Let BMC (fig. 9) be a semicircle which by revolution round the diameter BC sweeps out a sphere. Let an arc be situated at A, and let the element of the circumference PQ =dssweep out a zone of the sphere. Let the intensity of light falling on this zone be I. Then if θ ≈ the angle MAP anddθ the incremental angle PAQ, and if R is the radius of the sphere, we haveds= Rdθ;also, if we project the element PQ on the line DE we haveab=dscos θ,∴ab=R cos θdθand Iab=IR cos θdθ.Letrdenote the radius PT of the zone of the sphere, thenr= R cos θ.Hence the area of the zone swept out by PQ is equal to2πR cos θds= 2πR2cos θdθin the limit, and the total quantity of light falling on the zone is equal to the product of the mean intensity or candle-power I in the direction AP and the area of the zone, and therefore to2πIR2cos θdθ.Let I0stand for the mean spherical candle-power, that is, let I0be defined by the equation4πR2I0= 2πRΣ(Iab)where Σ(Iab) is the sum of all the light actually falling on the sphere surface, thenI0=1Σ(Iab) =Σ(Iab)Imax2R2RImaxwhere Imaxstands for the maximum candle-power of the arc. If, then, we set off atba linebH perpendicular to DE and in length proportional to the candle-power of the arc in the direction AP, and carry out the same construction for a number of different observed candle-power readings at known angles above and below the horizon, the summits of all ordinates such asbH will define a curve DHE. The mean spherical candle-power of the arc is equal to the product of the maximum candle-power (Imax), and a fraction equal to the ratio of the area included by the curve DHE to its circumscribing rectangle DFGE. The area of the curve DHE multiplied by 2π/R gives us thetotal flux of lightfrom the arc.Owing to the inequality in the distribution of light from an electric arc, it is impossible to define the illuminating power by a single number in any other way than by stating the mean spherical candle-power. All such commonly used expressions as “an arc lamp of 2000 candle-power” are, therefore, perfectly meaningless.
Let BMC (fig. 9) be a semicircle which by revolution round the diameter BC sweeps out a sphere. Let an arc be situated at A, and let the element of the circumference PQ =dssweep out a zone of the sphere. Let the intensity of light falling on this zone be I. Then if θ ≈ the angle MAP anddθ the incremental angle PAQ, and if R is the radius of the sphere, we have
ds= Rdθ;
also, if we project the element PQ on the line DE we have
Letrdenote the radius PT of the zone of the sphere, then
r= R cos θ.
Hence the area of the zone swept out by PQ is equal to
2πR cos θds= 2πR2cos θdθ
in the limit, and the total quantity of light falling on the zone is equal to the product of the mean intensity or candle-power I in the direction AP and the area of the zone, and therefore to
2πIR2cos θdθ.
Let I0stand for the mean spherical candle-power, that is, let I0be defined by the equation
4πR2I0= 2πRΣ(Iab)
where Σ(Iab) is the sum of all the light actually falling on the sphere surface, then
where Imaxstands for the maximum candle-power of the arc. If, then, we set off atba linebH perpendicular to DE and in length proportional to the candle-power of the arc in the direction AP, and carry out the same construction for a number of different observed candle-power readings at known angles above and below the horizon, the summits of all ordinates such asbH will define a curve DHE. The mean spherical candle-power of the arc is equal to the product of the maximum candle-power (Imax), and a fraction equal to the ratio of the area included by the curve DHE to its circumscribing rectangle DFGE. The area of the curve DHE multiplied by 2π/R gives us thetotal flux of lightfrom the arc.
Owing to the inequality in the distribution of light from an electric arc, it is impossible to define the illuminating power by a single number in any other way than by stating the mean spherical candle-power. All such commonly used expressions as “an arc lamp of 2000 candle-power” are, therefore, perfectly meaningless.
The photometry of arc lamps presents particular difficulties, owing to the great difference in quality between the light radiated by the arc and that given by any of the ordinarily used light standards. (For standards of light andPhotometry of arc.photometers, seePhotometer.) All photometry depends on the principle that if we illuminate two white surfaces respectively and exclusively by two separate sources of light, we can by moving the lights bring the two surfaces into such a condition that theirilluminationorbrightnessis the same without regard to any small colour difference. The quantitative measurement depends on the fact that the illumination produced upon a surface by a source of light is inversely as the square of the distance of the source. The trained eye is capable of making a comparison between two surfaces illuminated by different sources of light, and pronouncing upon their equality or otherwise in respect of brightness, apart from a certain colour difference; but for this to be done with accuracy the two illuminated surfaces, the brightness of which is to be compared, must be absolutely contiguous and not separated by any harsh line. The process of comparing the light from the arc directly with that of a candle or other similar flame standard is exceedingly difficult, owing to the much greater proportion and intensity of the violet rays in the arc. The most convenient practical working standard is an incandescent lamp run at a high temperature, that is, at an efficiency of about 2½ watts per candle. If it has a sufficiently large bulb, and has beenagedby being worked for some time previously, it will at a constant voltage preserve a constancy in illuminating power sufficiently long to make the necessary photometric comparisons, and it can itself be compared at intervals with another standard incandescent lamp, or with a flame standard such as a Harcourt pentane lamp.
In measuring the candle-power of arc lamps it is necessary to have some arrangement by which the brightness of the rays proceeding from the arc in different directions can be measured. For this purpose the lamp may be suspended from a support, and a radial arm arranged to carry three mirrors, so that in whatever position the arm may be placed, it gathers light proceeding at one particular angle above or below the horizon from the arc, and this light is reflected out finally in a constant horizontal direction. An easily-arranged experiment enables us to determine the constant loss of light by reflection at all the mirrors, since that reflection always takes place at 45°. The ray thrown out horizontally can then be compared with that from any standard source of light by means of a fixed photometer, and by sweeping round the radial arm the photometric or illuminating curve of the arc lamp can be obtained. From this we can at once determine the nature of the illumination which would be produced on a horizontal surface if the arc lamp were suspended at a given distance above it. Let A (fig. 10) be an arc lamp placed at a heighth( = AB) above a horizontal plane. Let ACD be the illuminating power curve of the arc, and hence AC the candle-power in a direction AP. The illumination (I) or brightness on the horizontal plane at P is equal toAC cos APM/(AP)2= FC/(h2+x2), wherex= BP.Fig. 11.Hence if the candle-power curve of the arc and its height above the surface are known, we can describe a curve BMN, whose ordinate PM will denote the brightness on the horizontal surface at any point P. It is easily seen that this ordinate must have a maximum value at some point. This brightness is best expressed incandle-feet, taking the unit of illumination to be that given by a standard candle on a white surface at a distance of 1 ft. If any number of arc lamps are placed above a horizontal plane, the brightness at any point can be calculated by adding together the illuminations due to each respectively.The process of delineating the photometric or polar curve of intensity for an arc lamp is somewhat tedious, but the curve has the advantage of showing exactly the distribution of light in different directions. When only the mean spherical or mean hemispherical candle-power is required the process can be shortened by employing an integrating photometer such as that of C. P. Matthews (Trans. Amer. Inst. Elec. Eng., 1903, 19, p. 1465), or the lumen-meter of A. E. Blondel which enables us to determine at one observation the total flux of light from the arc and therefore the mean spherical candle-power per watt.
In measuring the candle-power of arc lamps it is necessary to have some arrangement by which the brightness of the rays proceeding from the arc in different directions can be measured. For this purpose the lamp may be suspended from a support, and a radial arm arranged to carry three mirrors, so that in whatever position the arm may be placed, it gathers light proceeding at one particular angle above or below the horizon from the arc, and this light is reflected out finally in a constant horizontal direction. An easily-arranged experiment enables us to determine the constant loss of light by reflection at all the mirrors, since that reflection always takes place at 45°. The ray thrown out horizontally can then be compared with that from any standard source of light by means of a fixed photometer, and by sweeping round the radial arm the photometric or illuminating curve of the arc lamp can be obtained. From this we can at once determine the nature of the illumination which would be produced on a horizontal surface if the arc lamp were suspended at a given distance above it. Let A (fig. 10) be an arc lamp placed at a heighth( = AB) above a horizontal plane. Let ACD be the illuminating power curve of the arc, and hence AC the candle-power in a direction AP. The illumination (I) or brightness on the horizontal plane at P is equal to
AC cos APM/(AP)2= FC/(h2+x2), wherex= BP.
Hence if the candle-power curve of the arc and its height above the surface are known, we can describe a curve BMN, whose ordinate PM will denote the brightness on the horizontal surface at any point P. It is easily seen that this ordinate must have a maximum value at some point. This brightness is best expressed incandle-feet, taking the unit of illumination to be that given by a standard candle on a white surface at a distance of 1 ft. If any number of arc lamps are placed above a horizontal plane, the brightness at any point can be calculated by adding together the illuminations due to each respectively.
The process of delineating the photometric or polar curve of intensity for an arc lamp is somewhat tedious, but the curve has the advantage of showing exactly the distribution of light in different directions. When only the mean spherical or mean hemispherical candle-power is required the process can be shortened by employing an integrating photometer such as that of C. P. Matthews (Trans. Amer. Inst. Elec. Eng., 1903, 19, p. 1465), or the lumen-meter of A. E. Blondel which enables us to determine at one observation the total flux of light from the arc and therefore the mean spherical candle-power per watt.
In the use of arc lamps for street and public lighting, the question of the distribution of light on the horizontal surface is all-important. In order that street surfaces may be well lighted, the minimum illumination shouldStreet arc lighting.not fall below 0.1 candle-foot, and in general, in well-lighted streets, the maximum illumination will be 1 candle-foot and upwards. By means of an illumination photometer, such as that of W. H. Preece and A. P. Trotter, it is easy to measure the illumination in candle-feet at any point in a street surface, and to plot out a number of contour lines of equal illumination. Experience has shown that to obtain satisfactory results the lamps must be placed on a high mast 20 or 25 ft. above the roadway surface. These posts are now generally made of cast iron in various ornamental forms (fig. 11), the necessary conductors for conveying the current up to the lamp being takeninside the iron mast. (The pair of incandescent lamps halfway down the standard are for use in the middle of the night, when the arc lamp would give more light than is required; they are lighted by an automatic switch whenever the arc is extinguished.) The lamp itself is generally enclosed in an opalescent spherical globe, which is woven over with wire-netting so that in case of fracture the pieces may not cause damage. The necessary trimming, that is, the replacement of carbons, is effected either by lowering the lamp or, preferably, by carrying round a portable ladder enabling the trimmer to reach it. For the purpose of public illumination it is very usual to employ a lamp taking 10 amperes, and therefore absorbing about 500 watts. Such a lamp is called a 500-watt arc lamp, and it is found that a satisfactory illumination is given for most street purposes by placing 500-watt arc lamps at distances varying from 40 to 100 yds., and at a height of 20 to 25 ft. above the roadway. The maximum candle-power of a 500-watt arc enclosed in a roughened or ground-glass globe will not exceed 1500 candles, and that of a 6.8-ampere arc (continuous) about 900 candles. If, however, the arc is an enclosed arc with double globes, the absorption of light would reduce the effective maximum to about 200 c.p. and 120 c.p. respectively. When arc lamps are placed in public thoroughfares not less than 40 yds. apart, the illumination anywhere on the street surface is practically determined by the two nearest ones. Hence the total illumination at any point may be obtained by adding together the illuminations due to each arc separately. Given the photometric polar curves or illuminating-power curves of each arc taken outside the shade or globe, we can therefore draw a curve representing the resultant illumination on the horizontal surface. It is obvious that the higher the lamps are placed, the more uniform is the street surface illumination, but the less its average value; thus two 10-ampere arcs placed on masts 20 ft. above the road surface and 100 ft. apart will give a maximum illumination of about 1.1 and a minimum of about 0.15 candle-feet in the interspace (fig 12). If the lamps are raised on 40-ft. posts the maximum illumination will fall to 0.3, and the minimum will rise to 0.2. For this reason masts have been employed as high as 90 ft. In docks and railway yards high masts (50 ft.) are an advantage, because the strong contrasts due to shadows of trucks, carts, &c., then become less marked, but for street illumination they should not exceed 30 to 35 ft. in height. Taking the case of 10-ampere and 6.8-ampere arc lamps in ordinary opal shades, the following figures have been given by Trotter as indicating the nature of the resultant horizontal illumination:—
As regards distance apart, a very usual practice is to place the lamps at spaces equal to six to ten times their height above the road surface. Blondel (Electrician, 35, p. 846) gives the following rule for the height (h) of the arc to afford the maximum illumination at a distance (d) from the foot of the lamp-post, the continuous current arc being employed:—
These figures show that the distribution of light on the horizontal surface is greatly affected by the nature of the enclosing globe. For street illumination naked arcs, although sometimes employed in works and factory yards, are entirely unsuitable, since the result produced on the eye by the bright point of light is to paralyse a part of the retina and contract the pupil, hence rendering the eye less sensitive when directed on feebly illuminated surfaces. Accordingly, diffusing globes have to be employed. It is usual to place the arc in the interior of a globe of from 12 to 18 in. in diameter. This may be made of ground glass, opal glass, or be a dioptric globe such as the holophane. The former two are strongly absorptive, as may be seen from the results of experiments by Guthrie and Redhead. The following table shows the astonishing loss of light due to the use of opal globes:—
By using Trotter’s, Fredureau’s or the holophane globe, the light may be so diffused that the whole globe appears uniformly luminous, and yet not more than 20% of the light is absorbed. Taking the absorption of an ordinary opal globe into account, a 500-watt arc does not usually give more than 500 c.p. as a maximum candle-power. Even with a naked 500-watt arc the mean spherical candle-power is not generally more than 500 c.p., or at the rate of 1 c.p. per watt. The maximum candle-power for a given electrical power is, however, greatly dependent on the current density in the carbon, and to obtain the highest current density the carbons must be as thin as possible. (See T. Hesketh, “Notes on the Electric Arc,”Electrician, 39, p. 707.)
For the efficiency of arcs of various kinds, expressed by the mean hemispherical candle power per ampere and per watt expended in the arc, the following figures were given by L. Andrews (“Long-flame Arc Lamps,”Journal Inst. Elec. Eng.,1906, 37, p. 4).
It will be seen that the flame arc lamp has an enormous advantage over other types in the light yielded for a given electric power consumption.
The practical employment of the electric arc as a means of illumination is dependent upon mechanism for automatically keeping two suitable carbon rods in the proper position, and moving them so as to enable a steady arc to beArc lamp mechanism.maintained. Means must be provided for holding the carbons in line, and when the lamp is not in operation they must fall together, or come together when the current is switched on, so as to start the arc. As soon as the current passes, they must be moved slightly apart, and gripped in position immediately the current reaches its right value, beingmoved farther apart if the current increases in strength, and brought together if it decreases. Moreover, it must be possible for a considerable length of carbon to be fed through the lamp as required.
One early devised form of arc-lamp mechanism was a system of clockwork driven by a spring or weight, which was started and stopped by the action of an electromagnet; in modern lighthouse lamps a similar mechanism is still employed. W. E. Staite (1847), J. B. L. Foucault (1849), V. L. M. Serrin (1857), J. Duboscq (1858), and a host of later inventors, devised numerous forms of mechanical and clockwork lamps. The modern self-regulating type may be said to have been initiated in 1878 by the differential lamp of F. von Hefner-Alteneck, and the clutch lamp of C. F. Brush. The general principle of the former may be explained as follows: There are two solenoids, placed one above the other. The lower one, of thick wire, is in series with the two carbon rods forming the arc, and is hence called theseries coil. Above this there is placed another solenoid of fine wire, which is called theshunt coil. Suppose an iron rod to be placed so as to be partly in one coil and partly in another; then when the coils are traversed by currents, the iron core will be acted upon by forces tending to pull it into these solenoids. If the iron core be attached to one end of a lever, the other end of which carries the upper carbon, it will be seen that if the carbons are in contact and the current is switched on, the series coil alone will be traversed by the current, and its magnetic action will draw down the iron core, and therefore pull the carbons apart and strike the arc. The moment the carbons separate, there will be a difference of potential between them, and the shunt coil will then come into action, and will act on the core so as to draw the carbons together. Hence the two solenoids act in opposition to each other, one increasing and the other diminishing the length of the arc, and maintaining the carbons in the proper position. In the lamp of this type the upper carbon is in reality attached to a rod having a side-rack gearing, with a train of wheels governed by a pendulum. The action of the series coil on the mechanism is to first lock or stop the train, and then lift it as a whole slightly. This strikes the arc. When the arc is too long, the series coil lowers the gear and finally releases the upper carbon, so that it can run down by its own weight. The principle of a shunt and series coil operating on an iron core in opposition is the basis of the mechanism of a number of arc lamps. Thus the lamp invented by F. Krizik and L. Piette, called from its place of origin the Pilsen lamp, comprises an iron core made in the shape of a double cone or spindle (fig. 13), which is so arranged in a brass tube that it can move into or out of a shunt and series coil, wound the one with fine and the other with thick insulated wire, and hence regulate the position of the carbon attached to it. The movement of this core is made to feed the carbons directly without the intervention of any clockwork, as in the case of the Hefner-Alteneck lamp. In the clutch-lamp mechanism the lower carbon is fixed, and the upper carbon rests upon it by its own weight and that of its holder. The latter consists of a long rod passing through guides, and is embraced somewhere by a ring capable of being tilted or lifted by a finger attached to the armature of an electromagnet the coils of which are in series with the arc. When the current passes through the magnet it attracts the armature, and by tilting the ring lifts the upper carbon-holder and hence strikes the arc. If the current diminishes in value, the upper carbon drops a little by its own weight, and the feed of the lamp is thus effected by a series of small lifts and drops of the upper carbon (fig. 14). Another element sometimes employed in arc-lamp mechanism is the brake-wheel regulator. This is a feature of one form of the Brockie and of the Crompton-Pochin lamps. In these the movement of the carbons is effected by a cord or chain which passes over a wheel, or by a rack geared with the brake wheel. When no current is passing through the lamp, the wheel is free to move, and the carbons fall together; but when the current is switched on, the chain or cord passing over the brake wheel, or the brake wheel itself is gripped in some way, and at the same time the brake wheel is lifted so that the arc is struck.
One early devised form of arc-lamp mechanism was a system of clockwork driven by a spring or weight, which was started and stopped by the action of an electromagnet; in modern lighthouse lamps a similar mechanism is still employed. W. E. Staite (1847), J. B. L. Foucault (1849), V. L. M. Serrin (1857), J. Duboscq (1858), and a host of later inventors, devised numerous forms of mechanical and clockwork lamps. The modern self-regulating type may be said to have been initiated in 1878 by the differential lamp of F. von Hefner-Alteneck, and the clutch lamp of C. F. Brush. The general principle of the former may be explained as follows: There are two solenoids, placed one above the other. The lower one, of thick wire, is in series with the two carbon rods forming the arc, and is hence called theseries coil. Above this there is placed another solenoid of fine wire, which is called theshunt coil. Suppose an iron rod to be placed so as to be partly in one coil and partly in another; then when the coils are traversed by currents, the iron core will be acted upon by forces tending to pull it into these solenoids. If the iron core be attached to one end of a lever, the other end of which carries the upper carbon, it will be seen that if the carbons are in contact and the current is switched on, the series coil alone will be traversed by the current, and its magnetic action will draw down the iron core, and therefore pull the carbons apart and strike the arc. The moment the carbons separate, there will be a difference of potential between them, and the shunt coil will then come into action, and will act on the core so as to draw the carbons together. Hence the two solenoids act in opposition to each other, one increasing and the other diminishing the length of the arc, and maintaining the carbons in the proper position. In the lamp of this type the upper carbon is in reality attached to a rod having a side-rack gearing, with a train of wheels governed by a pendulum. The action of the series coil on the mechanism is to first lock or stop the train, and then lift it as a whole slightly. This strikes the arc. When the arc is too long, the series coil lowers the gear and finally releases the upper carbon, so that it can run down by its own weight. The principle of a shunt and series coil operating on an iron core in opposition is the basis of the mechanism of a number of arc lamps. Thus the lamp invented by F. Krizik and L. Piette, called from its place of origin the Pilsen lamp, comprises an iron core made in the shape of a double cone or spindle (fig. 13), which is so arranged in a brass tube that it can move into or out of a shunt and series coil, wound the one with fine and the other with thick insulated wire, and hence regulate the position of the carbon attached to it. The movement of this core is made to feed the carbons directly without the intervention of any clockwork, as in the case of the Hefner-Alteneck lamp. In the clutch-lamp mechanism the lower carbon is fixed, and the upper carbon rests upon it by its own weight and that of its holder. The latter consists of a long rod passing through guides, and is embraced somewhere by a ring capable of being tilted or lifted by a finger attached to the armature of an electromagnet the coils of which are in series with the arc. When the current passes through the magnet it attracts the armature, and by tilting the ring lifts the upper carbon-holder and hence strikes the arc. If the current diminishes in value, the upper carbon drops a little by its own weight, and the feed of the lamp is thus effected by a series of small lifts and drops of the upper carbon (fig. 14). Another element sometimes employed in arc-lamp mechanism is the brake-wheel regulator. This is a feature of one form of the Brockie and of the Crompton-Pochin lamps. In these the movement of the carbons is effected by a cord or chain which passes over a wheel, or by a rack geared with the brake wheel. When no current is passing through the lamp, the wheel is free to move, and the carbons fall together; but when the current is switched on, the chain or cord passing over the brake wheel, or the brake wheel itself is gripped in some way, and at the same time the brake wheel is lifted so that the arc is struck.
Although countless forms of self-regulating device have been invented for arc lamps, nothing has survived the test of time so well as the typical mechanisms which work with carbon rods in one line, one or both rods being moved by a controlling apparatus as required. The early forms of semi-incandescent arc lamp, such as those of R. Werdermann and others, have dropped out of existence. These were not really true arc lamps, the light being produced by the incandescence of the extremity of a thin carbon rod pressed against a larger rod or block. The once famous Jablochkoff candle, invented in 1876, consisted of two carbon rods about 4 mm. in diameter, placed parallel to each other and separated by a partition of kaolin, steatite or other refractory non-conductor. Alternating currents were employed, and the candle was set in operation by a match or starter of high-resistance carbon paste which connected the tips of the rods. When this burned off, a true arc was formed between the parallel carbons, the separator volatilizing as the carbons burned away. Although much ingenuity was expended on this system of lighting between 1877 and 1881, it no longer exists. One cause of its disappearance was its relative inefficiency in light-giving power compared with other forms of carbon arc taking the same amount of power, and a second equally important reason was the waste in carbons. If the arc of the electric candle was accidentally blown out, no means of relighting existed; hence the great waste in half-burnt candles. H. Wilde, J. C. Jamin, J. Rapieff and others endeavoured to provide a remedy, but without success.
It is impossible to give here detailed descriptions of a fraction of the arc-lamp mechanisms devised, and it must suffice to indicate the broad distinctions between various types. (1) Arc lamps may be eithercontinuous-currentoralternating-currentlamps. For outdoor public illumination the former are greatly preferable, as owing to the form of the illuminating power-curve they send the light down on the road surface, provided the upper carbon is the positive one. For indoor, public room or factory lighting,inverted arclamps are sometimes employed. In this case the positive carbon is the lower one, and the lamp is carried in an inverted metallic reflector shield, so that the light is chiefly thrown up on the ceiling, whence it is diffused all round. The alternating-current arc is not only less efficient in mean spherical candle-power per watt of electric power absorbed, but its distribution of light is disadvantageous for street purposes. Hence when arc lamps have to be worked off an alternating-current circuit for public lighting it is now usual to make use of arectifier, which rectifies the alternating current into an unidirectional though pulsating current. (2.) Arc lamps may be also classified, as above described, intoopenorenclosed arcs. The enclosed arc can be made to burn for 200 hours with one pair of carbons, whereas open-arc lamps are usually only able to work, 8, 16 or 32 hours without recarboning, even when fitted with double carbons. (3) Arc lamps are further divided intofocussingandnon-focussinglamps. In the former the lower carbon is made to move up as the upper carbon moves down, and the arc is therefore maintained at the same level. This is advisable for arcs included in a globe, and absolutely necessary in the case of lighthouse lamps and lamps for optical purposes. (4) Another subdivision is intohand-regulatedandself-regulatinglamps. In the hand-regulated arcs the carbons are moved by a screw attachment as required, as in some forms of search-light lamp and lamps for optical lanterns. The carbons in large search-light lamps are usually placed horizontally. The self-regulating lamps may be classified into groups depending upon the nature of the regulating appliances. In some cases the regulation is controlled only by aseries coil, and in others only by ashunt coil. Examples of the former are the original Gülcher and Brush clutch lamp, and some modern enclosed arc lamps; and of the latter, the Siemens “band” lamp, and the Jackson-Mensing lamp. In series coil lamps the variation of the current in the coil throws into or out of action the carbon-moving mechanism; in shunt coil lamps the variation in voltage between the carbons is caused to effect the same changes. Other types of lamp involve the use both of shunt and series coils acting against each other. A further classification of the self-regulating lamps may be found in the nature of the carbon-moving mechanism. This may be some modification of the Brush ring clutch, hence calledclutchlamps; or some variety ofbrake wheel, as employed in Brockie and Crompton lamps; or else some form ofelectric motoris thrown into or out of action and effects the necessary changes. In many cases the arc-lamp mechanism is provided with adash-pot, or contrivance in which a piston moving nearly air-tight in a cylinder prevents sudden jerks in the motion of the mechanism, and thus does away with the “hunting” or rapid up-and-down movements to which some varieties of clutch mechanism are liable. One veryefficient form is illustrated in the Thomson lamp and Brush-Vienna lamp. In this mechanism a shunt and series coil are placed side by side, and have iron cores suspended to the ends of a rocking arm held partly within them. Hence, according as the magnetic action of the shunt or series coil prevails, the rocking arm is tilted backwards or forwards. When the series coil is not in action themotionis free, and the upper carbon-holder slides down, or the lower one slides up, and starts the arc. The series coil comes into action to withdraw the carbons, and at the same time locks the mechanism. The shunt coil then operates against the series coil, and between them the carbon is fed forwards as required. The control to be obtained is such that the arc shall never become so long as to flicker and become extinguished, when the carbons would come together again with a rush, but the feed should be smooth and steady, the position of the carbons responding quickly to each change in the current.The introduction of enclosed arc lamps was a great improvement, in consequence of the economy effected in the consumption of carbon and in the cost of labour for trimming. A well-known and widely used form of enclosed arc lamp is the Jandus lamp, which in large current form can be made to burn for two hundred hours without recarboning, and in small or midget form to burn for forty hours, taking a current of two amperes at 100 volts. Such lamps in many cases conveniently replace large sizes of incandescent lamps, especially for shop lighting, as they give a whiter light. Great improvements have also been made in inclined carbon arc lamps. One reason for the relatively low efficiency of the usual vertical rod arrangement is that the crater can only radiate laterally, since owing to the position of the negative carbon no crater light is thrown directly downwards. If, however, the carbons are placed in a downwards slanting position at a small angle like the letter V and the arc formed at the bottom tips, then the crater can emit downwards all the light it produces. It is found, however, that the arc is unsteady unless a suitable magnetic field is employed to keep the arc in position at the carbon tips. This method has been adopted in the Carbone arc, which, by the employment of inclined carbons, and a suitable electromagnet to keep the true arc steady at the ends of the carbons, has achieved considerable success. One feature of the Carbone arc is the use of a relatively high voltage between the carbons, their potential difference being as much as 85 volts.
It is impossible to give here detailed descriptions of a fraction of the arc-lamp mechanisms devised, and it must suffice to indicate the broad distinctions between various types. (1) Arc lamps may be eithercontinuous-currentoralternating-currentlamps. For outdoor public illumination the former are greatly preferable, as owing to the form of the illuminating power-curve they send the light down on the road surface, provided the upper carbon is the positive one. For indoor, public room or factory lighting,inverted arclamps are sometimes employed. In this case the positive carbon is the lower one, and the lamp is carried in an inverted metallic reflector shield, so that the light is chiefly thrown up on the ceiling, whence it is diffused all round. The alternating-current arc is not only less efficient in mean spherical candle-power per watt of electric power absorbed, but its distribution of light is disadvantageous for street purposes. Hence when arc lamps have to be worked off an alternating-current circuit for public lighting it is now usual to make use of arectifier, which rectifies the alternating current into an unidirectional though pulsating current. (2.) Arc lamps may be also classified, as above described, intoopenorenclosed arcs. The enclosed arc can be made to burn for 200 hours with one pair of carbons, whereas open-arc lamps are usually only able to work, 8, 16 or 32 hours without recarboning, even when fitted with double carbons. (3) Arc lamps are further divided intofocussingandnon-focussinglamps. In the former the lower carbon is made to move up as the upper carbon moves down, and the arc is therefore maintained at the same level. This is advisable for arcs included in a globe, and absolutely necessary in the case of lighthouse lamps and lamps for optical purposes. (4) Another subdivision is intohand-regulatedandself-regulatinglamps. In the hand-regulated arcs the carbons are moved by a screw attachment as required, as in some forms of search-light lamp and lamps for optical lanterns. The carbons in large search-light lamps are usually placed horizontally. The self-regulating lamps may be classified into groups depending upon the nature of the regulating appliances. In some cases the regulation is controlled only by aseries coil, and in others only by ashunt coil. Examples of the former are the original Gülcher and Brush clutch lamp, and some modern enclosed arc lamps; and of the latter, the Siemens “band” lamp, and the Jackson-Mensing lamp. In series coil lamps the variation of the current in the coil throws into or out of action the carbon-moving mechanism; in shunt coil lamps the variation in voltage between the carbons is caused to effect the same changes. Other types of lamp involve the use both of shunt and series coils acting against each other. A further classification of the self-regulating lamps may be found in the nature of the carbon-moving mechanism. This may be some modification of the Brush ring clutch, hence calledclutchlamps; or some variety ofbrake wheel, as employed in Brockie and Crompton lamps; or else some form ofelectric motoris thrown into or out of action and effects the necessary changes. In many cases the arc-lamp mechanism is provided with adash-pot, or contrivance in which a piston moving nearly air-tight in a cylinder prevents sudden jerks in the motion of the mechanism, and thus does away with the “hunting” or rapid up-and-down movements to which some varieties of clutch mechanism are liable. One veryefficient form is illustrated in the Thomson lamp and Brush-Vienna lamp. In this mechanism a shunt and series coil are placed side by side, and have iron cores suspended to the ends of a rocking arm held partly within them. Hence, according as the magnetic action of the shunt or series coil prevails, the rocking arm is tilted backwards or forwards. When the series coil is not in action themotionis free, and the upper carbon-holder slides down, or the lower one slides up, and starts the arc. The series coil comes into action to withdraw the carbons, and at the same time locks the mechanism. The shunt coil then operates against the series coil, and between them the carbon is fed forwards as required. The control to be obtained is such that the arc shall never become so long as to flicker and become extinguished, when the carbons would come together again with a rush, but the feed should be smooth and steady, the position of the carbons responding quickly to each change in the current.
The introduction of enclosed arc lamps was a great improvement, in consequence of the economy effected in the consumption of carbon and in the cost of labour for trimming. A well-known and widely used form of enclosed arc lamp is the Jandus lamp, which in large current form can be made to burn for two hundred hours without recarboning, and in small or midget form to burn for forty hours, taking a current of two amperes at 100 volts. Such lamps in many cases conveniently replace large sizes of incandescent lamps, especially for shop lighting, as they give a whiter light. Great improvements have also been made in inclined carbon arc lamps. One reason for the relatively low efficiency of the usual vertical rod arrangement is that the crater can only radiate laterally, since owing to the position of the negative carbon no crater light is thrown directly downwards. If, however, the carbons are placed in a downwards slanting position at a small angle like the letter V and the arc formed at the bottom tips, then the crater can emit downwards all the light it produces. It is found, however, that the arc is unsteady unless a suitable magnetic field is employed to keep the arc in position at the carbon tips. This method has been adopted in the Carbone arc, which, by the employment of inclined carbons, and a suitable electromagnet to keep the true arc steady at the ends of the carbons, has achieved considerable success. One feature of the Carbone arc is the use of a relatively high voltage between the carbons, their potential difference being as much as 85 volts.
Arc lamps may be arranged either (i.) in series, (ii.) in parallel or (iii.) in series parallel. In the first case a number, say 20, may be traversed by the same current, in that case supplied at a pressure of 1000 volts. Each must haveArrangement.a magnetic cut-out, so that if the carbons stick together or remain apart the current to the other lamps is not interrupted, the function of such a cut-out being to close the main circuit immediately any one lamp ceases to pass current. Arc lamps worked in series are generally supplied with a current from a constant current dynamo, which maintains an invariable current of, say 10 amperes, independently of the number of lamps on the external circuit. If the lamps, however, are worked in series off a constant potential circuit, such as one supplying at the same time incandescent lamps, provision must be made by which a resistance coil can be substituted for any one lamp removed or short-circuited. When lamps are worked in parallel, each lamp is independent, but it is then necessary to add a resistance in series with the lamp. By special devices three lamps can be worked in series of 100 volt circuits. Alternating-current arc lamps can be worked off a high-tension circuit in parallel by providing each lamp with a small transformer. In some cases the alternating high-tension current isrectifiedand supplied as a unidirectional current to lamps in series. If single alternating-current lamps have to be worked off a 100 volt alternating-circuit, each lamp must have in series with it a choking coil or economy coil, to reduce the circuit pressure to that required for one lamp. Alternating-current lamps take a largereffectivecurrent, and work with a less effective or virtual carbon P.D., than continuous current arcs of the same wattage.
The cost of working public arc lamps is made up of several items. There is first the cost of supplying the necessary electric energy, then the cost of carbons and the labour of recarboning, and, lastly, an item due to depreciationCost.and repairs of the lamps. An ordinary type of open 10 ampere arc lamp, burning carbons 15 and 9 mm. in diameter for the positive and negative, and working every night of the year from dusk to dawn, uses about 600 ft. of carbons per annum. If the positive carbon is 18 mm. and the negative 12 mm., the consumption of each size of carbon is about 70 ft. per 1000 hours of burning. It may be roughly stated that at the present prices of plain open arc-lamp carbons the cost is about 15s. per 1000 hours of burning; hence if such a lamp is burnt every night from dusk to midnight the annual cost in that respect is about £1, 10s. The annual cost of labour per lamp for trimming is in Great Britain from £2 to £3; hence, approximately speaking, the cost per annum of maintenance of a public arc lamp burning every night from dusk to midnight is about £4 to £5, or perhaps £6, per annum, depreciation and repairs included. Since such a 10 ampere lamp uses half a Board of Trade unit of electric energy every hour, it will take 1000 Board of Trade units per annum, burning every night from dusk to midnight; and if this energy is supplied, say at 1½d. per unit, the annual cost of energy will be about £6, and the upkeep of the lamp, including carbons, labour for trimming and repairs, will be about £10 to £11 per annum. The cost for labour and carbons is considerably reduced by the employment of the enclosed arc lamp, but owing to the absorption of light produced by the inner enclosing globe, and the necessity for generally employing a second outer globe, there is a lower resultant candle-power per watt expended in the arc. Enclosed arc lamps are made to burn without attention for 200 hours, singly on 100 volt circuits, or two in series on 200 volt circuits, and in addition to the cost of carbons per hour being only about one-twentieth of that of the open arc, they have another advantage in the fact that there is a more uniform distribution of light on the road surface, because a greater proportion of light is thrown out horizontally.
It has been found by experience that the ordinary type of open arc lamp with vertical carbons included in an opalescent globe cannot compete in point of cost with modern improvements in gas lighting as a means of street illumination. The violet colour of the light and the sharp shadows, and particularly the non-illuminated area just beneath the lamp, are grave disadvantages. The high-pressure flame arc lamp with inclined chemically treated carbons has, however, put a different complexion on matters. Although the treated carbons cost more than the plain carbons, yet there is a great increase of emitted light, and a 9-ampere flame arc lamp supplied with electric energy at 1½d. per unit can be used for 1000 hours at an inclusive cost of about £s to £6, the mean emitted illumination being at the rate of 4 c.p. per watt absorbed. In the Carbone arc lamp, the carbons are worked at an angle of 15° or 20° to each other and the arc is formed at the lower ends. If the potential difference of the carbons is low, say only 50-60 volts, the crater forms between the tips of the carbons and is therefore more or less hidden. If, however, the voltage is increased to 90-100 then the true flame of the arc is longer and is curved, and the crater forms at the exteme tip of the carbons and throws all its light downwards. Hence results a far greater mean hemispherical candle power (M.H.S.C.P.), so that whereas a 10-ampere 60 volt open arc gives at most 1200 M.H.S.C.P., a Carbone 10-ampere 85 volt arc will give 2700 M.H.S.C.P. Better results still can be obtained with impregnated carbons. But the flame arcs with impregnated carbons cannot be enclosed, so the consumption of carbon is greater, and the carbons themselves are more costly, and leave a greater ash on burning; hence more trimming is required. They give a more pleasing effect for street lighting, and their golden yellow globe of light is more useful than an equally costly plain arc of the open type. This improvement in efficiency is, however, accompanied by some disadvantages. The flame arc is very sensitive to currents of air and therefore has to be shielded from draughts by putting it under an “economizer” or chamber of highly refractory material which surrounds the upper carbon, or both carbon tips, if the arc is formed with inclined carbons. (For additional information on flame arc lamps see a paper by L. B. Marks and H. E. Clifford,Electrician, 1906, 57, p. 975.)
2.Incandescent Lamps.—Incandescent electric lighting, although not the first, is yet in one sense the most obvious method of utilizing electric energy for illumination. It was evolved from the early observed fact that a conductor is heatedwhen traversed by an electric current, and that if it has a high resistance and a high melting-point it may be rendered incandescent, and therefore become a source of light. Naturally every inventor turned his attention to the employment of wires of refractory metals, such as platinum or alloys of platinum-iridium, &c., for the purpose of making an incandescent lamp. F. de Moleyns experimented in 1841, E. A. King and J. W. Starr in 1845, J. J. W. Watson in 1853, and W. E. Staite in 1848, but these inventors achieved no satisfactory result. Part of their want of success is attributable to the fact that the problem of the economical production of electric current by the dynamo machine had not then been solved. In 1878 T. A. Edison devised lamps in which a platinum wire was employed as the light-giving agent, carbon being made to adhere round it by pressure. Abandoning this, he next directed his attention to the construction of an “electric candle,” consisting of a thin cylinder or rod formed of finely-divided metals, platinum, iridium, &c., mixed with refractory oxides, such as magnesia, or zirconia, lime, &c. This refractory body was placed in a closed vessel and heated by being traversed by an electric current. In a further improvement he proposed to use a block of refractory oxide, round which a bobbin of fine platinum or platinum-iridium wire was coiled. Every other inventor who worked at the problem of incandescent lighting seems to have followed nearly the same path of invention. Long before this date, however, the notion of employing carbon as a substance to be heated by the current had entered the minds of inventors; even in 1845 King had employed a small rod of plumbago as the substance to be heated. It was obvious, however, that carbon could only be so heated when in a space destitute of oxygen, and accordingly King placed his plumbago rod in a barometric vacuum. S. W. Konn in 1872, and S. A. Kosloff in 1875, followed in the same direction.
No real success attended the efforts of inventors until it was finally recognized, as the outcome of the work by J. W. Swan, T. A. Edison, and, in a lesser degree, St. G. Lane Fox and W. E. Sawyer and A. Man, that the conditionsCarbon filament lamp.of success were as follow: First, the substance to be heated must be carbon in the form of a thin wire rod or thread, technically termed afilament; second, this must be supported and enclosed in a vessel formed entirely of glass; third, the vessel must be exhausted as perfectly as possible; and fourth, the current must be conveyed into and out of the carbon filament by means of platinum wires hermetically sealed through the glass.
One great difficulty was the production of the carbon filament. King, Sawyer, Man and others had attempted to cut out a suitably shaped piece of carbon from a solid block; but Edison and Swan were the first to show that the proper solution of the difficulty was to carbonize an organic substance to which the necessary form had been previously given. For this purpose cardboard, paper and ordinary thread were originally employed, and even, according to Edison, a mixture of lampblack and tar rolled out into a fine wire and bent into a spiral. At one time Edison employed a filament of bamboo, carbonized after being bent into a horse-shoe shape. Swan used a material formed by treating ordinary crochet cotton-thread with dilute sulphuric acid, the “parchmentized thread” thus produced being afterwards carbonized. In the modern incandescent lamp the filament is generally constructed by preparing first of all a form of soluble cellulose. Carefully purified cotton-wool is dissolved in some solvent, such as a solution of zinc chloride, and the viscous material so formed is forced by hydraulic pressure through a die. The long thread thus obtained, when hardened, is a semi-transparent substance resembling cat-gut, and when carefully carbonized at a high temperature gives a very dense and elastic form of carbon filament. It is cut into appropriate lengths, which after being bent into horse-shoes, double-loops, or any other shape desired, are tied or folded round carbon formers and immersed in plumbago crucibles, packed in with finely divided plumbago. The crucibles are then heated to a high temperature in an ordinary combustion or electric furnace, whereby the organic matter is destroyed, and a skeleton of carbon remains. The higher the temperature at which this carbonization is conducted, the denser is the resulting product. The filaments so prepared are sorted and measured, and short leading-in wires of platinum are attached to their ends by a carbon cement or by a carbon depositing process, carried out by heating electrically the junction of the carbon and platinum under the surface of a hydrocarbon liquid. They are then mounted in bulbs of lead glass having the same coefficient of expansion as platinum, through the walls of which, therefore, the platinum wires can be hermetically sealed. The bulbs pass into the exhausting-room, where they are exhausted by some form of mechanical or mercury pump. During this process an electric current is sent through the filament to heat it, in order to disengage the gases occluded in the carbon, and exhaustion must be so perfect that no luminous glow appears within the bulb when held in the hand and touched against one terminal of an induction coil in operation.In the course of manufacture a process is generally applied to the carbon which is technically termed “treating.” The carbon filament is placed in a vessel surrounded by an atmosphere of hydrocarbon, such as coal gas or vapour of benzol. If current is then passed through the filament the hydrocarbon vapour is decomposed, and carbon is thrown down upon the filament in the form of a lustrous and dense deposit having an appearance like steel when seen under themicroscope. This deposited carbon is not only much more dense than ordinary carbonized organic material, but it has a much lower specific electric resistance. An untreated carbon filament is generally termed the primary carbon, and a deposited carbon the secondary carbon. In the process of treating, the greatest amount of deposit is at any places of high resistance in the primary carbon, and hence it tends to cover up or remedy the defects which may exist. The bright steely surface of a well-treated filament is a worse radiator than the rougher black surface of an untreated one; hence it does not require the expenditure of so much electric power to bring it to the same temperature, and probably on account of its greater density it ages much less rapidly.Fig. 15.Fig. 16.—Incandescent Lamp Sockets.Finally, the lamp is provided with a collar having two sole plates on it, to which the terminal wires are attached, or else the terminal wires are simply bent into two loops; in a third form, the Edison screw terminal, it is provided with a central metal plate, to which one end of the filament is connected, the other end being joined to a screw collar. The collars and screws are formed of thin brass embedded in plaster of Paris, or in some material like vitrite or black glass (fig. 15). To put the lamp into connexion with the circuit supplying the current, it has to be fitted into a socket or holder. Three of the principal types of holder in use are the bottom contact (B.C.) or Dornfeld socket, the Edison screw-collar socket and the Swan or loop socket. In the socket of C. Dornfeld (fig. 16,aanda′) two spring pistons, in contact with the two sides of the circuit, are fitted into the bottom of a short metallic tube having bayonet joint slots cut in the top. The brass collar on the lamp has two pins, by means of which a bayonet connexion is made between it and the socket; and when this is done, the spring pins are pressed against the sole plates on the lamp. In the Edison socket (fig. 16,b) a short metal tube with an insulating lining has on its interior a screw sleeve, which is in connexion with one wire of the circuit; at the bottom of the tube, and insulated from the screw sleeve, is a central metal button, which is in connexion with the other side of the circuit. On screwing the lamp into the socket, the screw collar of the lamp and the boss or plate at the base of the lamp make contact with the corresponding parts of the socket, and complete the connexion. In some cases a form of switch is included in the socket, which is then termed the key-holder. For loop lamps the socket consists of an insulated block, having on it two little hooks, which engage with the eyes of the lamp. This insulating block also carries some form of spiral spring or pair of spring loops, by means of which the lamp is pressed away from the socket, and the eyes kept tight by the hooks. This spring or Swan socket (fig. 16,c) is found useful in places where the lamps are subject to vibration, for in such cases the Edison screw collar cannot well be used, because the vibration loosens the contact of the lamp in the socket. The sockets may be fitted with appliances for holding ornamental shades or conical reflectors.The incandescent filament being a very brilliant line of light, various devices are adopted for moderating its brilliancy and distributing the light. A simple method is to sand-blast the exterior of the bulb, whereby it acquires an appearance similar to that of ground glass, or the bare lamp may be enclosed in a suitable glass shade. Such shades, however, if made of opalescent or semi-opaque glass, absorb 40 to 60% of the light; hence various forms of dioptric shade have been invented, consisting of clear glass ruled with prismatic grooves in such a manner as to diffuse the light without any very great absorption. Invention has been fertile in devising etched, coloured, opalescent, frosted and ornamental shades for decorative purposes, and in constructing special forms for use in situations, such as mines and factories for explosives, where the globe containing the lamp must be air-tight. High candle-power lamps, 500, 1000 and upwards, are made by placing in one large glass bulb a number of carbon filaments arranged in parallel between two rings, which are connected with the main leading-in wires. When incandescent lamps are used for optical purposes it is necessary to compress the filament into a small space, so as to bring it into the focus of a lens or mirror. The filament is then coiled or crumpled up into a spiral or zigzag form. Such lamps are calledfocus lamps.
One great difficulty was the production of the carbon filament. King, Sawyer, Man and others had attempted to cut out a suitably shaped piece of carbon from a solid block; but Edison and Swan were the first to show that the proper solution of the difficulty was to carbonize an organic substance to which the necessary form had been previously given. For this purpose cardboard, paper and ordinary thread were originally employed, and even, according to Edison, a mixture of lampblack and tar rolled out into a fine wire and bent into a spiral. At one time Edison employed a filament of bamboo, carbonized after being bent into a horse-shoe shape. Swan used a material formed by treating ordinary crochet cotton-thread with dilute sulphuric acid, the “parchmentized thread” thus produced being afterwards carbonized. In the modern incandescent lamp the filament is generally constructed by preparing first of all a form of soluble cellulose. Carefully purified cotton-wool is dissolved in some solvent, such as a solution of zinc chloride, and the viscous material so formed is forced by hydraulic pressure through a die. The long thread thus obtained, when hardened, is a semi-transparent substance resembling cat-gut, and when carefully carbonized at a high temperature gives a very dense and elastic form of carbon filament. It is cut into appropriate lengths, which after being bent into horse-shoes, double-loops, or any other shape desired, are tied or folded round carbon formers and immersed in plumbago crucibles, packed in with finely divided plumbago. The crucibles are then heated to a high temperature in an ordinary combustion or electric furnace, whereby the organic matter is destroyed, and a skeleton of carbon remains. The higher the temperature at which this carbonization is conducted, the denser is the resulting product. The filaments so prepared are sorted and measured, and short leading-in wires of platinum are attached to their ends by a carbon cement or by a carbon depositing process, carried out by heating electrically the junction of the carbon and platinum under the surface of a hydrocarbon liquid. They are then mounted in bulbs of lead glass having the same coefficient of expansion as platinum, through the walls of which, therefore, the platinum wires can be hermetically sealed. The bulbs pass into the exhausting-room, where they are exhausted by some form of mechanical or mercury pump. During this process an electric current is sent through the filament to heat it, in order to disengage the gases occluded in the carbon, and exhaustion must be so perfect that no luminous glow appears within the bulb when held in the hand and touched against one terminal of an induction coil in operation.
In the course of manufacture a process is generally applied to the carbon which is technically termed “treating.” The carbon filament is placed in a vessel surrounded by an atmosphere of hydrocarbon, such as coal gas or vapour of benzol. If current is then passed through the filament the hydrocarbon vapour is decomposed, and carbon is thrown down upon the filament in the form of a lustrous and dense deposit having an appearance like steel when seen under themicroscope. This deposited carbon is not only much more dense than ordinary carbonized organic material, but it has a much lower specific electric resistance. An untreated carbon filament is generally termed the primary carbon, and a deposited carbon the secondary carbon. In the process of treating, the greatest amount of deposit is at any places of high resistance in the primary carbon, and hence it tends to cover up or remedy the defects which may exist. The bright steely surface of a well-treated filament is a worse radiator than the rougher black surface of an untreated one; hence it does not require the expenditure of so much electric power to bring it to the same temperature, and probably on account of its greater density it ages much less rapidly.
Finally, the lamp is provided with a collar having two sole plates on it, to which the terminal wires are attached, or else the terminal wires are simply bent into two loops; in a third form, the Edison screw terminal, it is provided with a central metal plate, to which one end of the filament is connected, the other end being joined to a screw collar. The collars and screws are formed of thin brass embedded in plaster of Paris, or in some material like vitrite or black glass (fig. 15). To put the lamp into connexion with the circuit supplying the current, it has to be fitted into a socket or holder. Three of the principal types of holder in use are the bottom contact (B.C.) or Dornfeld socket, the Edison screw-collar socket and the Swan or loop socket. In the socket of C. Dornfeld (fig. 16,aanda′) two spring pistons, in contact with the two sides of the circuit, are fitted into the bottom of a short metallic tube having bayonet joint slots cut in the top. The brass collar on the lamp has two pins, by means of which a bayonet connexion is made between it and the socket; and when this is done, the spring pins are pressed against the sole plates on the lamp. In the Edison socket (fig. 16,b) a short metal tube with an insulating lining has on its interior a screw sleeve, which is in connexion with one wire of the circuit; at the bottom of the tube, and insulated from the screw sleeve, is a central metal button, which is in connexion with the other side of the circuit. On screwing the lamp into the socket, the screw collar of the lamp and the boss or plate at the base of the lamp make contact with the corresponding parts of the socket, and complete the connexion. In some cases a form of switch is included in the socket, which is then termed the key-holder. For loop lamps the socket consists of an insulated block, having on it two little hooks, which engage with the eyes of the lamp. This insulating block also carries some form of spiral spring or pair of spring loops, by means of which the lamp is pressed away from the socket, and the eyes kept tight by the hooks. This spring or Swan socket (fig. 16,c) is found useful in places where the lamps are subject to vibration, for in such cases the Edison screw collar cannot well be used, because the vibration loosens the contact of the lamp in the socket. The sockets may be fitted with appliances for holding ornamental shades or conical reflectors.
The incandescent filament being a very brilliant line of light, various devices are adopted for moderating its brilliancy and distributing the light. A simple method is to sand-blast the exterior of the bulb, whereby it acquires an appearance similar to that of ground glass, or the bare lamp may be enclosed in a suitable glass shade. Such shades, however, if made of opalescent or semi-opaque glass, absorb 40 to 60% of the light; hence various forms of dioptric shade have been invented, consisting of clear glass ruled with prismatic grooves in such a manner as to diffuse the light without any very great absorption. Invention has been fertile in devising etched, coloured, opalescent, frosted and ornamental shades for decorative purposes, and in constructing special forms for use in situations, such as mines and factories for explosives, where the globe containing the lamp must be air-tight. High candle-power lamps, 500, 1000 and upwards, are made by placing in one large glass bulb a number of carbon filaments arranged in parallel between two rings, which are connected with the main leading-in wires. When incandescent lamps are used for optical purposes it is necessary to compress the filament into a small space, so as to bring it into the focus of a lens or mirror. The filament is then coiled or crumpled up into a spiral or zigzag form. Such lamps are calledfocus lamps.
Incandescent lamps are technically divided into high and low voltage lamps, high and low efficiency lamps, standard and fancy lamps. The difference between high and low efficiency lamps is based upon the relation of theClassification of lamps.power absorbed by the lamp to the candle-power emitted. Every lamp when manufactured is marked with a certain figure, called themarked volts. This is understood to be the electromotive force in volts which must be applied to the lamp terminals to produce through the filament a current of such magnitude that the lamp will have a practically satisfactory life, and give in a horizontal direction a certain candle-power, which is also marked upon the glass. The numerical product of the current in amperes passing through the lamp, and the difference in potential of the terminals measured in volts, gives the total power taken up by the lamp in watts; and this number divided by the candle-power of the lamp (taking generally a horizontal direction) gives thewatts per candle-power. This is an important figure, because it is determined by the temperature; it therefore determines the quality of the light emitted by the lamp, and also fixes the average duration of the filament when rendered incandescent by a current. Even in a good vacuum the filament is not permanent. Apart altogether from accidental defects, the carbon is slowly volatilized, and carbon molecules are also projected in straight lines from different portions of the filament. This process not only causes a change in the nature of the surface of the filament, but also a deposit of carbon on the interior of the bulb, whereby the glass is blackened and the candle-power of the lamp reduced. The volatilization increases very rapidly as the temperature rises. Hence at points of high resistance in the filament, more heat being generated, a higher temperature is attained, and the scattering of the carbon becomes very rapid; in such cases the filament is sooner or later cut through at the point of high resistance. In order that incandescent lighting may be practically possible, it is essential that the lamps shall have a certainaverage life, that is, duration; and this useful duration is fixed not merely by the possibility of passing a current through the lamp at all, but by the rate at which the candle-power diminishes. The decay of candle-power is called theageingof the lamp, and the useful life of the lamp may be said to be that period of its existence before it has deteriorated to a point when it gives only 75% of its original candle-power. It is found that in practice carbon filament lamps, as at present made, if worked at a higher efficiency than 2½ watts per candle-power, exhibit a rapid deterioration in candle-power and an abbreviated life. Hence lamp manufacturers classify lamps into various classes, marked for use say at 2½, 3, 3½ and 4 watts per candle. A 2½ watt per candle lamp would be called ahigh-efficiency lamp, and a 4 watt per candle lamp would be called alow-efficiencylamp. In ordinary circumstances the low-efficiency lamp would probably have a longer life, but its light would be less suitable for many purposes of illumination in which colour discrimination is required.
The possibility of employing high-efficiency lamps depends greatly on the uniformity of the electric pressure of the supply. If the voltage is exceedingly uniform, then high-efficiency lamps can be satisfactorily employed; but they are not adapted for standing the variations in pressure which are liable to occur with public supply-stations, since, other things being equal, their filaments are less substantial. The classification into high and low voltage lamps is based upon the watts per candle-power corresponding to the marked volts. When incandescent lamps were first introduced, the ordinary working voltage was 50 or 100, but now a large number of public supply-stations furnish current to consumers at a pressure of 200 or 250 volts. This increase was necessitated by the enlarging area of supply in towns, and therefore the necessity for conveying through the same subterranean copper cables a large supply of electric energy without increasing the maximum current value and the size of the cables. This can only be done by employing a higher working electromotive force; hence arose a demand for incandescent lamps having marked volts of 200 and upwards, technically termed high-voltage lamps. The employment of higher pressures in public supply-stations has necessitated greater care in the selection of the lamp fittings, and in the manner of carrying out the wiring work. The advantages, however, of higher supply pressures, from the point of view of supply-stations, are undoubted. At the same time the consumer desired a lamp of a higher efficiency than the ordinary carbon filament lamp. The demand for this stimulated efforts to produce improved carbon lamps, and it was found that if the filament were exposed to a very high temperature, 3000° C. in an electric furnace, it became more refractory and was capable of burning in a lamp at an efficiency of 2½ watts per c.p. Inventors also turned their attention to substances other than carbon which can be rendered incandescent by the electric current.
The luminous efficiency of any source of light, that is to say, the percentage of rays emitted which affect the eye as light compared with the total radiation, is dependent upon its temperature. In an ordinary oil lamp the luminousOxide filaments.rays do not form much more than 3% of the total radiation. In the carbon-filament incandescent lamp, when worked at about 3 watts per candle, the luminous efficiency is about 5%; and in the arc lamp the radiation from the crater contains about 10 to 15% of eye-affecting radiation. The temperature of a carbon filament working at about 3 watts per candle is not far from the melting-point of platinum, that is to say, is nearly 1775° C. If it is worked at a higher efficiency, say 2.5 watts per candle-power, the temperature rises rapidly, and at the same time the volatilization and molecular scattering of the carbon is rapidly increased, so that the average duration of the lamp is very much shortened. An improvement, therefore, in the efficiency of the incandescent lamp can only be obtained by finding some substance which will endure heating to a higher temperature than the carbon filament. Inventors turned their attention many years ago, with this aim, to the refractory oxides and similar substances. Paul Jablochkoff in 1877 described and made a lamp consisting of a piece of kaolin, which was brought to a state of incandescence first by passing over it an electric spark, and afterwards maintained in a state of incandescence by a current of lower electromotive force. Lane Fox and Edison, in 1878, proposed to employ platinum wires covered with films of lime, magnesia, steatite, or with the rarer oxides, zirconia, thoria, &c.; and Lane Fox, in 1879, suggested as an incandescent substance a mixture of particles of carbon with the earthy oxides. These earthy oxides—magnesia, lime and the oxides of the rare earths, such as thoria, zirconia, erbia, yttria, &c.—possess the peculiarity that at ordinary temperatures they are practically non-conductors, but at very high temperatures their resistance at a certain point rapidly falls, and they become fairly good conductors. Hence if they can once be brought into a state of incandescence a current can pass through them and maintain them in that state. But at this temperature they give up oxygen to carbon; hence no mixtures of earthy oxides with carbon are permanent when heated, and failurehas attended all attempts to use a carbon filament covered with such substances as thoria, zirconia or other of the rare oxides.
H. W. Nernst in 1897, however, patented an incandescent lamp in which the incandescent body consists entirely of a slender rod or filament of magnesia. If such a rod is heated by the oxy-hydrogen blowpipe to a highNernst lamp.temperature it becomes conductive, and can then be maintained in an intensely luminous condition by passing a current through it after the flame is withdrawn. Nernst found that by mixing together, in suitable proportions, oxides of the rare earths, he was able to prepare a material which can be formed into slender rods and threads, and which is rendered sufficiently conductive to pass a current with an electromotive force as low as 100 volts, merely by being heated for a few moments with a spirit lamp, or even by the radiation from a neighbouring platinum spiral brought to a state of incandescence.