover, in epidemic influenza, the mortality directly attributed to that disease is only a fraction of that actually caused by it. For instance, in January 1890 the deaths from influenza in London were 304, while the excess of deaths from respiratory diseases was 1454 and from all causes 1958 above the average.

We have seen above that the mortality was far greater in the second epidemic year than in the first, and this applies to all parts of England, and to rural as well as to urban communities, as the following table shows:—

Deaths from Influenza.

In spite of these figures, it appears that the 1890 attack, which was in general much more sudden in its onset than that of 1891, also caused a great deal more sickness. More people were “down with influenza,” though fewer died. For Instance, the number of persons treated at the Middlesex Hospital in the two months’ winter epidemic of 1890 was 1279; in the far more fatal three months’ spring epidemic of 1891 it was only 726. One explanation of this discrepancy between the incidence of sickness and mortality is that in the second attack, which was more protracted and more insidious, the stress of the disease fell more upon the lungs. Another is that its comparative mildness, combined with the time of year, in itself proved dangerous, because it tempted people to disregard the illness, whereas in the first epidemic they were too ill to resist. On the whole, rural districts showed a higher death-rate than towns, and small towns a higher one than large ones in both years. This is explained by the age distribution in such localities; influenza being particularly fatal to aged people, though no age is exempt. Certain counties were much more severely affected than others. The eastern counties, namely, Essex, Suffolk and Norfolk, together with Hampshire and one or two others, escaped lightly in both years; the western counties, namely, North and South Wales, with the adjoining counties of Monmouth, Hereford and Shropshire, suffered heavily in both years.

It will be convenient to discussseriatimthe various points of interest on which light has been thrown by the experience described above.

The bacteriology of influenza is discussed in the article onParasitic Diseases. The disease is often called “Russian” influenza, and its origin in 1889 suggests that the name may have some foundation in fact. A writer, who saw the epidemic break out in Bokhara, is quoted by him to the following effect:—“The summer of 1888 was exceptionally hot and dry, and was followed by a bitterly cold winter and a rainy spring. The dried-up earth was full of cracks and holes from drought and subsequent frost, so that the spring rains formed ponds in these holes, inundated the new railway cuttings, and turned the country into a perfect marsh. When the hot weather set in the water gave off poisonous exhalations, rendering malaria general.” On account of the severe winter, the people were enfeebled from lack of nourishment, and when influenza broke out suddenly they died in large numbers. Europeans were very severely affected. Russians, hurrying home, carried the disease westwards, and caravans passing eastwards took it into Siberia. There is a striking similarity in the conditions described to those observed in connexion with outbreaks of other diseases, particularly typhoid fever and diphtheria, which have occurred on the supervention of heavy rain after a dry period, causing cracks and fissures in the earth. Assuming the existence of a living poison in the ground, we can easily understand that under certain conditions, such as an exceptionally dry season, it may develop exceptional properties and then be driven out by the subsequent rains, causing a violent outbreak of illness. Some such explanation is required to account for the periodical occurrence of epidemic and pandemic diffusions starting from an endemic centre. We may suppose that a micro-organism of peculiar robustness and virulence is bred and brought into activity by a combination of favourable conditions, and is then disseminated more or less widely according to its “staying power,” by human agency. Whether central Asia is an endemic centre for influenza or not there is no evidence, but the disease seems to be more often prevalent in the Russian Empire than elsewhere. Extensive outbreaks occurred there in 1886 and 1887, and it is certain that the 1889 wave was active in Siberia at an earlier date than in Europe, and that it moved eastwards. The hypothesis that it originated in China is unsupported by evidence. But whatever may be the truth with regard to origin, the dissemination of influenza by human agency must be held to be proved. This is the most important addition to our knowledge of the subject contributed by recent research. The upshot of the inquiry by Dr Parsons was to negative all theories of atmospheric influence, and to establish the conclusion that the disease was “propagated mainly, perhaps entirely, by human intercourse.”

He found that it prevailed independently of climate, season and weather; that it moved in a contrary direction to the prevailing winds; that it travelled along the lines of human intercourse, and not faster than human beings can travel; that in 1889 it travelled much faster than in previous epidemics, when the means of locomotion were very inferior; that it appeared first in capital towns, seaports and frontier towns, and only affected country districts later; that it never commenced suddenly with a large number of cases in a place previously free from disease, but that epidemic manifestations were generally preceded for some days or weeks by scattered cases; that conveyance of infection by individuals and its introduction into fresh places had been observed in many instances; that persons brought much into contact with others were generally the first to suffer; that persons brought together in large numbers in enclosed spaces suffered more in proportion than others, and that the rapidity and extent of the outbreak in institutions corresponded with the massing together of the inmates.

He found that it prevailed independently of climate, season and weather; that it moved in a contrary direction to the prevailing winds; that it travelled along the lines of human intercourse, and not faster than human beings can travel; that in 1889 it travelled much faster than in previous epidemics, when the means of locomotion were very inferior; that it appeared first in capital towns, seaports and frontier towns, and only affected country districts later; that it never commenced suddenly with a large number of cases in a place previously free from disease, but that epidemic manifestations were generally preceded for some days or weeks by scattered cases; that conveyance of infection by individuals and its introduction into fresh places had been observed in many instances; that persons brought much into contact with others were generally the first to suffer; that persons brought together in large numbers in enclosed spaces suffered more in proportion than others, and that the rapidity and extent of the outbreak in institutions corresponded with the massing together of the inmates.

These conclusions, based upon the 1889-1890 epidemic, have been confirmed by subsequent experience, especially in regard to the complete independence of season and weather shown by influenza. It has appeared and disappeared at all seasons and in all weathers and only popular ignorance continues to ascribe its behaviour to atmospheric conditions. In Europe, however, it has prevailed more often in winter than in summer, which may be due to the greater susceptibility of persons in winter, or, more probably, to the fact that they congregate more in buildings and are less in the open air during that part of the year. No doubt is any longer entertained of its infectious character, though the degree of infectivity appears to vary considerably. Many cases have been recorded of individuals introducing it into houses, and of all or most of the other inmates then taking it from the first case. Difficulties in preventing the spread of infection are due to (1) the shortness of the period of incubation, (2) the disease being infectious in the earliest stages before the nature of the illness is recognized, (3) the milder varieties being equally infectious with the severe attacks, and the patient going to work and spreading the infection, (4) the diagnosis often being difficult, influenza being possibly confused with ordinary catarrhal attacks, typhoid fever and other diseases. Domestic animals seem to be free from any suspicion of being liable to human influenza. Sanitary conditions, other than overcrowding, do not appear to exercise any influence on the spread of influenza.

Influenza has been shown to be an acute specific fever having nothing whatever to do with a “bad cold.” There may be some inflammation of the respiratory passages, and then symptoms of catarrh are present, but that is not necessarily the case, and in some epidemics such symptoms are quite exceptional. This had been recognized by various writersbefore the 1889 visitation, but it had not been generally realized, as it has been since, and some medical authorities, who persisted in regarding influenza as essentially a “catarrhal” affection, were chiefly to blame for a widespread and tenacious popular fallacy.

Leichtenstern, in his masterly article in Nothnagel’sHandbuch, divides the disease as follows:—(1) Epidemic influenza vera caused by Pfeiffer’s bacillus; (2) Endemic-epidemic influenza vera, which occurs several years after a pandemic and is caused by the same bacillus; (3) Endemic influenza nostras or eatarrhal fever, calledla grippe, and bearing the same relation to true influenza as cholera nostras does to Asiatic cholera.

The “period of incubation” is one to four days. Susceptibility varies greatly, but the conditions that influence it are matters of conjecture only. It appears that the inhabitants of Great Britain are less susceptible than those of many other countries. Dr Parsons gives the following list, showing the proportion of the population estimated to have been attacked in the 1889-1890 epidemic in different localities:—

In and about London he reckoned roughly from a number of returns that the proportion was about 12 1/2% among those employed out of doors and 25% among those in offices, &c. The proportion among the troops in the Home District was 9.3%. The General Post Office made the highest return with 33.6%, which is accounted for partly by the enormous number of persons massed together in the same room in more than one department, and partly by the facilities for obtaining medical advice, which would tend to bring very light cases, unnoticed elsewhere, upon the record. No public service was seriously disorganized in England by sickness in the same manner as on the continent of Europe. Some individuals appear to be totally immune; others take the disease over and over again, deriving no immunity, but apparently greater susceptibility from previous attacks.

The symptoms were thus described by Dr Bruce Low from observations made in St Thomas’s Hospital, London, in January 1890:—

The invasion is sudden; the patients can generally tell the time when they developed the disease;e.g.acute pains in the back and loins came on quite suddenly while they were at work or walking in the street, or in the case of a medical student, while playing cards, rendering him unable to continue the game. A workman wheeling a barrow had to put it down and leave it; and an omnibus driver was unable to pull up his horses. This sudden onset is often accompanied by vertigo and nausea, and sometimes actual vomiting of bilious matter. There are pains in the limbs and general sense of aching all over; frontal headache of special severity; pains in the eyeballs, increased by the slightest movement of the eyes; shivering; general feeling of misery and weakness, and great depression of spirits, many patients, both men and women, giving way to weeping; nervous restlessness; inability to sleep, and occasionally delirium. In some cases catarrhal symptoms develop, such as running at the eyes, which are sometimes injected on the second day; sneezing and sore throat; and epistaxis, swelling of the parotid and submaxillary glands, tonsilitis, and spitting of bright blood from the pharynx may occur. There is a hard, dry cough of a paroxysmal kind, worst at night. There is often tenderness of the spleen, which is almost always found enlarged, and this persists after the acute symptoms have passed. The temperature is high at the onset of the disease. In the first twenty-four hours its range is from 100° F. in mild cases to 105° in severe cases.

The invasion is sudden; the patients can generally tell the time when they developed the disease;e.g.acute pains in the back and loins came on quite suddenly while they were at work or walking in the street, or in the case of a medical student, while playing cards, rendering him unable to continue the game. A workman wheeling a barrow had to put it down and leave it; and an omnibus driver was unable to pull up his horses. This sudden onset is often accompanied by vertigo and nausea, and sometimes actual vomiting of bilious matter. There are pains in the limbs and general sense of aching all over; frontal headache of special severity; pains in the eyeballs, increased by the slightest movement of the eyes; shivering; general feeling of misery and weakness, and great depression of spirits, many patients, both men and women, giving way to weeping; nervous restlessness; inability to sleep, and occasionally delirium. In some cases catarrhal symptoms develop, such as running at the eyes, which are sometimes injected on the second day; sneezing and sore throat; and epistaxis, swelling of the parotid and submaxillary glands, tonsilitis, and spitting of bright blood from the pharynx may occur. There is a hard, dry cough of a paroxysmal kind, worst at night. There is often tenderness of the spleen, which is almost always found enlarged, and this persists after the acute symptoms have passed. The temperature is high at the onset of the disease. In the first twenty-four hours its range is from 100° F. in mild cases to 105° in severe cases.

Dr J. S. Bristowe gave the following description of the illness during the same epidemic:—

The chief symptoms of influenza are, coldness along the back, with shivering, which may continue off and on for two or three days; severe pain in the head and eyes, often with tenderness in the eyes and pain in moving them; pains in the ears; pains in the small of the back; pains in the limbs, for the most part in the fleshy portions, but also in the bones and joints, and even in the fingers and toes; and febrile temperature, which may in the early period rise to 104° or 105° F. At the same time the patient feels excessively ill and prostrate, is apt to suffer from nausea or sickness and diarrhoea, and is for the most part restless, though often (and especially in the case of children and those advanced in age) drowsy.... In ordinary mild cases the above symptoms are the only important ones which present themselves, and the patient may recover in the course of three or four days. He may even have it so mildly that, although feeling very ill, he is able to go about his ordinary work. In some cases the patients have additionally some dryness or soreness of the throat, or some stiffness and discharge from the nose, which may be accompanied by slight bleeding. And in some cases, for the most part in the course of a few days, and at a time when the patient seems to be convalescent, he begins to suffer from wheezing in the chest, cough, and perhaps a little shortness of breath, and before long spits mucus in which are contained pellets streaked or tinged with blood.... Another complication is diarrhoea. Another is a roseolous spotty rash.... Influenza is by no means necessarily attended with the catarrhal symptoms which the general public have been taught to regard as its distinctive signs, and in a very large proportion of cases no catarrhal condition whatever becomes developed at any time.

The chief symptoms of influenza are, coldness along the back, with shivering, which may continue off and on for two or three days; severe pain in the head and eyes, often with tenderness in the eyes and pain in moving them; pains in the ears; pains in the small of the back; pains in the limbs, for the most part in the fleshy portions, but also in the bones and joints, and even in the fingers and toes; and febrile temperature, which may in the early period rise to 104° or 105° F. At the same time the patient feels excessively ill and prostrate, is apt to suffer from nausea or sickness and diarrhoea, and is for the most part restless, though often (and especially in the case of children and those advanced in age) drowsy.... In ordinary mild cases the above symptoms are the only important ones which present themselves, and the patient may recover in the course of three or four days. He may even have it so mildly that, although feeling very ill, he is able to go about his ordinary work. In some cases the patients have additionally some dryness or soreness of the throat, or some stiffness and discharge from the nose, which may be accompanied by slight bleeding. And in some cases, for the most part in the course of a few days, and at a time when the patient seems to be convalescent, he begins to suffer from wheezing in the chest, cough, and perhaps a little shortness of breath, and before long spits mucus in which are contained pellets streaked or tinged with blood.... Another complication is diarrhoea. Another is a roseolous spotty rash.... Influenza is by no means necessarily attended with the catarrhal symptoms which the general public have been taught to regard as its distinctive signs, and in a very large proportion of cases no catarrhal condition whatever becomes developed at any time.

Several writers have distinguished four main varieties of the disease—namely, (1) nervous, (2)gastro-intestinal, (3)respiratory, (4) febrile, a form chiefly found in children. Clifford Allbutt says, “Influenza simulates other diseases.” Many forms are of typhoid or comatose types. Cardiac attacks are common, not from organic disease but from the direct poisoning of the heart muscle by influenza.

Perhaps the most marked feature of influenza, and certainly the one which victims have learned to dread most, is the prolonged debility and nervous depression that frequently follow an attack. It was remarked by Nothnagel that “Influenza produces a specific nervous toxin which by its action on the cortex produces psychoses.” In the Paris epidemic of 1890 the suicides increased 25%, a large proportion of the excess being attributed to nervous prostration caused by the disease. Dr Rawes, medical superintendent of St Luke’s hospital, says that of insanities traceable to influenza melancholia is twice as frequent as all other forms of insanity put together. Other common after-effects are neuralgia, dyspepsia, insomnia, weakness or loss of the special senses, particularly taste and smell, abdominal pains, sore throat, rheumatism and muscular weakness. The feature most dangerous to life is the special liability of patients to inflammation of the lungs. This affection must be regarded as a complication rather than an integral part of the illness. The following diagram gives the annual death-rate per million in England and Wales, and is taken from an article by Dr Arthur Newsholme inThe Practitioner(January 1907).

The deaths directly attributed to influenza are few in proportion to the number of cases. In the milder forms it offers hardly any danger to life if reasonable care be taken, but in the severer forms it is a fairly fatal disease. In eight London hospitals the case-mortality among in-patients in the 1890 outbreak was 34.5 per 1000; among all patients treated it was 1.6 per 1000. In the army it was rather less.

The infectious character of influenza having been determined, suggestions were made for its administrative control on the familiar lines of notification, isolation and disinfection, but this has not hitherto been found practicable. In March 1895, however, the Local Government Board issued a memorandum recommending the adoption of the following precautions wherever they can be carried out:—

1. The sick should be separated from the healthy. This is especially important in the case of first attacks in a locality or a household.2. The sputa of the sick should, especially in the acute stage of the disease, be received into vessels containing disinfectants. Infected articles and rooms should be cleansed and disinfected.3. When influenza threatens, unnecessary assemblages of persons should be avoided.4. Buildings and rooms in which many people necessarily congregate should be efficiently aerated and cleansed during the intervals of occupation.

1. The sick should be separated from the healthy. This is especially important in the case of first attacks in a locality or a household.

2. The sputa of the sick should, especially in the acute stage of the disease, be received into vessels containing disinfectants. Infected articles and rooms should be cleansed and disinfected.

3. When influenza threatens, unnecessary assemblages of persons should be avoided.

4. Buildings and rooms in which many people necessarily congregate should be efficiently aerated and cleansed during the intervals of occupation.

There is no routine treatment for influenza except bed. In all cases bed is advisable, because of the danger of lung complications, and in mild ones it is sufficient. Severer ones must be treated according to the symptoms. Quinine has been much used. Modern “anti-pyretic” drugs have also been extensively employed, and when applied with discretion they may be useful, but patients are not advised to prescribe them for themselves.

Sir Wm. Broadbent in a note on the prophylaxis of influenza recommends quinine in a dose of two grains every morning, and remarks: “I have had opportunities of obtaining extraordinary evidence of its protective power. In a large public school it was ordered to be taken every morning. Some of the boys in the school were home boarders, and it was found that while the boarders at the school took the quinine in the presence of a master every morning, there were scarcely any cases of influenza among them, although the home boarders suffered nearly as much as before.” He continues, “In a large girls’ school near London the same thing was ordered, and the girls and mistresses took their morning dose but the servants were forgotten. The result was that scarcely any girl or mistress suffered while the servants were all down with influenza.”

The liability to contract influenza, and the danger of an attack if contracted, are increased by depressing conditions, such as exposure to cold and to fatigue, whether mental or physical. Attention should, therefore, be paid to all measures tending to the maintenance of health. Persons who are attacked by influenza should at once seek rest, warmth and medical treatment, and they should bear in mind that the risk of relapse, with serious complications, constitutes a chief danger of the disease.

In addition to the ordinary text-books, see the series of articles by experts on different aspects inThe Practitioner(London) for January 1907.

In addition to the ordinary text-books, see the series of articles by experts on different aspects inThe Practitioner(London) for January 1907.

IN FORMÂ PAUPERIS(Latin, “in the character of pauper”), the legal phrase for a method of bringing or defending a case in court on the part of persons without means. By an English statute of 1495 (11 Hen. VII. c. 12), any poor person having cause of action was entitled to have a writ according to the nature of the case, without paying the fees thereon. The statute of 1495 was repealed by the Statute Law Revision and Civil Procedure Act 1883, but its provisions, as well as the chancery practice were incorporated into one code and embodied in the rules of the Supreme Court (O. xvi. rr. 22-31). Now any person may be admitted to sue as a pauper, on proof that he is not worth £25, his wearing apparel and the subject matter of the cause or matter excepted. He must lay his case before counsel for opinion, and counsel’s opinion thereon, with an affidavit of the party suing that the case contains a full and true statement of all the material facts to the best of his knowledge and belief, must be produced before the proper officers to whom the application is made. A person who desires to defend as a pauper must enter an appearance to a writ in the ordinary way and afterwards apply for an order to defend as a pauper. Where a person is admitted to sue or defend as a pauper, counsel and solicitor may be assigned to him, and such counsel and solicitor are not at liberty to refuse assistance unless there is some good reason for refusing. If any person admitted to sue or defend as a pauper agrees to pay fees to any person for the conduct of his business he will be dispaupered. Costs ordered to be paid to a pauper are taxed as in other cases. Appeals to the House of Lordsin formâ pauperiswere regulated by the Appeal (Formâ Pauperis) Act 1893, which gave the House of Lords power to refuse a petition for leave to sue.

INFORMATION(from Lat.informare, to give shape or form to, to represent, describe), the communication of knowledge; in English law, a proceeding on behalf of the crown against a subject otherwise than by indictment. A criminal information is a proceeding in the King’s bench by the attorney-general without the intervention of a grand jury. The attorney-general, or, in his absence, the solicitor-general, has a rightex officioto file a criminal information in respect of any indictments, but not for treason, felonies or misprision of treason. It is, however, seldom exercised, except in cases which might be described as “enormous misdemeanours,” such as those peculiarly tending to disturb or endanger the king’s government,e.g.seditions, obstructing the king’s officers in the execution of their duties, &c. In the form of the proceedings the attorney-general is said to “come into the court of our lord the king before the king himself at Westminster, and gives the court there to understand and be informed that, &c.” Then follows the statement of the offence as in an indictment. The information is filed in the crown office without the leave of the court. An information may also be filed at the instance of a private prosecutor for misdemeanours not affecting the government, but being peculiarly flagrant and pernicious. Thus criminal informations have been granted for bribing or attempting to bribe public functionaries, and for aggravated libels on public or private persons. Leave to file an information is obtained after an application to show cause, founded on a sworn statement of the material facts of the case.

Certain suits might also be filed in Chancery by way of information in the name of the attorney-general, but this species of information was superseded by Order 1, rule 1 of the Rules of the Supreme Court, 1883, under which they are instituted in the ordinary way. Informations in the Court of Exchequer in revenue cases, also filed by the attorney-general, are still resorted to (seeA.-G.v.Williamson, 1889, 60 L.T. 930).

INFORMER,in a general sense, one who communicates information. The term is applied to a person who prosecutes in any of the courts of law those who break any law or penal statute. Such a person is called a common informer when he furnishes evidence on criminal trials or prosecutes for breaches of penal laws solely for the purpose of obtaining the penalty recovered, or a share of it. An action by a common informeris termed apopularorqui tamaction, because it is brought by a personqui tam pro domino rege quam pro se ipso sequitur. A suit by an informer must be brought within a year of the offence, unless a specific time is prescribed by the statute. The term informer is also used of an accomplice in crime who turns what is called “king’s evidence” (seeAccomplice). In Scotland, informer is the term applied to the party who, in criminal proceedings, sets the lord advocate in motion.

INFUSORIA,the name given by Bütschli (following O.F. Ledermüller, 1763) to a group of Protozoa. The name arose from the procedure adopted by the older microscopists to obtain animalcules. Infusions of most varied organic substances were prepared (hay and pepper being perhaps the favourite ones), the method of obtaining them including maceration and decoction, as well as infusion in the strict sense; they were then allowed to decompose in the air, so that various living beings developed therein. As classified by C. G. Ehrenberg in his monumentalInfusionstierchen als volkommene Organismen, they included (1) Desmids, Diatoms and Schizomycetes, now regarded as essentially Plant Protista or Protophytes; (2) Sarcodina (excluding Foraminifera, as well as Radiolaria, which were only as yet known by their skeletons, and termed Polycystina), and (3) Rotifers, as well as (4) Flagellates and Infusoria in our present sense. F. Dujardin in hisHistoire des zoophytes(1841) gave nearly as liberal an interpretation to the name; while C. T. Van Siebold (1845) narrowed it to its present limits save for the admission of several Flagellate families. O. Bütschli limited the group by removing the Flagellata, Dinoflagellata and Cystoflagellata (q.v.) under the name of “Mastigophora” proposed earlier by R. M. Diesing (1865). We now define it thus:—Protozoa bounded by a permanent plasmic pellicle and consequently of definite form, never using pseudopodia for locomotion or ingestion, provided (at least in the young state) with numerous cilia or organs derived from cilia and equipped with a double nuclear apparatus: the larger (mega-) nucleus usually dividing by constriction, and disappearing during conjugation: the smaller (micro-) nucleus (sometimes multiple) dividing by mitosis, and entering into conjugation and giving rise to the cycle of nuclei both large and small of the race succeeding conjugation.

1.Opalinopsis sepiolae, Foett.: a parasitic Holotrichous mouthless Ciliate from the liver of the Squid.a, branched meganucleus;b, vacuoles (non-contractile).

2. A similar specimen treated with picrocarmine, showing a remarkably branched and twisted meganucleus (a), in place of several nuclei.

3.Anoplophrya naidos, Duj.; a mouthless Holotrichous Ciliate parasitic in the worm Nais.a, the large axial meganucleus;b, contractile vacuoles.

4.Anoplophrya prolifera, C. and L.; from the intestine ofClitellio. Remarkable for the adhesion of incomplete fission-products in a metameric series.a, meganucleus.

5.Amphileptus gigas, C. and L. (Gymnostomaceae).b, contractile vacuoles;c, trichocysts (see fig. 2);d, meganucleus;e. pharynx.

6, 7.Prorodon niveus, Ehr. (Gymnostomaceae).a, meganucleus;b, contractile vacuole;c, pharynx with horny cuticular lining.

6. The fasciculate cuticle of the pharynx isolated.

8.Trachelius ovum, Ehr. (Gymnostomaceae); showing the reticulate arrangement of the endosarc,b, contractile vacuoles;c, the cuticle-lined pharynx.

9, 10, 11, 12.Icthyophthirius multifilius, Fouquet (Gymnostomaceae). Free individual and successive stages of division to form spores.a, meganucleus;b, contractile vacuoles.

13.Didinium nasutum, Müll. (Gymnostomaceae). The pharynx is everted and has seized aParameciumas food.a, meganucleus;b, contractile vacuole;c, everted pharynx.

14.Euplotes charon, Müll. (Hypotrichaceae); lateral view of the animal when using its great cirrhi,x, as ambulatory organs.

15.Euplotes harpa, Stein (Hypotrichaceae);h, mouth;x, cirrhi.

16.Nyctotherus cordiformis, Stein (a Heterotriceae), parasitic in the intestine of the Frog;a, meganucleus;b, contractile vacuole;c, food particle;d, anus;e, heterotrichous band of membranelles;f,g, mouth;h, pharynx;i, small cilia.

Thus defined, the Infusoria fall into two groups:—(1)Ciliata, with cilia or organs derived from cilia throughout their lives, provided with a single permanent mouth (absent in the parasiticOpalinopsidae) flush with the body or at the base of an oral depression, and taking in food by active swallowing or by ciliary action: (2)Suctoria, rarely ciliated except in the young state, and taking in their food by suction through protrusible hollow tentacles, usually numerous.


Back to IndexNext