Chapter 14

These requirements are very easily met by the use of Lloyd’s mirrors, and of a diffraction grating (seeDiffraction) with which to form a spectrum. White light enters the dark room through a slit in the window-shutter, and falls in succession upon a grating and an achromatic lens, so as to form a real diffraction spectrum, or rather a series of such, in the focal plane. The central image and all the lateral coloured images except one are intercepted by a screen. The spectrum which is allowed to pass is the proximate source of light in the interference experiment, and since the deviation of any colour from the central white image is proportional to λ, it is only necessary to arrange the mirror so that its plane passes through the white image in order to realize the conditions for the formation of achromatic bands.When a suitable grating is at hand, the experiment in this form succeeds very well. If we are satisfied with a less perfect fulfilment of the achromatic conditions, the diffraction spectrum may be replaced by a prismatic one, so arranged that d(λ/b) = 0 for the most luminous rays. The bands are then achromatic in the sense that the ordinary telescope is so. In this case there is no objection to a merely virtual spectrum, and the experiment may be very simply executed with Lloyd’s mirror and a prism of (say) 20° held just in front of it.The number of black and white bands shown by the prism is not so great as might be expected. The lack of contrast that soon supervenes can only be due to imperfect superposition of the various component systems. That the fact is so is at once proved by observing according to the method of Fizeau; for the spectrum from a slit at a very moderate distance out is seen to be traversed by bands. If the adjustment has been properly made, a certain region in the yellow-green is uninterrupted, while the closeness of the bands increases towards the other end of the spectrum. So far as regards the red and blue rays, the original bands may be considered to be already obliterated, but so far as regards the central rays, to be still fairly defined. Under these circumstances it is remarkable that so little colour should be apparent on direct inspection of the bands. It would seem that the eye is but little sensitive to colours thus presented, perhaps on account of its own want of achromatism.

These requirements are very easily met by the use of Lloyd’s mirrors, and of a diffraction grating (seeDiffraction) with which to form a spectrum. White light enters the dark room through a slit in the window-shutter, and falls in succession upon a grating and an achromatic lens, so as to form a real diffraction spectrum, or rather a series of such, in the focal plane. The central image and all the lateral coloured images except one are intercepted by a screen. The spectrum which is allowed to pass is the proximate source of light in the interference experiment, and since the deviation of any colour from the central white image is proportional to λ, it is only necessary to arrange the mirror so that its plane passes through the white image in order to realize the conditions for the formation of achromatic bands.

When a suitable grating is at hand, the experiment in this form succeeds very well. If we are satisfied with a less perfect fulfilment of the achromatic conditions, the diffraction spectrum may be replaced by a prismatic one, so arranged that d(λ/b) = 0 for the most luminous rays. The bands are then achromatic in the sense that the ordinary telescope is so. In this case there is no objection to a merely virtual spectrum, and the experiment may be very simply executed with Lloyd’s mirror and a prism of (say) 20° held just in front of it.

The number of black and white bands shown by the prism is not so great as might be expected. The lack of contrast that soon supervenes can only be due to imperfect superposition of the various component systems. That the fact is so is at once proved by observing according to the method of Fizeau; for the spectrum from a slit at a very moderate distance out is seen to be traversed by bands. If the adjustment has been properly made, a certain region in the yellow-green is uninterrupted, while the closeness of the bands increases towards the other end of the spectrum. So far as regards the red and blue rays, the original bands may be considered to be already obliterated, but so far as regards the central rays, to be still fairly defined. Under these circumstances it is remarkable that so little colour should be apparent on direct inspection of the bands. It would seem that the eye is but little sensitive to colours thus presented, perhaps on account of its own want of achromatism.

§ 7.Airy’s Theory of the White Centre.—If a system of Fresnel’s bands be examined through a prism, the central white band undergoes an abnormal displacement, which has been supposed to be inconsistent with theory. The explanation has been shown by Airy (Phil. Mag., 1833, 2, p. 161) to depend upon the peculiar manner in which the white band is in general formed.

“Any one of the kinds of homogeneous light composing the incident heterogeneous light will produce a series of bright and dark bars, unlimited in number as far as the mixture of light from the two pencils extends, and undistinguishable in quality. The consideration, therefore, of homogeneous light will never enable us to determine which is the point that the eye immediately turns to as the centre of the fringes. What then is the physical circumstance that determines the centre of the fringes?“The answer is very easy. For different colours the bars have different breadths. If then the bars of all colours coincide at one part of the mixture of light, they will not coincide at any other part; but at equal distances on both sides from that place of coincidence they will be equally far from a state of coincidence. If then we can find where the bars of all colours coincide, that point is the centre of the fringes.“It appears then that the centre of the fringes is not necessarily the point where the two pencils of light have described equal paths, but is determined by considerations of a perfectly different kind.... The distinction is important in this and in other experiments.”The effect in question depends upon the dispersive power of the prism. If v be the linear shifting due to the prism of the originally central band, v must be regarded as a function of λ. Measured from the original centre, the position of the nthbar is nowv + nλD / b.The coincidence of the various bright bands occurs when this quantity is as independent as possible of λ, that is, when n is the nearest integer ton = −bdvDdλ(1);or, as Airy expresses it in terms of the width of a band (Λ), n = −dv/dΛ.The apparent displacement of the white band is thus not v simply, butv − Λdv / dΛ(2).The signs of dv and dΛ being opposite, the abnormal displacement is in addition to the normal effect of the prism. But, since dv/dΛ, or dv/dλ, is not constant, the achromatism of the white band is less perfect than when no prism is used.If a grating were substituted for the prism, v would vary as Λ, and (2) would vanish, so that in all orders of spectra the white band would be seen undisplaced.In optical experiments two trains of waves can interfere only when they have their origin in the same source. Otherwise, as it is usually put, there can be no permanent phase-relation, and therefore no regular interference. It should be understood, however, that this is only because trains of optical waves are never absolutely homogeneous. A really homogeneous train could maintain a permanent phase-relation with another such train, and, it may be added, would of necessity be polarized in its character. The peculiarities of polarized light with respect to interference are treated underPolarization of Light.In a classical experiment interference-bands were employed to examine whether light moved faster or slower in glass than in air. For this purpose a very thin piece of glass may be interposed in the path of one of the interfering rays, and the resulting displacement of the bands is such as to indicate that the light passing through the glass isretarded. In a better form of the experiment two pieces of parallel glass cut from the same plate are interposed between the prism and the screen, so that the rays from O1(fig. 1) pass through one part and those from O2through the other. So long as these pieces are parallel, no shifting takes place, but if one be slightly turned, the bands are at once displaced. In the absence of dispersion the retardation R due to the plate would be independent of λ, and therefore completely compensated at the point determined by u = DR/b; but when there is dispersion it is accompanied by a fictitious displacement of the fringes on the principle explained by Airy, as was shown by Stokes.Before quitting this subject it is proper to remark that Fresnel’s bands are more influenced by diffraction than their discoverer supposed. On this account the fringes are often unequally broad and undergo fluctuations of brightness. A more precise calculation has been given by H. F. Weber and by H. Struve, but the matter is too complicated to be further considered here. The observations of Struve appear to agree well with the corrected theory.

“Any one of the kinds of homogeneous light composing the incident heterogeneous light will produce a series of bright and dark bars, unlimited in number as far as the mixture of light from the two pencils extends, and undistinguishable in quality. The consideration, therefore, of homogeneous light will never enable us to determine which is the point that the eye immediately turns to as the centre of the fringes. What then is the physical circumstance that determines the centre of the fringes?

“The answer is very easy. For different colours the bars have different breadths. If then the bars of all colours coincide at one part of the mixture of light, they will not coincide at any other part; but at equal distances on both sides from that place of coincidence they will be equally far from a state of coincidence. If then we can find where the bars of all colours coincide, that point is the centre of the fringes.

“It appears then that the centre of the fringes is not necessarily the point where the two pencils of light have described equal paths, but is determined by considerations of a perfectly different kind.... The distinction is important in this and in other experiments.”

The effect in question depends upon the dispersive power of the prism. If v be the linear shifting due to the prism of the originally central band, v must be regarded as a function of λ. Measured from the original centre, the position of the nthbar is now

v + nλD / b.

The coincidence of the various bright bands occurs when this quantity is as independent as possible of λ, that is, when n is the nearest integer to

(1);

or, as Airy expresses it in terms of the width of a band (Λ), n = −dv/dΛ.

The apparent displacement of the white band is thus not v simply, but

v − Λdv / dΛ

(2).

The signs of dv and dΛ being opposite, the abnormal displacement is in addition to the normal effect of the prism. But, since dv/dΛ, or dv/dλ, is not constant, the achromatism of the white band is less perfect than when no prism is used.

If a grating were substituted for the prism, v would vary as Λ, and (2) would vanish, so that in all orders of spectra the white band would be seen undisplaced.

In optical experiments two trains of waves can interfere only when they have their origin in the same source. Otherwise, as it is usually put, there can be no permanent phase-relation, and therefore no regular interference. It should be understood, however, that this is only because trains of optical waves are never absolutely homogeneous. A really homogeneous train could maintain a permanent phase-relation with another such train, and, it may be added, would of necessity be polarized in its character. The peculiarities of polarized light with respect to interference are treated underPolarization of Light.

In a classical experiment interference-bands were employed to examine whether light moved faster or slower in glass than in air. For this purpose a very thin piece of glass may be interposed in the path of one of the interfering rays, and the resulting displacement of the bands is such as to indicate that the light passing through the glass isretarded. In a better form of the experiment two pieces of parallel glass cut from the same plate are interposed between the prism and the screen, so that the rays from O1(fig. 1) pass through one part and those from O2through the other. So long as these pieces are parallel, no shifting takes place, but if one be slightly turned, the bands are at once displaced. In the absence of dispersion the retardation R due to the plate would be independent of λ, and therefore completely compensated at the point determined by u = DR/b; but when there is dispersion it is accompanied by a fictitious displacement of the fringes on the principle explained by Airy, as was shown by Stokes.

Before quitting this subject it is proper to remark that Fresnel’s bands are more influenced by diffraction than their discoverer supposed. On this account the fringes are often unequally broad and undergo fluctuations of brightness. A more precise calculation has been given by H. F. Weber and by H. Struve, but the matter is too complicated to be further considered here. The observations of Struve appear to agree well with the corrected theory.

§ 8.Colours of Thin Plates.—These colours, familiarly known as those of the soap-bubble, are seen under a variety of conditions and were studied with some success by Robert Hooke under the name of “fantastical colours” (Micrographia, 1664). The inquiry was resumed by Sir Isaac Newton with his accustomed power (“Discourse on Light and Colours,” 1675,Opticks, book ii.), and by him most of the laws regulating these phenomena were discovered. Newton experimented especially with thin plates of air enclosed by slightly curved glasses, and the coloured rings so exhibited are usually called after him “Newton’s rings.”

The colours are manifested in the greatest purity when the reflecting surfaces are limited to those which bound the thin film. This is the case of the soap-bubble. When, as is in other respects more convenient, two glass plates enclosing a film of air are substituted, the light under examination is liable to be contaminated by that reflected from the outer surfaces. A remedy may be found in the use of wedge-shaped glasses so applied that the outer surfaces, though parallel to one another, are inclined to the inner operating surfaces. By suitable optical arrangements the two portions of light, desired and undesired, may then be separated.In his first essay upon this subject Thomas Young was able to trace the formation of these colours as due to the interference of light reflected from the two surfaces of the plate; or, as it would be preferable to say, to the superposition of the two reflected vibrations giving resultants of variable magnitude according to the phase-relation. A difficulty here presents itself which might have proved insurmountable to a less acute inquirer. The luminous vibration reflected at the second surface travels a distance increased by twice the thickness of the plate, and it might naturally be supposed that the relative retardation would be measured by this quantity. If this were so, the two vibrations reflected from the surfaces of an infinitely thin plate would be in accordance, and the intensity of the resultant a maximum. The facts were notoriously the reverse. At the place of contact of Newton’s glasses, or at the thinnest part of a soap-film just before it bursts, the colour is black and not white as the explanation seems to require. Young saw that the reconciliation lies in the circumstance that the two reflections occur under different conditions, one, for example, as the light passes from air to water, and the second as it passes from water to air. According to mechanical principles the second reflection involves a change of sign, equivalent to a gain or loss of half an undulation. When aseries of waves constituting any particular coloured light is reflected from an infinitely thin plate, the two partial reflections are in absolute discordance and, if of equal intensity, must give on superposition complete darkness. With the aid of this principle the sequence of colours in Newton’s rings is explained in much the same way as that of interference fringes (above, § 5).Fig. 2.The complete theory of the colours of thin plates requires us to take account not merely of the two reflections already mentioned but of an infinite series of such reflections. This was first effected by S. D. Poisson for the case of retardations which are exact multiples of the half wave-length, and afterwards more generally by Sir G. B. Airy (Camb. Phil. Trans., 1832, 4, p. 409).In fig. 2, ABF is the ray, perpendicular to the wave-front, reflected at the upper surface, ABCDE the ray transmitted at B, reflected at C and transmitted at D; and these are accompanied by other rays reflected internally 3, 5, &c., times. The first step is to calculate the retardation δ between the first and second waves, so far as it depends on the distances travelled in the plate (of index μ) and in air.If the angle ABF = 2α, angle BCD = 2α′ and the thickness of plate = t, we haveδ = μ (BC + CD) − BG= 2μBC − 2BC sin α sin α′ = 2μBC (l − sin2α′)= 2μt cos α′(1).In (1) α′ is the angle of refraction, and we see that, contrary to what might at first have been expected, the retardation is least when the obliquity is greatest, and reaches a maximum when the obliquity is zero or the incidence normal. If we represent all the vibrations by complex quantities, from which finally the imaginary parts are rejected, the retardation δ may be expressed by the introduction of the factor ε−iκδ, where i = √(−1), and κ = 2π/λ.At each reflection or refraction the amplitude of the incident wave must be supposed to be altered by a certain factor which allows room for the reversal postulated by Young. When the light proceeds from the surrounding medium to the plate, the factor for reflection will be supposed to be b, and for refraction c; the corresponding quantities when the progress is from the plate to the surrounding medium will be denoted by e, f. Denoting the incident vibration by unity, we have then for the first component of the reflected wave b, for the second cefε−iκδ, for the third ce3fε−2iκδ, and so on. Adding these together, and summing the geometric series, we findb +cef ε−iκδ1 − e2ε−iκδ(2).In like manner for the wave transmitted through the plate we getcf1 − e2ε−iκδ(3).The quantities b, c, e, f are not independent. The simplest way to find the relations between them is to trace the consequences of supposing δ = 0 in (2) and (3). This may be regarded as a development from Young’s point of view. A plate of vanishing thickness is ultimately no obstacle at all. In the nature of things asurfacecannot reflect. Hence with a plate of vanishing thickness there must be a vanishing reflection and a total transmission, and accordinglyb + e = 0,    cf = l − e2(4),the first of which embodies Arago’s law of the equality of reflections, as well as the famous “loss of half an undulation.” Using these we find for the reflected vibration,−e(1 − ε−iκδ)1 − e2ε−iκδ(5),and for the transmitted vibration1 − e21 − e2ε−iκδ(6).The intensities of the reflected and transmitted lights are the squares of the moduli of these expressions. ThusIntensity of reflected light = e2(1 − cos κδ)2+ sin2κδ(1 − e2cos κδ)2+ e4sin2κδ=4e2sin2(½κδ)1 − 2e2cos κδ + e4(7);Intensity of transmitted light =(1 − e2)21 − 2e2cos κδ + e4(8),the sum of the two expressions being unity.According to (7) not only does the reflected light vanish completely when δ = o, but also whenever ½κδ = nπ, n being an integer, that is, whenever δ = nλ. When the first and third mediums are the same, as we have here supposed, the central spot in the system of Newton’s ring isblack, even though the original light contain a mixture of all wave-lengths. If the light reflected from a plate of any thickness be examined with a spectroscope of sufficient resolving power, the spectrum will be traversed by dark bands, of which the centre corresponds to those wave-lengths which the plate is incompetent to reflect. It is obvious that there is no limit to the fineness of the bands which may be thus impressed upon a spectrum, whatever may be the character of the original mixed light.Fig. 3.The relations between the factors b, c, e, f have been proved, independently of the theory of thin plates, in a general manner by Stokes, who called to his aid the general mechanical principle ofreversibility. If the motions constituting the reflected and refracted rays to which an incident ray gives rise be supposed to be reversed, they will reconstitute a reversed incident ray. This gives one relation; and another is obtained from the consideration that there is no ray in the second medium, such as would be generated by the operation alone of either the reversed reflected or refracted rays. Space does not allow of the reproduction of the argument at length, but a few words may perhaps give the reader an idea of how the conclusions are arrived at. The incident ray (IA) (fig. 3) being 1, the reflected (AR) and refracted (AF) rays are denoted by b and c. When b is reversed, it gives rise to a reflected ray b2along AI, and a refracted ray bc along AG (say). When c is reversed, it gives rise to cf along AI, and ce along AG. Hence bc + ce = 0, b2+ cf = 1, which agree with (4). It is here assumed that there is no change of phase in the act of reflection or refraction, except such as can be represented by a change of sign.When the third medium differs from the first, the theory of thin plates is more complicated, and need not here be discussed. One particular case, however, may be mentioned. When a thin transparent film is backed by a perfect reflector, no colours should be visible, all the light being ultimately reflected, whatever the wave-length may be. The experiment may be tried with a thin layer of gelatin on a polished silver plate. In other cases where a different result is observed, the inference is that either the metal does not reflect perfectly, or else that the material of which the film is composed is not sufficiently transparent. Some apparent exceptions to the above rule, exhibited by thin films of collodion resting upon silver surfaces, have been described by R. W. Wood (Physical Optics, p. 143), who attributes the very curious effects observed tofrillingof the collodion film.For study of the colours of thin plates there are no more interesting subjects than the soap-film. For projection the films may be stretched across vertical rings of iron wire coated with paraffin. In their undisturbed condition they thin from the top, and the colours are disposed in horizontal bands. If, as suggested by Brewster, a jet of wind issuing from a small nozzle and supplied from a well-regulated bellows be allowed to impinge obliquely, parts of the film are set in rotation, and displays of colours may be exhibited to a large audience, astonishing by their brilliance and by the rapidity with which they change. Permanent films, analogous to soap-films, are best obtained by Glew’s method. A few drops of celluloid varnish are poured upon the surface of water contained in a large dish. After evaporation of the solvent, the films may be picked up upon rings of iron wire.As a variant upon Newton’s rings, interesting effects may be obtained by the partial etching of the surfaces of picked pieces of plate-glass. A surface is coated in parallel stripes with paraffin wax and treated with dilute hydrofluoric acid for such a time (found by preliminary trials) as is required to eat away the exposed portions to a depth of one quarter of the mean wave-length of light. Two such prepared surfaces pressed in the crossed position into suitable contact exhibit a chess-board pattern. Where two uncorroded, or where two corroded, parts overlap, the colours are nearly the same; but where a corroded and an uncorroded surface meet, a strongly contrasted colour is developed. The combination lends itself to projection and the pattern seen upon the screen is very beautiful if proper precautions are taken to eliminate the white light reflected from the first and fourth surfaces of the plates (seeNature, 1901, 64, 385).Theory and observation alike show that the transmitted colours of a thin plate,e.g.a soap film or a layer of air, are very inferior to those reflected. Specimens of ancient glass, which have undergone superficial decomposition, on the other hand, sometimes show transmitted colours of remarkable brilliancy. The probable explanation, suggested by Brewster, is that we have here to deal not merely with one, but with a series of thin plates of not very different thicknesses. It is evident that with such a series the transmitted colours would be much purer, and the reflected much brighter, than usual. If the thicknesses are strictly equal, certain wave-lengths must still be absolutely missing in the reflected light; while on the other hand a constancy of the interval between the plates will in general lead to a special preponderance of light of some other wave-length for which all the component parts as they ultimately emerge are in agreement as to phase.On the same principle are doubtless to be explained the colours of fiery opals, and, more remarkable still, the iridescence of certaincrystals of potassium chlorate. Stokes showed that the reflected light is often in a high degree monochromatic, and that it is connected with the existence of twin planes. A closer discussion appears to show that the twin planes must be repeated in a periodic manner (Phil. Mag., 1888, 26, 241, 256; also see R. W. Wood,Phil. Mag., 1906).A beautiful example of a similar effect is presented by G. Lippmann’s coloured photographs. In this case the periodic structure is actually the product of the action of light. The plate is exposed to stationary waves, resulting from the incidence of light upon a reflecting surface (seePhotography).All that can be expected from a physical theory is the determination of the composition of the light reflected from or transmitted by a thin plate in terms of the composition of the incident light. The further question of the chromatic character of the mixtures thus obtained belongs rather to physiological optics, and cannot be answered without a complete knowledge of the chromatic relations of the spectral colours themselves. Experiments upon this subject have been made by various observers, and especially by J. Clerk Maxwell (Phil. Trans., 1860), who has exhibited his results on a colour diagram as used by Newton. A calculation of the colours of thin plates, based upon Maxwell’s data, and accompanied by a drawing showing the curve representative of the entire series up to the fifth order, has been given by Rayleigh (Edin. Trans., 1887). The colours of Newton’s scale are met with also in the light transmitted by a somewhat thin plate of doubly-refracting material, such as mica, the plane of analysis being perpendicular to that of primitive polarization.The same series of colours occur also in other optical experiments,e.g.at the centre of the illuminated area when light issuing from a point passes through a small round aperture in an otherwise opaque screen.The colours of which we have been speaking are those formed at nearly perpendicular incidence, so that the retardation (reckoned as a distance), viz. 2μt cos α′, as sensibly independent of λ. This state of things may be greatly departed from when the thin plate is rarer than its surroundings, and the incidence is such that α′ is nearly equal to 90°, for then, in consequence of the powerful dispersion, cos α′ may vary greatly as we pass from one colour to another. Under these circumstances the series of colours entirely alters its character, and the bands (corresponding to a graduated thickness) may even lose their coloration, becoming sensibly black and white through many alternations (Newton’sOpticks, bk. ii.; Fox-Talbot,Phil. Mag., 1836, 9, p. 40l). The general explanation of this remarkable phenomenon was suggested by Newton.Let us suppose that plane waves of white light travelling in glass are incident at angle α upon a plate of air, which is bounded again on the other side by glass. If μ be the index of theglass, α′ the angle of refraction, then sin α′ = μ sin α; and the retardation, expressed by the equivalent distance in air, is2t sec α′ − μ·2t tan α′ sin α = 2t cos α′;and the retardation inphaseis 2t cos α′/λ, λ being as usual the wave-length in air.The first thing to be noticed is that, when α approaches the critical angle, cosα′ becomes as small as we please, and that consequently the retardation corresponding to a given thickness is very much less than at perpendicular incidence. Hence the glass surfaces need not be so close as usual.A second feature is the increased brilliancy of the light. According to (7) the intensity of the reflected light when at a maximum (sin ½κγ = 1) is 4e2/(1 + e2)2. At perpendicular incidence e is about1⁄5, and the intensity is somewhat small; but, as cos α′ approaches zero, e approaches unity, and the brilliancy is much increased.But the peculiarity which most demands attention is the lessened influence of a variation in λ upon the phase-retardation. A diminution of λ of itself increases the retardation of phase, but, since waves of shorter wave-length are more refrangible, this effect may be more or less perfectly compensated by the greater obliquity, and consequent diminution in the value of cos α′. We will investigate the conditions under which the retardation of phase is stationary in spite of a variation of λ.In order that λ−1cos α′ may be stationary, we must haveλ sin α′ dα′ + cos α′ dλ = 0,where (α being constant)cos α′ dα′ = sin α dμ.Thuscot2α′ =λdμμdλ(9),giving α′ when the relation between μ and λ is known.According to A. L. Cauchy’s formula, which represents the facts very well throughout most of the visible spectrum,μ = A + Bλ−2(10),so thatcot2α′ =2B=2(μ − A)λ2μμ(11).If we take, as for Chance’s “extra-dense flint,” B = .984 × 10-10, and as for the soda lines, μ = 1.65, λ = 5.89 × 10-6, we getα′ = 79°30′.At this angle of refraction, and with this kind of glass, the retardation of phase is accordingly nearly independent of wave-length, and therefore the bands formed, as the thickness varies, are approximately achromatic. Perfect achromatism would be possible only under a law of dispersionμ2= A′ − B′λ2.If the source of light be distant and very small, the black bands are wonderfully fine and numerous. The experiment is best made (after Newton) with a right-angled prism, whose hypothenusal surface may be brought into approximate contact with a plate of black glass. The bands should be observed with a convex lens, of about 8 in. focus. If the eye be at twice this distance from the prism, and the lens be held midway between, the advantages are combined of a large field and of maximum distinctness.If Newton’s rings are examined through a prism, some very remarkable phenomena are exhibited, described in his twenty-fourth observation (Opticks; see also Place,Pogg. Ann., 1861, 114, 504). “When the two object-glasses are laid upon one another, so as to make the rings of the colours appear, though with my naked eye I could not discern above eight or nine of those rings, yet by viewing them through a prism I could see a far greater multitude, insomuch that I could number more than forty.... And I believe that the experiment may be improved to the discovery of far greater numbers.... But it was on but one side of these rings, namely, that towards which the refraction was made, which by the refraction was rendered distinct, and the other side became more confused than when viewed with the naked eye....“I have sometimes so laid one object-glass upon the other that to the naked eye they have all over seemed uniformly white, without the least appearance of any of the coloured rings; and yet by viewing them through a prism great multitudes of those rings have discovered themselves.”Newton was evidently much struck with these “so odd circumstances”; and he explains the occurrence of the rings at unusual thicknesses as due to the dispersing power of the prism. The blue system being more refracted than the red, it is possible under certain conditions that the nthblue ring may be so much displaced relatively to the corresponding red ring asat one part of the circumferenceto compensate for the different diameters. A white stripe may thus be formed in a situation where without the prism the mixture of colours would be complete, so far as could be judged by the eye.The simplest case that can be considered is when the “thin plate” is bounded by plane surfaces inclined to one another at a small angle. By drawing back the prism (whose edge is parallel to the intersection of the above-mentioned planes) it will always be possible so to adjust the effective dispersing power as to bring the nthbars to coincidence for any two assigned colours, and therefore approximately for the entire spectrum. The formation of the achromatic band, or rather central black band, depends indeed upon the same principles as the fictitious shifting of the centre of a system of Fresnel’s bands when viewed through a prism.But neither Newton nor, as would appear, any of his successors has explained why the bands should be more numerous than usual, and under certain conditions sensibly achromatic for a large number of alternations. It is evident that, in the particular case of the wedge-shaped plate above specified, such a result would not occur. The width of the bands for any colour would be proportional to λ, as well after the displacement by the prism as before; and the succession of colours formed in white light and the number of perceptible bands would be much as usual.The peculiarity to be explained appears to depend upon thecurvatureof the surfaces bounding the plate. For simplicity suppose that the lower surface is plane (y = 0), and that the approximate equation of the upper surface is y = a + bx2, a being thus the least distance between the plates. The black of the nthorder for wave-length λ occurs when½nλ = a + bx2(12);and thus the width (δx) at this place of the band is given by½λ = 2bxδx(13);orδx =λ=λ4bx4√b · √(½nλ − a)(14).If the glasses be in contact, as is usually supposed in the theory of Newton’s rings, a = 0, and δx∞λ1/2, or the width of the band of the nthorder varies as the square root of the wave-length, instead of as the first power. Even in this case the overlapping and subsequent obliteration of the bands is greatly retarded by the use of the prism, but the full development of the phenomenon requires that α should be finite. Let us inquire what is the condition in order that the width of the band of the nthorder may be stationary, as λ varies. By (14) it is necessary that the variation of λ2/(½nλ − a) should vanish. Hence a = ¼nλ, so that the interval between the surfaces at the place where the nthband is formed should be half due to curvature and half to imperfect contact at the place of closest approach. If this condition be satisfied, the achromatism of the nthband, effected by the prism, carries with it the achromatism of a large number of neighbouring bands, and thus gives rise to the remarkable effects described by Newton. Further developmentsare given by Lord Rayleigh in a paper “On Achromatic Interference Bands” (Phil. Mag., 1889, 28, pp. 77, 189); see also E. Mascart,Traité d’optique.In Newton’s rings the variable element is the thickness of the plate, to which the retardation is directly proportional, and in the ideal case the angle of incidence is constant. To observe them the eye is focused upon the thin plate itself, and if the plate is very thin no particular precautions are necessary. As the plate thickens and the order of interference increases, there is more and more demand for homogeneity in the light, and we may have recourse to a sodium-flame or a helium vacuum tube. At the same time the disturbing influence of obliquity increases. Unless the aperture of the eye is reduced, the rays reaching it from even the same point of the plate are differently affected, and complications ensue tending to impair the distinctness of the bands. To obviate this disturbance it is best to work at incidences as nearly as possible perpendicular.Fig. 4.The bands seen when light from a soda flame falls upon nearly parallel surfaces are often employed as a test of flatness. Two flat surfaces can be made to fit, and then the bands are few and broad, if not entirely absent; and, however the surfaces may be presented to one another, the bands should be straight, parallel and equidistant. If this condition be violated, one or other of the surfaces deviates from flatness. In fig. 4, A and B represent the glasses to be tested, and C is a lens of 2 or 3 ft. focal length. Rays diverging from a soda flame at E are rendered parallel by the lens, and after reflection from the surfaces are recombined by the lens at E. To make an observation, the coincidence of the radiant point and its image must be somewhat disturbed, the one being displaced to a position a little beyond, and the other to a position a little in front of the diagram. The eye, protected from the flame by a suitable screen, is placed at the image, and being focused upon AB, sees the field traversed by bands. The reflector D is introduced as a matter of convenience to make the line of vision horizontal.These bands may be photographed. The lens of the camera takes the place of the eye, and should be as close to the flame as possible. With suitable plates, sensitized by cyanin, the exposure required may vary from ten minutes to an hour. To get the best results, the hinder surface of A should be blackened, and the front surface of B should be thrown out of action by the superposition of a wedge-shaped plate of glass, the intervening space being filled with oil of turpentine or other fluid having nearly the same refraction as glass. Moreover, the light should be purified from blue rays by a trough containing solution of bichromate of potash. With these precautions the dark parts of the bands are very black, and the exposure may be prolonged much beyond what would otherwise be admissible.By this method it is easy to compare one flat with another, and thus, if the first be known to be free from error, to determine the errors of the second. But how are we to obtain and verify a standard? The plan usually followed is to bringthreesurfaces into comparison. The fact that two surfaces can be made to fit another in all azimuths proves that they are spherical and of equal curvatures, but one convex and the other concave, the case of perfect flatness not being excluded. If A and B fit one another, and also A and C, it follows that B and C must be similar. Hence, if B and C also fit one another, all three surfaces must be flat. By an extension of this process the errors of three surfaces which are not flat can be found from a consideration of the interference bands which they present when combined in three pairs.The free surface of undisturbed water is almost ideally flat, and, as Lord Rayleigh (Nature, 1893, 48, 212) has shown, there is no great difficulty in using it as a standard of comparison. Following the same idea we may construct a parallel plate by superposing a layer of water upon mercury. If desired, the superior reflecting power of the mercury may be compensated by the addition of colouring matter to the water.

The colours are manifested in the greatest purity when the reflecting surfaces are limited to those which bound the thin film. This is the case of the soap-bubble. When, as is in other respects more convenient, two glass plates enclosing a film of air are substituted, the light under examination is liable to be contaminated by that reflected from the outer surfaces. A remedy may be found in the use of wedge-shaped glasses so applied that the outer surfaces, though parallel to one another, are inclined to the inner operating surfaces. By suitable optical arrangements the two portions of light, desired and undesired, may then be separated.

In his first essay upon this subject Thomas Young was able to trace the formation of these colours as due to the interference of light reflected from the two surfaces of the plate; or, as it would be preferable to say, to the superposition of the two reflected vibrations giving resultants of variable magnitude according to the phase-relation. A difficulty here presents itself which might have proved insurmountable to a less acute inquirer. The luminous vibration reflected at the second surface travels a distance increased by twice the thickness of the plate, and it might naturally be supposed that the relative retardation would be measured by this quantity. If this were so, the two vibrations reflected from the surfaces of an infinitely thin plate would be in accordance, and the intensity of the resultant a maximum. The facts were notoriously the reverse. At the place of contact of Newton’s glasses, or at the thinnest part of a soap-film just before it bursts, the colour is black and not white as the explanation seems to require. Young saw that the reconciliation lies in the circumstance that the two reflections occur under different conditions, one, for example, as the light passes from air to water, and the second as it passes from water to air. According to mechanical principles the second reflection involves a change of sign, equivalent to a gain or loss of half an undulation. When aseries of waves constituting any particular coloured light is reflected from an infinitely thin plate, the two partial reflections are in absolute discordance and, if of equal intensity, must give on superposition complete darkness. With the aid of this principle the sequence of colours in Newton’s rings is explained in much the same way as that of interference fringes (above, § 5).

The complete theory of the colours of thin plates requires us to take account not merely of the two reflections already mentioned but of an infinite series of such reflections. This was first effected by S. D. Poisson for the case of retardations which are exact multiples of the half wave-length, and afterwards more generally by Sir G. B. Airy (Camb. Phil. Trans., 1832, 4, p. 409).

In fig. 2, ABF is the ray, perpendicular to the wave-front, reflected at the upper surface, ABCDE the ray transmitted at B, reflected at C and transmitted at D; and these are accompanied by other rays reflected internally 3, 5, &c., times. The first step is to calculate the retardation δ between the first and second waves, so far as it depends on the distances travelled in the plate (of index μ) and in air.

If the angle ABF = 2α, angle BCD = 2α′ and the thickness of plate = t, we have

δ = μ (BC + CD) − BG= 2μBC − 2BC sin α sin α′ = 2μBC (l − sin2α′)= 2μt cos α′

δ = μ (BC + CD) − BG

= 2μBC − 2BC sin α sin α′ = 2μBC (l − sin2α′)

= 2μt cos α′

(1).

In (1) α′ is the angle of refraction, and we see that, contrary to what might at first have been expected, the retardation is least when the obliquity is greatest, and reaches a maximum when the obliquity is zero or the incidence normal. If we represent all the vibrations by complex quantities, from which finally the imaginary parts are rejected, the retardation δ may be expressed by the introduction of the factor ε−iκδ, where i = √(−1), and κ = 2π/λ.

At each reflection or refraction the amplitude of the incident wave must be supposed to be altered by a certain factor which allows room for the reversal postulated by Young. When the light proceeds from the surrounding medium to the plate, the factor for reflection will be supposed to be b, and for refraction c; the corresponding quantities when the progress is from the plate to the surrounding medium will be denoted by e, f. Denoting the incident vibration by unity, we have then for the first component of the reflected wave b, for the second cefε−iκδ, for the third ce3fε−2iκδ, and so on. Adding these together, and summing the geometric series, we find

(2).

In like manner for the wave transmitted through the plate we get

(3).

The quantities b, c, e, f are not independent. The simplest way to find the relations between them is to trace the consequences of supposing δ = 0 in (2) and (3). This may be regarded as a development from Young’s point of view. A plate of vanishing thickness is ultimately no obstacle at all. In the nature of things asurfacecannot reflect. Hence with a plate of vanishing thickness there must be a vanishing reflection and a total transmission, and accordingly

b + e = 0,    cf = l − e2

(4),

the first of which embodies Arago’s law of the equality of reflections, as well as the famous “loss of half an undulation.” Using these we find for the reflected vibration,

(5),

and for the transmitted vibration

(6).

The intensities of the reflected and transmitted lights are the squares of the moduli of these expressions. Thus

(7);

(8),

the sum of the two expressions being unity.

According to (7) not only does the reflected light vanish completely when δ = o, but also whenever ½κδ = nπ, n being an integer, that is, whenever δ = nλ. When the first and third mediums are the same, as we have here supposed, the central spot in the system of Newton’s ring isblack, even though the original light contain a mixture of all wave-lengths. If the light reflected from a plate of any thickness be examined with a spectroscope of sufficient resolving power, the spectrum will be traversed by dark bands, of which the centre corresponds to those wave-lengths which the plate is incompetent to reflect. It is obvious that there is no limit to the fineness of the bands which may be thus impressed upon a spectrum, whatever may be the character of the original mixed light.

The relations between the factors b, c, e, f have been proved, independently of the theory of thin plates, in a general manner by Stokes, who called to his aid the general mechanical principle ofreversibility. If the motions constituting the reflected and refracted rays to which an incident ray gives rise be supposed to be reversed, they will reconstitute a reversed incident ray. This gives one relation; and another is obtained from the consideration that there is no ray in the second medium, such as would be generated by the operation alone of either the reversed reflected or refracted rays. Space does not allow of the reproduction of the argument at length, but a few words may perhaps give the reader an idea of how the conclusions are arrived at. The incident ray (IA) (fig. 3) being 1, the reflected (AR) and refracted (AF) rays are denoted by b and c. When b is reversed, it gives rise to a reflected ray b2along AI, and a refracted ray bc along AG (say). When c is reversed, it gives rise to cf along AI, and ce along AG. Hence bc + ce = 0, b2+ cf = 1, which agree with (4). It is here assumed that there is no change of phase in the act of reflection or refraction, except such as can be represented by a change of sign.

When the third medium differs from the first, the theory of thin plates is more complicated, and need not here be discussed. One particular case, however, may be mentioned. When a thin transparent film is backed by a perfect reflector, no colours should be visible, all the light being ultimately reflected, whatever the wave-length may be. The experiment may be tried with a thin layer of gelatin on a polished silver plate. In other cases where a different result is observed, the inference is that either the metal does not reflect perfectly, or else that the material of which the film is composed is not sufficiently transparent. Some apparent exceptions to the above rule, exhibited by thin films of collodion resting upon silver surfaces, have been described by R. W. Wood (Physical Optics, p. 143), who attributes the very curious effects observed tofrillingof the collodion film.

For study of the colours of thin plates there are no more interesting subjects than the soap-film. For projection the films may be stretched across vertical rings of iron wire coated with paraffin. In their undisturbed condition they thin from the top, and the colours are disposed in horizontal bands. If, as suggested by Brewster, a jet of wind issuing from a small nozzle and supplied from a well-regulated bellows be allowed to impinge obliquely, parts of the film are set in rotation, and displays of colours may be exhibited to a large audience, astonishing by their brilliance and by the rapidity with which they change. Permanent films, analogous to soap-films, are best obtained by Glew’s method. A few drops of celluloid varnish are poured upon the surface of water contained in a large dish. After evaporation of the solvent, the films may be picked up upon rings of iron wire.

As a variant upon Newton’s rings, interesting effects may be obtained by the partial etching of the surfaces of picked pieces of plate-glass. A surface is coated in parallel stripes with paraffin wax and treated with dilute hydrofluoric acid for such a time (found by preliminary trials) as is required to eat away the exposed portions to a depth of one quarter of the mean wave-length of light. Two such prepared surfaces pressed in the crossed position into suitable contact exhibit a chess-board pattern. Where two uncorroded, or where two corroded, parts overlap, the colours are nearly the same; but where a corroded and an uncorroded surface meet, a strongly contrasted colour is developed. The combination lends itself to projection and the pattern seen upon the screen is very beautiful if proper precautions are taken to eliminate the white light reflected from the first and fourth surfaces of the plates (seeNature, 1901, 64, 385).

Theory and observation alike show that the transmitted colours of a thin plate,e.g.a soap film or a layer of air, are very inferior to those reflected. Specimens of ancient glass, which have undergone superficial decomposition, on the other hand, sometimes show transmitted colours of remarkable brilliancy. The probable explanation, suggested by Brewster, is that we have here to deal not merely with one, but with a series of thin plates of not very different thicknesses. It is evident that with such a series the transmitted colours would be much purer, and the reflected much brighter, than usual. If the thicknesses are strictly equal, certain wave-lengths must still be absolutely missing in the reflected light; while on the other hand a constancy of the interval between the plates will in general lead to a special preponderance of light of some other wave-length for which all the component parts as they ultimately emerge are in agreement as to phase.

On the same principle are doubtless to be explained the colours of fiery opals, and, more remarkable still, the iridescence of certaincrystals of potassium chlorate. Stokes showed that the reflected light is often in a high degree monochromatic, and that it is connected with the existence of twin planes. A closer discussion appears to show that the twin planes must be repeated in a periodic manner (Phil. Mag., 1888, 26, 241, 256; also see R. W. Wood,Phil. Mag., 1906).

A beautiful example of a similar effect is presented by G. Lippmann’s coloured photographs. In this case the periodic structure is actually the product of the action of light. The plate is exposed to stationary waves, resulting from the incidence of light upon a reflecting surface (seePhotography).

All that can be expected from a physical theory is the determination of the composition of the light reflected from or transmitted by a thin plate in terms of the composition of the incident light. The further question of the chromatic character of the mixtures thus obtained belongs rather to physiological optics, and cannot be answered without a complete knowledge of the chromatic relations of the spectral colours themselves. Experiments upon this subject have been made by various observers, and especially by J. Clerk Maxwell (Phil. Trans., 1860), who has exhibited his results on a colour diagram as used by Newton. A calculation of the colours of thin plates, based upon Maxwell’s data, and accompanied by a drawing showing the curve representative of the entire series up to the fifth order, has been given by Rayleigh (Edin. Trans., 1887). The colours of Newton’s scale are met with also in the light transmitted by a somewhat thin plate of doubly-refracting material, such as mica, the plane of analysis being perpendicular to that of primitive polarization.

The same series of colours occur also in other optical experiments,e.g.at the centre of the illuminated area when light issuing from a point passes through a small round aperture in an otherwise opaque screen.

The colours of which we have been speaking are those formed at nearly perpendicular incidence, so that the retardation (reckoned as a distance), viz. 2μt cos α′, as sensibly independent of λ. This state of things may be greatly departed from when the thin plate is rarer than its surroundings, and the incidence is such that α′ is nearly equal to 90°, for then, in consequence of the powerful dispersion, cos α′ may vary greatly as we pass from one colour to another. Under these circumstances the series of colours entirely alters its character, and the bands (corresponding to a graduated thickness) may even lose their coloration, becoming sensibly black and white through many alternations (Newton’sOpticks, bk. ii.; Fox-Talbot,Phil. Mag., 1836, 9, p. 40l). The general explanation of this remarkable phenomenon was suggested by Newton.

Let us suppose that plane waves of white light travelling in glass are incident at angle α upon a plate of air, which is bounded again on the other side by glass. If μ be the index of theglass, α′ the angle of refraction, then sin α′ = μ sin α; and the retardation, expressed by the equivalent distance in air, is

2t sec α′ − μ·2t tan α′ sin α = 2t cos α′;

and the retardation inphaseis 2t cos α′/λ, λ being as usual the wave-length in air.

The first thing to be noticed is that, when α approaches the critical angle, cosα′ becomes as small as we please, and that consequently the retardation corresponding to a given thickness is very much less than at perpendicular incidence. Hence the glass surfaces need not be so close as usual.

A second feature is the increased brilliancy of the light. According to (7) the intensity of the reflected light when at a maximum (sin ½κγ = 1) is 4e2/(1 + e2)2. At perpendicular incidence e is about1⁄5, and the intensity is somewhat small; but, as cos α′ approaches zero, e approaches unity, and the brilliancy is much increased.

But the peculiarity which most demands attention is the lessened influence of a variation in λ upon the phase-retardation. A diminution of λ of itself increases the retardation of phase, but, since waves of shorter wave-length are more refrangible, this effect may be more or less perfectly compensated by the greater obliquity, and consequent diminution in the value of cos α′. We will investigate the conditions under which the retardation of phase is stationary in spite of a variation of λ.

In order that λ−1cos α′ may be stationary, we must have

λ sin α′ dα′ + cos α′ dλ = 0,

where (α being constant)

cos α′ dα′ = sin α dμ.

Thus

(9),

giving α′ when the relation between μ and λ is known.

According to A. L. Cauchy’s formula, which represents the facts very well throughout most of the visible spectrum,

μ = A + Bλ−2

(10),

so that

(11).

If we take, as for Chance’s “extra-dense flint,” B = .984 × 10-10, and as for the soda lines, μ = 1.65, λ = 5.89 × 10-6, we get

α′ = 79°30′.

At this angle of refraction, and with this kind of glass, the retardation of phase is accordingly nearly independent of wave-length, and therefore the bands formed, as the thickness varies, are approximately achromatic. Perfect achromatism would be possible only under a law of dispersion

μ2= A′ − B′λ2.

If the source of light be distant and very small, the black bands are wonderfully fine and numerous. The experiment is best made (after Newton) with a right-angled prism, whose hypothenusal surface may be brought into approximate contact with a plate of black glass. The bands should be observed with a convex lens, of about 8 in. focus. If the eye be at twice this distance from the prism, and the lens be held midway between, the advantages are combined of a large field and of maximum distinctness.

If Newton’s rings are examined through a prism, some very remarkable phenomena are exhibited, described in his twenty-fourth observation (Opticks; see also Place,Pogg. Ann., 1861, 114, 504). “When the two object-glasses are laid upon one another, so as to make the rings of the colours appear, though with my naked eye I could not discern above eight or nine of those rings, yet by viewing them through a prism I could see a far greater multitude, insomuch that I could number more than forty.... And I believe that the experiment may be improved to the discovery of far greater numbers.... But it was on but one side of these rings, namely, that towards which the refraction was made, which by the refraction was rendered distinct, and the other side became more confused than when viewed with the naked eye....

“I have sometimes so laid one object-glass upon the other that to the naked eye they have all over seemed uniformly white, without the least appearance of any of the coloured rings; and yet by viewing them through a prism great multitudes of those rings have discovered themselves.”

Newton was evidently much struck with these “so odd circumstances”; and he explains the occurrence of the rings at unusual thicknesses as due to the dispersing power of the prism. The blue system being more refracted than the red, it is possible under certain conditions that the nthblue ring may be so much displaced relatively to the corresponding red ring asat one part of the circumferenceto compensate for the different diameters. A white stripe may thus be formed in a situation where without the prism the mixture of colours would be complete, so far as could be judged by the eye.

The simplest case that can be considered is when the “thin plate” is bounded by plane surfaces inclined to one another at a small angle. By drawing back the prism (whose edge is parallel to the intersection of the above-mentioned planes) it will always be possible so to adjust the effective dispersing power as to bring the nthbars to coincidence for any two assigned colours, and therefore approximately for the entire spectrum. The formation of the achromatic band, or rather central black band, depends indeed upon the same principles as the fictitious shifting of the centre of a system of Fresnel’s bands when viewed through a prism.

But neither Newton nor, as would appear, any of his successors has explained why the bands should be more numerous than usual, and under certain conditions sensibly achromatic for a large number of alternations. It is evident that, in the particular case of the wedge-shaped plate above specified, such a result would not occur. The width of the bands for any colour would be proportional to λ, as well after the displacement by the prism as before; and the succession of colours formed in white light and the number of perceptible bands would be much as usual.

The peculiarity to be explained appears to depend upon thecurvatureof the surfaces bounding the plate. For simplicity suppose that the lower surface is plane (y = 0), and that the approximate equation of the upper surface is y = a + bx2, a being thus the least distance between the plates. The black of the nthorder for wave-length λ occurs when

½nλ = a + bx2

(12);

and thus the width (δx) at this place of the band is given by

½λ = 2bxδx

(13);

or

(14).

If the glasses be in contact, as is usually supposed in the theory of Newton’s rings, a = 0, and δx∞λ1/2, or the width of the band of the nthorder varies as the square root of the wave-length, instead of as the first power. Even in this case the overlapping and subsequent obliteration of the bands is greatly retarded by the use of the prism, but the full development of the phenomenon requires that α should be finite. Let us inquire what is the condition in order that the width of the band of the nthorder may be stationary, as λ varies. By (14) it is necessary that the variation of λ2/(½nλ − a) should vanish. Hence a = ¼nλ, so that the interval between the surfaces at the place where the nthband is formed should be half due to curvature and half to imperfect contact at the place of closest approach. If this condition be satisfied, the achromatism of the nthband, effected by the prism, carries with it the achromatism of a large number of neighbouring bands, and thus gives rise to the remarkable effects described by Newton. Further developmentsare given by Lord Rayleigh in a paper “On Achromatic Interference Bands” (Phil. Mag., 1889, 28, pp. 77, 189); see also E. Mascart,Traité d’optique.

In Newton’s rings the variable element is the thickness of the plate, to which the retardation is directly proportional, and in the ideal case the angle of incidence is constant. To observe them the eye is focused upon the thin plate itself, and if the plate is very thin no particular precautions are necessary. As the plate thickens and the order of interference increases, there is more and more demand for homogeneity in the light, and we may have recourse to a sodium-flame or a helium vacuum tube. At the same time the disturbing influence of obliquity increases. Unless the aperture of the eye is reduced, the rays reaching it from even the same point of the plate are differently affected, and complications ensue tending to impair the distinctness of the bands. To obviate this disturbance it is best to work at incidences as nearly as possible perpendicular.

The bands seen when light from a soda flame falls upon nearly parallel surfaces are often employed as a test of flatness. Two flat surfaces can be made to fit, and then the bands are few and broad, if not entirely absent; and, however the surfaces may be presented to one another, the bands should be straight, parallel and equidistant. If this condition be violated, one or other of the surfaces deviates from flatness. In fig. 4, A and B represent the glasses to be tested, and C is a lens of 2 or 3 ft. focal length. Rays diverging from a soda flame at E are rendered parallel by the lens, and after reflection from the surfaces are recombined by the lens at E. To make an observation, the coincidence of the radiant point and its image must be somewhat disturbed, the one being displaced to a position a little beyond, and the other to a position a little in front of the diagram. The eye, protected from the flame by a suitable screen, is placed at the image, and being focused upon AB, sees the field traversed by bands. The reflector D is introduced as a matter of convenience to make the line of vision horizontal.

These bands may be photographed. The lens of the camera takes the place of the eye, and should be as close to the flame as possible. With suitable plates, sensitized by cyanin, the exposure required may vary from ten minutes to an hour. To get the best results, the hinder surface of A should be blackened, and the front surface of B should be thrown out of action by the superposition of a wedge-shaped plate of glass, the intervening space being filled with oil of turpentine or other fluid having nearly the same refraction as glass. Moreover, the light should be purified from blue rays by a trough containing solution of bichromate of potash. With these precautions the dark parts of the bands are very black, and the exposure may be prolonged much beyond what would otherwise be admissible.

By this method it is easy to compare one flat with another, and thus, if the first be known to be free from error, to determine the errors of the second. But how are we to obtain and verify a standard? The plan usually followed is to bringthreesurfaces into comparison. The fact that two surfaces can be made to fit another in all azimuths proves that they are spherical and of equal curvatures, but one convex and the other concave, the case of perfect flatness not being excluded. If A and B fit one another, and also A and C, it follows that B and C must be similar. Hence, if B and C also fit one another, all three surfaces must be flat. By an extension of this process the errors of three surfaces which are not flat can be found from a consideration of the interference bands which they present when combined in three pairs.

The free surface of undisturbed water is almost ideally flat, and, as Lord Rayleigh (Nature, 1893, 48, 212) has shown, there is no great difficulty in using it as a standard of comparison. Following the same idea we may construct a parallel plate by superposing a layer of water upon mercury. If desired, the superior reflecting power of the mercury may be compensated by the addition of colouring matter to the water.

Haidinger’s Rings dependent on Obliquity.—It is remarkable that the well-known theoretical investigation, undertaken with the view of explaining Newton’s rings, applies more directly to a different system of rings discovered at a later date.

The results embodied in equations (1) to (8) have application in the first instance to plates whose surfaces are absolutely parallel, though doubtless they may be employed with fair accuracy when the thickness varies but slowly.We have now to consider t constant and α′ variable in (1). If α′ be small,δ = 2μt (1 − ½α′2) = 2μt − tα2/ μ(15);and since the differences of δ are proportional to α2, the law of formation is the same as for Newton’s rings, where α′ is constant and t proportional to the square of the distance from the point of contact. In order to see these rings distinctly the eye must be focused, not upon the plate, but for infinitely distant objects.

The results embodied in equations (1) to (8) have application in the first instance to plates whose surfaces are absolutely parallel, though doubtless they may be employed with fair accuracy when the thickness varies but slowly.

We have now to consider t constant and α′ variable in (1). If α′ be small,

δ = 2μt (1 − ½α′2) = 2μt − tα2/ μ

(15);

and since the differences of δ are proportional to α2, the law of formation is the same as for Newton’s rings, where α′ is constant and t proportional to the square of the distance from the point of contact. In order to see these rings distinctly the eye must be focused, not upon the plate, but for infinitely distant objects.

The earliest observation of rings dependent upon obliquity appears to have been made by W. von Haidinger (Pogg. Ann., 1849, 77, p. 219; 1855, 96, p. 453), who employed sodium light reflected from a plate of mica (e.g.0.2 mm. thick). The transmitted rays are the easier to see in their completeness, though they are necessarily somewhat faint. For this purpose it is sufficient to look through the mica, held close to the eye and perpendicular to the line of vision, at a sheet of white paper or card illuminated by a sodium flame. Although Haidinger omitted to consider the double refraction of the mica and gave formulae not quite correct for even singly refracting plates, he fully appreciated the distinctive character of the rings, contrastingBerührungsringe und Plattenringe. The latter may appropriately be named after him. Their tardy discovery may be attributed to the technical difficulty of obtaining sufficiently parallel plates, unless it be by the use of mica or by the device of pouring water upon mercury. Haidinger’s rings were rediscovered by O. R. Lummer (Wied. Ann., 1884, 23, p. 49), who pointed out the advantages they offer in the examination of plates intended to be parallel.

The illumination depends upon the intensity of the monochromatic source of light, and upon the reflecting power of the surfaces. If R be the intensity of the reflected light we have from (7)1= 1 +(1 − e2)2;R4e2sin2(½κδ)from which we see that if e = 1 absolutely, 1/R = R = 1 for all values of δ. If e = 1 very nearly, R = 1 nearly for all values of δ for which sin2(½κδ) is not very small. In the light reflected from an extended source, the ground will be of full brightness corresponding to the source, but it will be traversed bynarrowdark lines. By transmitted light the ground, corresponding to general values of the obliquity, will be dark, but will be interrupted by narrow bright rings, whose position is determined by sin ½(κδ) = 0. In permitting for certain directions a complete transmission in spite of a high reflecting power (e) of the surfaces, the plate acts the part of a resonator.There is no transparent material for which, unless at high obliquity, e approaches unity. In C. Fabry and A. Pérot’s apparatus the reflections at nearly perpendicular incidence are enhanced by lightly silvering the surfaces. In this way the advantage of narrowing the bright rings is attained in great measure without too heavy a sacrifice of light. The plate in the optical sense is one of air, and is bounded by plates of glass whose inner silvered surfaces are accurately flat and parallel. The outer surfaces need only ordinary flatness, and it is best that they be not quite parallel to the inner ones. The arrangement constitutes aspectroscope, inasmuch as it allows the structure of a complex spectrum line to be directly observed. If, for example, we look at a sodium flame, we see in general two distinct systems of narrow bright circles corresponding to the two D-lines. With particular values of the thickness of the plate of air the two systems may coincide so as to be seen as a single system, but a slight alteration of thickness will cause a separation.It will be seen that in this apparatus the optical parts are themselves of extreme simplicity; but they require accuracy of construction and adjustment, and the demand in these respects is the more severe the further the ideal is pursued of narrowing the rings by increase of reflecting power. Two forms of mounting are employed. In one instrument, called theinterferometer, the distance between the surfaces—the thickness of the plate—is adjustable over a wide range. In its complete development this instrument is elaborate and costly. The actual measurements of wave-lengths by Fabry and Pérot were for the most part effected by another form of instrument called anétalonor interference-gauge. The thickness of the optical plate is here fixed; the glasses are held up to metal knobs, acting as distance-pieces, by adjustable springs, and the final adjustment to parallelism is effected by regulating the pressure exerted by these springs. The distance between the surfaces may be 5 or 10 mm.The theory of the comparison of wave-lengths by means of this apparatus is very simple, and it may be well to give it, following closely the statement of Fabry and Pérot (Ann. chim. phys., 1902, 25, p. 110). Consider first the cadmium radiation λ treated as a standard. It gives a system of rings. Let P be the ordinal number of one of these rings, for example the first counting from the centre. This integer is supposed known. The order of interference at the centre will be p = P + ε. We have to determine this number ε, lying ordinarily between 0 and 1. The diameter of the ring underconsideration increases with ε; so that a measure of the diameter allows us to determine the latter. Let t be the thickness of the plate of air. The order of interference at the centre is p = 2t/λ. This corresponds to normal passage. At an obliquity i the order of interference is p cos i. Thus if x be the angular diameter of the ring P, p cos ½x = P; or since x is small,p = P (1 +1⁄8x2).In like manner, from observations upon another radiation λ′ to be compared with λ, we havep′ = P′ (1 +1⁄8x′2);whence if t be treated as an absolute constant,λ′=P(1 +x2−x′2)λP′88(16).The ratio λ/λ′ is thus determined as a function of the angular diameters x, x′ and of the integers P, P′. If P, say for the cadmium red line, is known, an approximate value of λ/λ′ will usually suffice to determine what integral value must be assigned to P′, and thence by (16) to allow of the calculation of the corrected ratio λ′/λ.In order to find P we may employ a modified form of (16), viz.,P′=λ(1 +x2−x′2)Pλ′88(17),using spectrum lines, such as the cadmium red and the cadmium green, for which the relative wave-lengths are already known with accuracy from A. A. Michelson’s work. To test a proposed integral value of P (cadmium red), we calculate P′ (cadmium green) from (17), using the observed values of x, x′. If the result deviates from an integer by more than a small amount (depending upon the accuracy of the observations), the proposed value of P is to be rejected. In this way by a process of exclusion the true value is ultimately arrived at (Rayleigh,Phil. Mag., 1906, 685). It appears that by Fabry and Pérot’s method comparisons of wave-lengths may be made accurate to about one-millionth part; but it is necessary to take account of the circumstance that the effective thickness t of the plate is not exactly the same for various wave-lengths as assumed in (16).

The illumination depends upon the intensity of the monochromatic source of light, and upon the reflecting power of the surfaces. If R be the intensity of the reflected light we have from (7)

from which we see that if e = 1 absolutely, 1/R = R = 1 for all values of δ. If e = 1 very nearly, R = 1 nearly for all values of δ for which sin2(½κδ) is not very small. In the light reflected from an extended source, the ground will be of full brightness corresponding to the source, but it will be traversed bynarrowdark lines. By transmitted light the ground, corresponding to general values of the obliquity, will be dark, but will be interrupted by narrow bright rings, whose position is determined by sin ½(κδ) = 0. In permitting for certain directions a complete transmission in spite of a high reflecting power (e) of the surfaces, the plate acts the part of a resonator.

There is no transparent material for which, unless at high obliquity, e approaches unity. In C. Fabry and A. Pérot’s apparatus the reflections at nearly perpendicular incidence are enhanced by lightly silvering the surfaces. In this way the advantage of narrowing the bright rings is attained in great measure without too heavy a sacrifice of light. The plate in the optical sense is one of air, and is bounded by plates of glass whose inner silvered surfaces are accurately flat and parallel. The outer surfaces need only ordinary flatness, and it is best that they be not quite parallel to the inner ones. The arrangement constitutes aspectroscope, inasmuch as it allows the structure of a complex spectrum line to be directly observed. If, for example, we look at a sodium flame, we see in general two distinct systems of narrow bright circles corresponding to the two D-lines. With particular values of the thickness of the plate of air the two systems may coincide so as to be seen as a single system, but a slight alteration of thickness will cause a separation.

It will be seen that in this apparatus the optical parts are themselves of extreme simplicity; but they require accuracy of construction and adjustment, and the demand in these respects is the more severe the further the ideal is pursued of narrowing the rings by increase of reflecting power. Two forms of mounting are employed. In one instrument, called theinterferometer, the distance between the surfaces—the thickness of the plate—is adjustable over a wide range. In its complete development this instrument is elaborate and costly. The actual measurements of wave-lengths by Fabry and Pérot were for the most part effected by another form of instrument called anétalonor interference-gauge. The thickness of the optical plate is here fixed; the glasses are held up to metal knobs, acting as distance-pieces, by adjustable springs, and the final adjustment to parallelism is effected by regulating the pressure exerted by these springs. The distance between the surfaces may be 5 or 10 mm.

The theory of the comparison of wave-lengths by means of this apparatus is very simple, and it may be well to give it, following closely the statement of Fabry and Pérot (Ann. chim. phys., 1902, 25, p. 110). Consider first the cadmium radiation λ treated as a standard. It gives a system of rings. Let P be the ordinal number of one of these rings, for example the first counting from the centre. This integer is supposed known. The order of interference at the centre will be p = P + ε. We have to determine this number ε, lying ordinarily between 0 and 1. The diameter of the ring underconsideration increases with ε; so that a measure of the diameter allows us to determine the latter. Let t be the thickness of the plate of air. The order of interference at the centre is p = 2t/λ. This corresponds to normal passage. At an obliquity i the order of interference is p cos i. Thus if x be the angular diameter of the ring P, p cos ½x = P; or since x is small,

p = P (1 +1⁄8x2).

In like manner, from observations upon another radiation λ′ to be compared with λ, we have

p′ = P′ (1 +1⁄8x′2);

whence if t be treated as an absolute constant,

(16).

The ratio λ/λ′ is thus determined as a function of the angular diameters x, x′ and of the integers P, P′. If P, say for the cadmium red line, is known, an approximate value of λ/λ′ will usually suffice to determine what integral value must be assigned to P′, and thence by (16) to allow of the calculation of the corrected ratio λ′/λ.

In order to find P we may employ a modified form of (16), viz.,

(17),

using spectrum lines, such as the cadmium red and the cadmium green, for which the relative wave-lengths are already known with accuracy from A. A. Michelson’s work. To test a proposed integral value of P (cadmium red), we calculate P′ (cadmium green) from (17), using the observed values of x, x′. If the result deviates from an integer by more than a small amount (depending upon the accuracy of the observations), the proposed value of P is to be rejected. In this way by a process of exclusion the true value is ultimately arrived at (Rayleigh,Phil. Mag., 1906, 685). It appears that by Fabry and Pérot’s method comparisons of wave-lengths may be made accurate to about one-millionth part; but it is necessary to take account of the circumstance that the effective thickness t of the plate is not exactly the same for various wave-lengths as assumed in (16).

§ 9.Newton’s Diffusion Rings.—In the fourth part of the second book of hisOpticksNewton investigates another series of rings, usually (though not very appropriately) known as the colours of thick plates. The fundamental experiment is as follows. At the centre of curvature of a concave looking-glass, quicksilvered behind, is placed an opaque card, perforated by a small hole through which sunlight is admitted. The main body of the light returns through the aperture; but a series of concentric rings are seen upon the card, the formation of which was proved by Newton to require the co-operation of the two surfaces of the mirror. Thus the diameters of the rings depend upon the thickness of the glass, and none are formed when the glass is replaced by a metallic speculum. The brilliancy of the rings depends upon imperfect polish of the anterior surface of the glass, and may be augmented by a coat of diluted milk, a device used by Michel Ferdinand, duc de Chaulnes. The rings may also be well observed without a screen in the manner recommended by Stokes. For this purpose all that is required is to place asmallflame at the centre of curvature of the prepared glass, so as to coincide with its image. The rings are then seen surrounding the flame and occupying a definite position in space.


Back to IndexNext